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The dark matter zoo

Traditional dark matter searches optimized to detect the lightest neutralino
of the Minimal Supersymmetric Standard Model.

spin

Scattering cross-section off all SM particles
Annihilation cross-section into all SM particles

Self-coupling
Decay width



The dark matter zoo

Traditional dark matter searches optimized to detect the lightest neutralino
of the Minimal Supersymmetric Standard Model.
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Modern approach:
e Be agnostic about the model.

e [dentify distinct DM signals that allow to explore as much
parameter space as possible.



The dark matter zoo

Traditional dark matter searches optimized to detect the lightest neutralino
of the Minimal Supersymmetric Standard Model.

spin
Scattering cross-section off some SM particle
Annihilation cross-section into some SM particle
Self-coupling

Decay width

Modern approach:
e Be agnostic about the model.

e [dentify distinct DM signals that allow to explore as much
parameter space as possible.

No stone must be left unturned!



Probing the annihilation cross-section
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Probing the annihilation cross-section
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Probing the annihilation cross-section
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Neutral particles propagate in straight lines practically without losing
energy. Charged particles, on the other hand, propagate in a complicated
way through the tangled magnetic field of our Galaxy.




Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation
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Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation
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Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation

1 p20
w
o
E
E- 1 0-21
A
-
=)
W
10°%2

GC halo

= yx—bb
Ax—IT
............................................ H i YA

—_— T
—_— Y WIW

T ||||m] IURRLLL

Galactic Centre

| |

1024

..|...!..l.l.ll!!t....

102

L‘ 10728

2

m, [GeV]

Extragalactic
diffuse

Galaxy clusters

Galactic diffuse

o




Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation
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Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation
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s-wave annihilation.

. - p-wave annihilation unconstrained.
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Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation

GC halo

Galactic Centre\

Take the sky map in a given energy bin
and subtract the known backgrounds:
- Sources
- Spatial template for diffuse
galactic emission
® 7T0 component
e Bremmstrahlung component
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- Fermi bubbles Salactic diffuse

- Isotropic (extragalactic) component A
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Gamma-rays from dark matter annihilation

Possible targets for detection of gamma-rays from annihilation
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Antimatter from dark matter annihilation

Antimatter particles propagate through the tangled magnetic field of
the galaxy in a complicated way, losing energy on their way.

Model the propagation with a diffusion equation:

0= %L~V [K(T RV ]+ o= BT ]~ V- [Vl) 1]~ 2h(2) ] + QT 7).

Assumptions on the quantities entering are necessary.

Still, very good agreement between the expected antiproton flux
from collisions of cosmic rays on the nucle1 of the interstellar

medium, and the antiproton data.
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Antimatter from dark matter annihilation

Antimatter particles propagate through the tangled magnetic field of
the galaxy in a complicated way, losing energy on their way.

Model the propagation with a diffusion equation:

0= 2L~ V(KD AV 4 b 7))~ V- V(P f] — 28 ()Canf + Q(T. 7).

Assumptions on the quantities entering are necessary.

Still, very good agreement between the expected antiproton flux
from collisions of cosmic rays on the nucle1 of the interstellar
medium, and the antiproton data.

T L 100 200 500 1000 2000
mpn [GeV] mpm [GeV] Reinert, Winkler.
1712.00002



Probing the scattering with nucleons
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Self-coupling



Probing the scattering with nucleons

The Sun (and the Earth) might be moving through a “gas™ of dark matter particles.

Yyvvyvy

WIMPs
v~200 km /s

Once 1n a while a dark matter particle will interact with a nucleus. The
nucleus then recoils, producing vibrations, ionizations or scintillation light

in the detector.

D

N

N DM

~ ’

No signiﬁcant excess detected so far

ar recoil




Probing the scattering with nucleons
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Probing the scattering with nucleons

WIMP-nucleon og; [sz]
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Smallprint:

- DM interacts only through the spin-independent interaction

- DM couples with equal strength to protons and neutrons (isoscalar)

- Local DM density p=0.3 GeV/cm3.

- DM velocity distribution given by a Maxwell-Boltzmann, truncated at the escape velocity.
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Probing the scattering with nucleons
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Probing the scattering with nucleons
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Probing the scattering with nucleons
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Probing the scattering with nucleons
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Probing the scattering with nucleons
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- DM 1nteracts only through the spin-independent interaction

- DM couples with equal strength to protons and neutrons (1soscalar)
- Local DM density p=0.3 GeV/cm3.

