The XENON Project

XENON

Elena Aprile

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Neutrino Physics and Beyond Hong Kong February 21, 2024

xenonexperiment.org

27 institutions 200 scientists

State-of-the-art and Future Projections

The XENON Phased Program of Experiments at LNGS

XENON10	XENON100	XENON1T	XENONnT
2005-2007	2008-2016	2012-2019	2020-2026 (taking science data)
15 kg Xe target	62 kg Xe target	2 t Xe target, 3.3t total	~6 t Xe target, 8.6t total
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	4 ×10 ⁻⁴⁷ cm ²	Projection: 1.4×10 ⁻⁴⁸ cm ² for 20 tonne-year
~2000000 background ER events/(keV t y)	1800 background ER events/(keV t y)	82 background ER events/(keV t y)	16.1 background ER events/(keV t y)

XENONnT

XENON limits on WIMPs

Two-Phase Liquid Xenon Time Projection Chambers

- S1: "Light signal"
 - prompt scintillation photons
- S2: "Charge signal"
 - Secondary scintillation photons from electroluminescence in GXe due to drifted electrons

XENON1T

- The first tonne-scale LXeTPC, with a 2-tonne active mass.
- 1m diameter and height with 248 3" low-radioactivity PMTs
- TPC mounted in a cryostat suspended in center of a water Cerenkov muon veto detector

XENON1T

XENON1T Background

 (82 ± 5) events / $(t \times yr \times keV_{ee})$ below 25 keVee

Lowest ER background achieved in a DM detector

Dominated by Pb214 from Rn222 (~ 10 uBq/kg)

Final WIMP result used one tonne-year of data over two science runs, with world-leading sensitivity and limits

XENON1T Science Results: much more than WIMP limits!

LIGHT DARK MATTER PRL 123, 241803 PRL 123, 251801

SOLAR ⁸B CEvNS PRL 126, 091301

DOUBLE ELECTRON CAPTURE Nature 568, 532

0vbb DECAY

EPJ C (2020) 80:785 (analysis R&D)

BOSONIC DARK MATTER PRD 102, 072004

PRD 102, 07200

NEUTRINO

MAGNETIC MOMENT PRD 102, 072004

TECHNICAL ANALYSIS PAPERS PRD 99, 112009 PRD 100, 052014

WIMP DARK MATTER

PRL 119, 181301

PRL 121, 111302 PRL 122, 071301

122.141301

XENON1T Science Results: much more than WIMP limits!

FROM XENON1T TO XENON-NT

XENON1T infrastructure and subsystems designed to efficiently upgrade to a more sensitive experiment with

new TPC with 8500 kg of LXe
 new liquid xenon purification
 new active neutron veto
 new radon removal system

FROM XENON1T TO XEN

XENON1T infrastructure and subsystems designed to efficiently upgrade to a more sensitive experiment with

new TPC with 8500 kg of LXe
 new liquid xenon purification
 new active neutron veto
 new radon removal system

XENONnT Background

Neutrinos Searches with XENON

Nuclear Recoil Searches: $CE\nu NS$

• Coherent Elastic neutrino Nucleus Scattering:

 $\nu + N \rightarrow \nu + N$

- A neutrino hits a nucleus via Z-exchange and the nucleus recoils as a single particle; coherent for $E_{\nu} \lesssim 50 \ {
 m MeV}$
- SM interaction, flavor blind, no energy threshold
- first detected in 2017 by COHERENT experiment
- Nuclear recoil signature, same as expected for DM-nucleus
 interactions → "Neutring for Meetring acting viale one for DM Searches
- Treated as a signal:
 - could be the first detection of CEvNS from solar neutrinos
 - ⁸B solar neutrinos expected to contribute most in LXe DM experiments
 - Similar rate as 6 GeV WIMPs with x-section of $4 \times 10^{-45} \text{ cm}^2$

Nuclear Recoils Search in XENONnT (Blind Analysis)

hundreds of events from CEvNS but at extremely low energies where detection efficiency is around 0.04%

 $R=\phi(
u) imes \sigma_
u imes ext{exposure}{\simeq} 600\, ext{events}/(ext{tonne} imes ext{year})$

	Nominal	Best fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}$	1.1 ± 0.4	0.42 ± 0.16
CE _{\u03cb} NS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4_{-0.8}$	0.32 ± 0.00
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03_{-0.15}^{+0.17}$
WIMP		2.6	1.3
Observed		152	3

Solar ⁸B Neutrinos CEvNS search

INCREASE DETECTION EFFICIENCY

S1 threshold: $3 \rightarrow 2$ PMTs coincidence

S2 threshold: $200 \rightarrow 100 \text{ PE}$

With XENON1T the NR threshold was lowered to 1.6 keV

No CEvNS excess, new WIP limit down to 3GeV

Lower energy threshold → Background rate increased by two orders of magnitude

REDUCE BACKGROUND AT LOW ENERGY

Main background for CEvNS given by Accidental Coincidences (AC), resulting from random pairing of isolated S1s and S2s.

