<u>Leptonic</u> sources of (ultra)high-energy ν 's: Key physics and a new public code

Based on

A. Esmaeili, A. Capanema, A. Esmaili and P. D. S.,

"Ultrahigh energy neutrinos from high-redshift electromagnetic cascades," Phys. Rev. D 106 (2022) 123016 Paper I

&

A. Esmaeili, A. Esmaili and P. D. S.,

"Neutrinos from muon-rich ultra high energy electromagnetic cascades: The MUNHECA code," [2310.01510] Paper II

Part I: Recap where we stand & standard lore *Part II*: Peculiarities of UHE regime & high-z

Pasquale Dario Serpico (Annecy, France) NPB, 20/02/24, Hong Kong

Recently opened High-Energy window

ICECUBE NEUTRINO OBSERVATORY

IceCube Laboratory

Other searches at high energy: current and future

Nature accelerates at least up to 3×10²⁰ eV (UHECRs)

Giant Radio Array for Neutrino Detection

• Searches in shower experiments like Auger

GR⁄

Future projects, including radio (IceCube-gen2, GRAND...)

- All-flavor flux $E_{\nu}^{2} \Phi_{\nu}(E_{\nu})$ [GeV cm] GRATION LIP. τ Radio emission Extensive air shower 10^{-} Antenna optimized tor horizontal showers **GRAND200k** integ IC-Gen2 radio (10 yr) · Bow-tie design, 3 perpendicular arms Frequency range: 50-200 MHz GRAND200k integ. (10 yr) -10-10 Inter-antenna spacing: 1km 10^{10} 10^{7} 10^{8} 10^{9} 10^{5} 10^{6} 10^{11} Neutrino energy E_{ν} [GeV] • We do not know where the bulk of detected IceCube ν 's come from (not only type of object,
- We do not know where the bulk of detected IceCube ν's come from (not only type of object, also redshift!)
- UHE ν window ($\geq 10^{17}$ eV) yet to be opened, but technology exists and fluxes should be there

High-energy sky at high-z is precluded to photons!

Gamma-rays (produced either leptonically or hadronically) are further subject to absorption via pair-production onto CMB (and other backgrounds)!

High-energy sky at high-z is precluded to photons!

CMB 10^{3} Dominguez+2011 Brightness [nW m⁻² sr⁻¹] Saldana+2021 Gilmore+2012 10^{2} Infrared Optical 10 10^{-3} 10^{-2} 10^{-4} 0.1 10 1 *c* [eV] 16 3K 15 v-domain 14 IR 13 γγ →e⁺e⁻ log₁₀[E/eV] VIS $E_{ew} \sim (G_{F})^{-1/2}$ star formation UV 10 γp →e⁺e⁻p 9 8 γe →γe 7 10² **10**⁵ 10² 10[°] 10¹ 10⁴ 10³ 10¹ 10^{3} redshift z

Essential limitation to Extragalactic astronomy already at ~TeV, even to Galactic astronomy at PeV!

J. G. Learned and K. Mannheim, "High-energy neutrino astrophysics," Ann. Rev. Nucl. Part. Sci. 50 (2000), 679-749

...and to charged UHECRs, too! Photomeson production

$$p + \gamma_{\text{\tiny CMB}} \to n(p) + \pi^+(\pi^0)$$
 (Also for nuclei)

> Threshold $m_p^2 + 4\epsilon_{\gamma}E_p > (m_p + m_{\pi})^2 \Longrightarrow E_p > \frac{2m_pm_{\pi} + m_{\pi}^2}{\epsilon_{\gamma}} \simeq 4 \times 10^{19} \,\mathrm{eV}$

> Inelasticity of order $m_{\pi}/m_{p}\sim 0.15$

Most important process limiting the propagation of extragalactic p, so dramatic to be known as Greisen-Zatsepin-Kuzmin cutoff (predicted soon after CMB discovery)

> Associated to a "guaranteed" UHE neutrino production (cosmogenic), via charged pion decays

V. Berezinsky and G. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys.Lett. B28 (1969) 423–424.

V. Berezinsky and A.Y. Smirnov, Cosmic neutrinos of ultra-high energies and detection possibility, Astrophys. Space Sci. 32 (1975) 461–482

The standard lore

Assumed ν from hadronic production of pions, either via $p\gamma$ (at source or in propagation) or pp (at source) which creates tight ν - γ flux link

E.g. for pp, well above threshold, almost 1:1:1 ratio of pions of different charges (manifestation of isospin symmetry)

The standard lore

Assumed ν from hadronic production of pions, either via $p\gamma$ (at source or in propagation) or pp (at source) which creates tight ν - γ flux link

E.g. for pp, well above threshold, almost 1:1:1 ratio of pions of different charges (manifestation of isospin symmetry)

The standard lore

Assumed ν from hadronic production of pions, either via $p\gamma$ (at source or in propagation) or pp (at source) which creates tight ν - γ flux link

