International Symposium on Neutrino Physics and Beyond (NPB 2024) Feb 19 – 21, 2024, HKUST

# Neutrino Physics with PandaX

HAN, Ke 韩柯 (SJTU) For the PandaX Collaboration 2024/2/20

#### PandaX: Particle and Astrophysical Xenon Experiment





#### 15 institutions, ~100 collaborators

PandaX Neutrino Physics

HAN, Ke (SJTU)



#### PandaX-4T



- A multi-ton dual-phase xenon TPC at B2 hall of China Jinping Underground Laboratory
- 1.2 m (D) ×1.2 m (H); Sensitive volume: 3.7-ton LXe; 3-inch PMTs: 169 top / 199 bottom
- Water shielding





#### PandaX-4T timeline



| 2020/11 – 2021/04 | <b>Commissioning (Run 0)</b><br>95 days data                             |
|-------------------|--------------------------------------------------------------------------|
| 2021/07 – 2021/10 | <b>Tritium removal</b> xenon distillation, gas flushing, etc.            |
| 2021/11 – 2022/05 | <b>Physics run (Run 1)</b><br>164 days data                              |
| 2022/09 – 2023/12 | <b>CJPL B2 hall construction</b><br>xenon recuperation, detector upgrade |

#### **Detector is under-preparation for Run 2**





























|                  | Sub-keV                          | keV                    | 10 keV |        | 100         | keV            | 1 N       | leV   | 10 MeV |  |
|------------------|----------------------------------|------------------------|--------|--------|-------------|----------------|-----------|-------|--------|--|
| Xe-136<br>(9%)   |                                  |                        |        |        |             | DB             | D and N   | ILDBD |        |  |
| Xe-134<br>(10%)  |                                  |                        |        |        |             | DBD<br>NLD     | and<br>BD |       |        |  |
| Xe-124<br>(0.1%) |                                  |                        |        | Double | e EC        |                |           |       |        |  |
| Xe-all           | Solar <sup>8</sup> B<br>neutrino | WIMP and other DM sign |        | als    | Sola<br>neu | ar pp<br>trino |           |       | alphas |  |



|                  | Sub-keV                          | keV        | 10 ke\       | /     | 100      | keV              | 1 N       | /leV  | 10 MeV |  |
|------------------|----------------------------------|------------|--------------|-------|----------|------------------|-----------|-------|--------|--|
| Xe-136<br>(9%)   |                                  |            |              |       |          | DE               | 3D and I  | NLDBD |        |  |
| Xe-134<br>(10%)  |                                  |            |              |       |          | DBD<br>NLD       | and<br>BD |       |        |  |
| Xe-124<br>(0.1%) |                                  |            |              | Doubl | e EC     |                  |           |       |        |  |
| Xe-all           | Solar <sup>8</sup> B<br>neutrino | WIMP and o | ther DM sign | nals  | So<br>ne | lar pp<br>utrino |           |       | alphas |  |

# Neutrinoless Double beta decay (NLDBD)



- Neutrinoless double beta decay probes the nature of neutrinos: Majorana or Dirac
- Lepton number violating process
- Measure energies of emitted electrons



#### Search for <sup>136</sup>Xe NLDBD with LXe TPC



|           | Bkg rate<br>(/keV/ton/y) | Energy<br>resolution | FV mass (kg) | Run time   | Sensitivity/Limit<br>(90% CL, year) | Year   |
|-----------|--------------------------|----------------------|--------------|------------|-------------------------------------|--------|
| PandaX-II | ~200                     | 4.2%                 | 219          | 403.1 days | 2.4 ×10 <sup>23</sup>               | 2019   |
| XENON1T   | ~20                      | 0.8%                 | 741          | 202.7 days | $1.2 \times 10^{24}$                | 2022   |
| PandaX-4T | 6                        | 1.9%                 | ~650         | ~250 days  | > 10 <sup>24</sup>                  | Future |







|                  | Sub-keV                          | keV         | V 10 keV |            | 100 keV         |            | 1 MeV        | <b>10 MeV</b> |  |
|------------------|----------------------------------|-------------|----------|------------|-----------------|------------|--------------|---------------|--|
| Xe-136<br>(9%)   |                                  |             |          |            |                 | DE         | 3D and NLDBD |               |  |
| Xe-134<br>(10%)  |                                  |             |          |            |                 | DBD<br>NLD | and<br>BD    |               |  |
| Xe-124<br>(0.1%) |                                  |             |          | Double     | e EC            |            |              |               |  |
| Xe-all           | Solar <sup>8</sup> B<br>neutrino | WIMP and ot | nals     | Sol<br>net | ar pp<br>utrino |            | alphas       |               |  |





#### • PandaX-4T: more <sup>134</sup>Xe; much less <sup>136</sup>Xe; wider energy range; discovery possible

|           | <sup>134</sup> Xe mass | <sup>136</sup> Xe abundance | Analysis threshold | Live Time |
|-----------|------------------------|-----------------------------|--------------------|-----------|
| PandaX-4T | 68.7 kg                | 8.9%                        | 200 keV            | 94.9 days |
| EXO-200   | 18.1 kg                | 81%                         | 460 keV            | 600 days  |