Various mitigation strategies: dedicated selection in specific observables, ML techniques and AC background modeling

Higher Discovery Potential for ⁸B Neutrinos with XENONnT

40

cS1 [PE]

20

60

80

100

S2 [PE]

Lower drift field results in:

- larger isolated S2 rate
- longer drift time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Larger AC rate but improved **AC suppression** with new techniques, mostly due to S1S2 correlations

Accidental coincidence background reduced and modeling validated in the XENONnT WIMP analysis (Science Run 0)

Ongoing low-threshold 2-fold coincidence analysis!

Electronic Recoils Search in XENONnT(Blind Analysis)

- Spectral shape dominated by two double-weak decays: 136 Xe $2\nu\beta\beta$, 124 Xe 2ν ECEC
- Total ER background below 30 keV: 16 events/(t y keV) dominated by Pb214
- Solar neutrinos: second largest background below 10 keV
- No excess observed in XENONnT
- Better constraints on BSM physics, for instance on neutrino magnetic moment $\mu_{\nu} < 6.4 \times 10^{-12} \mu_{\rm B}$

	(1, 10) keV	(1, 140) keV
²¹⁴ Pb	56 ± 7	980 ± 120
⁸⁵ Kr	6 ± 4	90 ± 60
Materials	16 ± 3	270 ± 50
¹³⁶ Xe	8.7 ± 0.3	1520 ± 50
Solar v	25 ± 2	300 ± 30
¹²⁴ Xe	2.6 ± 0.3	260 ± 30
AC	0.70 ± 0.03	0.71 ± 0.03
¹³³ Xe	-	160 ± 60
^{83m} Kr	-	80 ± 16

Electronic Recoils Search in XENONnT(Blind Analysis)

- Spectral shape dominated by two double-weak decays: 136 Xe $2\nu\beta\beta$, 124 Xe 2ν ECEC
- Total ER background below 30 keV: 16 events/(t y keV) dominated by Pb214
- Solar neutrinos: second largest background below 10 keV

PandaX-II

No excess observed in XENONnT

 10^{-10}

 10^{-11}

 10^{-12}

White

dwarfs

Globular

Cluster

 $\mu_{\nu} \left[\mu_B \right]$

 ${}_{\odot}\,$ Better constraints on BSM physics, for instance on neutrino magnetic moment $\mu_{\nu} < 6.4 \times 10^{-12} \mu_{\rm B}$

Borexino

Gemma

Phys. Rev. Lett. 131, 041003, 2023

Solar pp Neutrinos Detection with XENONnT

30

ELECTRONIC RECOILS SEARCH

Solar neutrinos (mostly from **pp** chain) can be detected due to **elastic scattering** off **e**- in LXe (charged and neutral current)

²¹⁴Pb (from ²²²Rn) is one major background in this region but improvements to Radon Removal System reduced it below 1 uBq/kg for science runs after SR0

Search for solar pp neutrinos in SR1

Measurement starts to be possible in XENONnT as the ²¹⁴Pb in SR1 is less than half of that in SR0

For the **first** time, elastic scattering off e- from **solar neutrinos** has a **similar ER contribution** as ²¹⁴**Pb** in (1, 10) keV

Supernova Neutrinos Detection with XENONnT

SUPERNOVA NEUTRINO CHANNELS IN XENONnT

→ TPC, 6 t of LXe

 $\nu_{e, \mu, \tau}, \bar{\nu}_{e, \mu, \tau}$ via **CEvNS** (charged and other neutral current are subdominant)

- ~ 100 expected events from supernova at 10 kpc
- → MUON & NEUTRON VETO, 700 t ultra-pure water
 - ν_e via **inverse beta** decay with H
- ~ 70 200 expected events from supernova at 10 kpc

SNEWS INTEGRATION

XENONnT is **ready** to join the **Supernova Early Warning System** (SNEWS)

It will **receive** incoming **alerts** to check data and **send** possible **supernova observations**

PREDICTIONS

Neutrinos deposit around O(1) keV in LXe

Background stable in time, can be reduced with **specific selection** (similar to ⁸B search)

Considering signal evolution, time **window** can be **optimized**, resulting in $\sim 8\sigma$ significance (10 kpc)

Possible improvements using coincident signals from vetoes

Summary

- Current generation WIMP detectors based on LXe can contribute to neutrino physics already.
- •With the lowest ER background among all DM experiments, XENONnT has already placed the strongest experimental limit on **neutrino magnetic moment.**
- •XENONnT (and other LXeTPCs) will likely measure **CEvNS from 8B solar neutrinos. It** is also sensitive to **supernova neutrinos for up to 50kpc**
- Future multi-ten-ton scale xenon detectors will be able to probe an even larger range of neutrino physics in both
 - •ER: Solar Neutrinos (⁷Be, pp) second highest background after ²¹⁴Pb from ²²²Rn
 - •NR via CEvNS: DSN, atmospheric neutrinos, precision measurements of solar neutrinos (8B and hep)