- DM velocity distribution given by a Maxwell-Boltzmann, truncated
at the escape velocity.



Probing the scattering with nucleons

Strictly, current limits are stringent for dark matter candidates that couple
at tree level to the valence quarks through the spin-independent interaction

(as the supersymmetric bino).

Many well motivated possibilities still weakly constrained by direct
detection experiments:

- DM coupling to heavy quarks/leptons

e All
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Probing the scattering with nucleons

Strictly, current limits are stringent for dark matter candidates that couple
at tree level to the valence quarks through the spin-independent interaction

(as the supersymmetric bino).

Many well motivated possibilities still weakly constrained by direct
detection experiments:

- DM coupling to heavy quarks/leptons
- Interference between 1soscalar and 1sovector interactions
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Probing the scattering with nucleons

Strictly, current limits are stringent for dark matter candidates that couple
at tree level to the valence quarks through the spin-independent interaction
(as the supersymmetric bino).

Many well motivated possibilities still weakly constrained by direct

detection experiments:

- DM coupling to heavy quarks/leptons

- Interference between 1soscalar and 1sovector interactions

- DM-nucleon interactions different to SI
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Probing the scattering with nucleons

Strictly, current limits are stringent for dark matter candidates that couple
at tree level to the valence quarks through the spin-independent interaction
(as the supersymmetric bino).

Many well motivated possibilities still weakly constrained by direct
detection experiments:

- DM coupling to heavy quarks/leptons

- Interference between 1soscalar and 1sovector interactions
- DM-nucleon interactions different to SI

- Light dark matter
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Probing the scattering with nucleons

Strictly, current limits are stringent for dark matter candidates that couple
at tree level to the valence quarks through the spin-independent interaction
(as the supersymmetric bino).

Many well motivated possibilities still weakly constrained by direct

detection experiments:

- DM coupling to heavy quarks/leptons
- Interference between 1soscalar and 1sovector interactions
- DM-nucleon interactions different to SI

- Light dark matter
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There 1s no evidence for a baryon asymmetry in our Universe.
mpm~3.4 GeV is predicted by a mechanism that does not require
the Sakharov conditions to explain observations. Ciscar, Al, Vandecasteeele
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Probing the scattering with electrons

From Catena et al’20

= DAMIC-M, this work

= = = DAMIC-SNOLAB (2019) == SENSEI (2020, recasted)
= = = EDELWEISS (2020) s SuperCDMS (2019)
— DarkSide-50 (2022) = = = XENONIT (2019, 2022)

......... PandaX-1l (2021)
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Probing the scattering with neutrinos

The neutrino event IceCube-170922A was coincident in direction and time
with a gamma-ray flare from the blazar TXS 0506+056, located 1.75 Gpc
away from the Earth.

Archival data found 13+5 events coincident with TXS 0506+056.
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First known source of high energy astrophysical neutrinos



Probing the scattering with neutrinos

The neutrino and photon fluxes can be qualitatively well reproduced
in leptohadronic models.

e o * Narrow Line
s » / Region
LR
@ Broad Line
Region

Accretion
Disk

Obscuring
Torus

Neutrinos propagate through the intergalactic medium and through the
Milky Way before reaching us. If the dark matter neutrino cross-section
1s large, the neutrino flux would be attenuated.



Probing the scattering with neutrinos
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Probing the scattering with neutrinos

In the center of the blazar 1t is located a supermassive black hole, with
mass ~ 3x108 Msun.

The adiabatic growth of the black hole produces a “spike” in the
dark matter distribution Gondolo, Silk’99, Peebles ‘72, Quinlan, Hernquist, Sigurdsson ‘95
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Probing the scattering with neutrinos
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Probing the scattering with photons
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Conclusions

e After 40+ years of search, there 1s still no concluding evidence that dark
matter 1s made of elementary particles.

e “Traditional” searches put some tension on some WIMP scenarios. Many
other scenarios still poorly constrained by data.

e Better experiments are needed, but also new 1deas for dark matter detection.

e Astronomical objects (e.g. active galactic nucler) and cosmological
observations open new opportunities to detect non-gravitational signals
of dark matter.
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