#### • PandaX-4T: more <sup>134</sup>Xe; much less <sup>136</sup>Xe; wider energy range; discovery possible

|           | <sup>134</sup> Xe mass | <sup>136</sup> Xe abundance | Analysis threshold | Live Time |
|-----------|------------------------|-----------------------------|--------------------|-----------|
| PandaX-4T | 68.7 kg                | 8.9%                        | 200 keV            | 94.9 days |
| EXO-200   | 18.1 kg                | 81%                         | 460 keV            | 600 days  |





#### • PandaX-4T: more <sup>134</sup>Xe; much less <sup>136</sup>Xe; wider energy range; discovery possible

|           | <sup>134</sup> Xe mass | <sup>136</sup> Xe abundance | Analysis threshold | Live Time |
|-----------|------------------------|-----------------------------|--------------------|-----------|
| PandaX-4T | 68.7 kg                | 8.9%                        | 200 keV            | 94.9 days |
| EXO-200   | 18.1 kg                | 81%                         | 460 keV            | 600 days  |



#### Data selection

- An identical FV as in <sup>136</sup>Xe analysis
- Single site vs multi-site selection measured by <sup>232</sup>Th calibration data
  - Little impact to DBD signals ( $\beta$  SS events)





#### DBD and NLDBD Half-life limits (90% CL):



DBD:  $2.8 \times 10^{22}$  yr;  $32 \times \text{improvement}$  w.r.t. EXO-200

ArXiv: 2312.15632





|                  | Sub-keV                          | keV        | <b>10 keV</b> |        | 100 keV    |                 | 1 MeV      |   | 10 MeV |  |
|------------------|----------------------------------|------------|---------------|--------|------------|-----------------|------------|---|--------|--|
| Xe-136<br>(9%)   |                                  |            |               |        |            | DB              | D and NLDB | C |        |  |
| Xe-134<br>(10%)  |                                  |            |               |        |            | DBD<br>NLD      | and<br>BD  |   |        |  |
| Xe-124<br>(0.1%) |                                  |            |               | Double | e EC       |                 |            |   |        |  |
| Xe-all           | Solar <sup>8</sup> B<br>neutrino | WIMP and o | ther DM sign  | als    | Sol<br>net | ar pp<br>Itrino |            |   | alphas |  |

#### Solar pp neutrino scattering on electrons

- PANDAX PARTICLE AND ASTROPHYSICAL XENON TPC
- The world's leading direct detection result is from Borexino with a recoil energy of >165 keV
- PandaX-4T aims to measure the lower energy spectrum than Borexino



#### Solar pp neutrino scattering on electrons

- PARTICLE AND ASTROPHYSICAL XENON TPC
- The world's leading direct detection result is from Borexino with a recoil energy of >165 keV
- PandaX-4T aims to measure the lower energy spectrum than Borexino



#### Solar pp neutrino scattering on electrons

- PANDAX PARTICLE AND ASTROPHYSICAL XENON TPC
- The world's leading direct detection result is from Borexino with a recoil energy of >165 keV
- PandaX-4T aims to measure the lower energy spectrum than Borexino



#### PandaX-4T result

- The first solar pp neutrino measurement in recoil energy from 24 to 144 keV with 0.63-tonne × year of PandaX-4T Run 0 exposure
- Consistent with Standard Solar Model and existing measurements.

ArXiv: 2401.07045























# Larger Cleaner Detector

## PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory



- Active target: 43 ton of Xenon
  - Decisive test to the WIMP paradigm
  - Explore the Dirac/Majorana nature of neutrino
  - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable improvements:
  - High-granularity, low-background 2-in PMT array
  - Cu/Ti vessel for improved radiopurity
  - Inner liquid scintillator veto



arXiv:2402.03596

## PandaX-xT: Multi-ten-tonne Liquid Xenon Observatory



- Active target: 43 ton of Xenon
  - Decisive test to the WIMP paradigm
  - Explore the Dirac/Majorana nature of neutrino
  - Search for astrophysical or terrestrial neutrinos and other ultra-rare interactions
- Notable improvements:
  - High-granularity, low-background 2-in PMT array
  - Cu/Ti vessel for improved radiopurity
  - Inner liquid scintillator veto + outer water veto



arXiv:2402.03596

### New 2" multi-anode R12699 PMT for LXe TPC

- Higher granularity while maintaining low dark noise: best of both large PMT and SiPM
  - Improved position reconstruction for better event topology
  - 2" array has an effectively wider dynamic range for DM and DBD simultaneously
  - Faster timing for possible pulse shape analysis or Cerenkov/Scintillation seperation
- Collaboration between PandaX and Hamamatsu for a low-radioactivity version of R12699







Conceptual array for a PandaX-4T-sized TPC

PandaX Neutrino Physics

PandaX-xT for



- 4 ton of <sup>136</sup>Xe: one
- Effective self-shielding: Xenon-related background dominates in the 8.4-tonne center FV



|                            | Baseline (1/tonne/year)     | Ideal (1/tonne/year)         |
|----------------------------|-----------------------------|------------------------------|
| Photosensors               | $1.4 \times 10^{-2}$        | $2.8 \times 10^{-3}$         |
| Copper vessel              | $3.2 \times 10^{-2}$        | $6.3 \times 10^{-3}$         |
| <sup>222</sup> Rn          | $4.5 \times 10^{-2}$        | -                            |
| <sup>136</sup> Xe DBD      | $5.2 \times 10^{-4}$        | $5.2 \times 10^{-4}$         |
| <sup>137</sup> Xe          | $8.7 \times 10^{-4}$        | $8.7 \times 10^{-4}$         |
| Solar <sup>8</sup> B $\nu$ | $1.4 \times 10^{-2}$        | $1.4 \times 10^{-2}$         |
| Total                      | <b>1.1×10</b> <sup>-1</sup> | <b>2.4</b> ×10 <sup>-2</sup> |



### Head-to-head with other DM/DBD experiments



|             | Bkg rate<br>(/keV/ton/y) | Energy<br>resolution | Mass (ton)               | Run time                | Sensitivity/Lim<br>it (90% CL,<br>year) |
|-------------|--------------------------|----------------------|--------------------------|-------------------------|-----------------------------------------|
| PandaX-4T   | 6                        | 1.9%                 | 4                        | 94.9 days               | > 10 <sup>24</sup>                      |
| XENONnT     | 1                        | 0.8%                 | 6                        | 1000 days<br>(expected) | 2 × 10 <sup>25</sup>                    |
| LZ          | 0.3                      | 1%                   | 7                        | 1000 days<br>(expected) | 1 × 10 <sup>26</sup>                    |
| KamLAND-ZEN | 0.002                    | 5%                   | 0.8 ( <sup>136</sup> Xe) | 1.5 years               | $2.3 \times 10^{26}$                    |
| nEXO        | 0.006                    | 1%                   | 5 ( <sup>136</sup> Xe)   | 10 years                | 1.35 × 10 <sup>28 **</sup>              |
| DARWIN      | 0.004*                   | 0.8%                 | 40                       | 10 years                | 2 × 10 <sup>27</sup>                    |
| PandaX-xT   | 0.002*                   | 1%                   | 43                       | 10 years                | 3×10 <sup>27</sup>                      |

\* Major difference from cosmogenic <sup>137</sup>Xe; \*\*  $\frac{S}{\sqrt{B}}$  sensitivity is 6×10<sup>27</sup> yr, for detector performance comparison in the table. PandaX Neutrino Physics HAN, Ke (SJTU) 35

#### Possible isotope seperation/enrichment

- PANDAX PARTICLE AND ASTROPHYSICAL XENON TPC
- Xenon with artificially modified isotopic abundance (AMIA) for smoking gun discovery
  - A split of odd and even nuclei
  - Further enrichment of <sup>136</sup>Xe
  - to improve sensitivity to spin-dependence of DM-nucleon interactions and NLDBD





#### Competitive in other neutrino physics topics as well



- Coherent scattering of solar <sup>8</sup>B neutrino: from a first observation in LXe TPC to precision measurement
- Electron scattering of solar pp neutrino: competitive precision at a wider energy range
- Neutrinos with abnormal magnetic moments: a better sensitivity than astrophysical observations



### Neutrino physics program at PandaX



|                  | Sub-keV                          | keV            | 10 keV  |        | / 100 keV   |                | 1 MeV     |       | <b>10 MeV</b> |  |
|------------------|----------------------------------|----------------|---------|--------|-------------|----------------|-----------|-------|---------------|--|
| Xe-136<br>(9%)   |                                  |                |         |        |             | DB             | BD and I  | NLDBD |               |  |
| Xe-134<br>(10%)  |                                  |                |         |        |             | DBD<br>NLD     | and<br>BD |       |               |  |
| Xe-124<br>(0.1%) |                                  |                |         | Double | e EC        |                |           |       |               |  |
| Xe-all           | Solar <sup>8</sup> B<br>neutrino | WIMP and other | DM sign | als    | Sola<br>neu | ar pp<br>trino |           |       | alphas        |  |

- Re-think the LXe TPC as a Total-Absorption 5D Calorimeter
- Fully exploit the entire energy range of LXe TPC
- Fully utilize the multiple isotopes of natural xenon for rich physics



# Thank you very much

# We welcome new collaborators

at PandaX-x

The 7th International Workshop on Application of Noble Gas Xenon to Science and Technology



#### Scientific Program

Noble gas properties for radiation detection

Applications to dark matter, double beta decay, and other physics
Imaging in medicine, astrophysics, and nuclear engineering
Novel techniques in noble gas detector R&D
Gas and liquid handling; industrial supplies

• Background reduction and shielding technology

May 24~27,2024 Tsung-Dao Lee Institute Shanghai,China

![](_page_39_Picture_7.jpeg)

www.xesat2024.cn