E.g. for pp, well above threshold, almost 1:1:1 ratio of pions of different charges (manifestation of isospin symmetry)

This link is 'as it is' if the sky is transparent to gammas, otherwise... \rightarrow "Bolometric" link between 'degraded' γ (diffuse) spectra and ν 's

Basic processes are

Lunny

At threshold for P.P., $E_e \sim E_{thresh}/2$ and the corresponding maximal IC photon energy $E_X \sim E_{thresh}/3$

Below this energy, the number of particles is fixed by the number of e "available" (no more multiplication possible), the resulting scale-invariant spectrum goes as $E^{-3/2}$

Above E_X and below the effective cutoff imposed by P.P., the **energy** of particles in the cascade is **conserved** (E^2dN/dE^2 const), hence spectrum E^{-2}

At threshold for P.P., $E_e \sim E_{thresh}/2$ and the corresponding maximal IC photon energy $E_X \sim E_{thresh}/3$

Below this energy, the number of particles is fixed by the number of e "available" (no more multiplication possible), the resulting scale-invariant spectrum goes as $E^{-3/2}$

Above E_X and below the effective cutoff imposed by P.P., the **energy** of particles in the cascade is **conserved** (E^2dN/dE^2 const), hence spectrum E^{-2}

Some 'leakage' at low energy via synchrotron radiation if **B**-fields present

A different environment at high-z (≈5-10): Paper I

- Photon backgrounds (radio, UV...) other than CMB go to zero.
- The medium, at least the extragalactic one, should be unmagnetised

What's the fate of an UHE electron or photon in this environment? Quite different if muon production threshold is open!

Notably

Need to compare the rare (but highly inelastic) μ production processes **mean free path** with the 'traditionally considered' **E-loss** range (as well as some usually neglected QED processes...)

A different environment at high-z (≈5-10): Paper I

Process	Name	Acronym
$\gamma \gamma \rightarrow e^+ e^-$	Electron Pair Production	EPP
$ \gamma \gamma \to \mu^+ \mu^- $	Muon Pair Production	MPP
$\gamma \gamma \rightarrow e^+ e^- e^+ e^-$	Double Pair Production	DPP
$\gamma \gamma \to \pi^+ \pi^-$	Charged Pion Pair Production	CPPP
$e\gamma ightarrow e\gamma$	Inverse Compton Scattering	ICS
$e\gamma \rightarrow e\mu^+\mu^-$	Electron Muon-Pair Production	EMPP
$e\gamma \rightarrow ee^+e^-$	Electron Triplet Production	ETP

Impact

Assuming 'conventional' hadronic production: Monochromatic $\pi^+ \pi^- \pi^0$ at $2 \times 10^{20-21}$ eV, hence photons from $\pi^0 @ 10^{20-21}$ eV

- I-2 orders of magnitude enhancement of flux at peak sensitivity e.g. of GRAND,
- Shoulder' could be a signature of prominent emission from high-z

Impact

Assuming 'conventional' hadronic production: Monochromatic $\pi^+ \pi^- \pi^0$ at $2 \times 10^{20-21}$ eV, hence photons from $\pi^0 @ 10^{20-21}$ eV

I-2 orders of magnitude enhancement of flux at peak sensitivity e.g. of GRAND, Shoulder' could be a signature of prominent emission from high-z

Remember the "tight ν - γ (calorimetric) flux link" ? Can be altered by a factor $\sim 2!$

$$\begin{aligned} \mathcal{E}_{\gamma} &\simeq 2/3(4/3) \, \mathcal{E}_{\nu} \\ \mathcal{E}_{\gamma}' &\simeq 0.44(0.77) \, \mathcal{E}_{\nu}' \end{aligned}$$

(New) features of the new public code (Paper II)

MUons and Neutrinos in High-energy Electromagnetic CAscades

https://github.com/afesmaeili/MUNHECA.git

- Monte Carlo tracking of particles along the cascade evolution (recording all the μ , π , ν , γ , e spectra), occurrences of ν -producing processes for each injected γ realisation.
- Secondary routine reads the μ , π outputs & yields the corresponding ν spectra @ Earth

Input background:

- CMB
- other blackbody (T)
- power-Law (E_{min}, E_{max})

Input spectrum:

- Monochromatic
- Power-law (w or w/o exp cutoff)
- user-defined

Other:

- Free redshift z
- Free lowest E of followed particles
- More processes included (CPPP, EMPP)
- New evaluation of DPP

 $\mu, \pmb{\pi}$ spectra generated in the evolution of a cascade

Spectral modeling of IceCube ν candidate NGC 1068

arXiv:2305.06375

A Leptonic Model for Neutrino Emission From Active Galactic Nuclei

Dan Hooper^{1,2,3*} and Kathryn $Plant^{4\dagger}$

 ¹Fermi National Accelerator Laboratory, Theoretical Astrophysics Department, Batavia, IL, USA
 ²University of Chicago, Department of Astronomy & Astrophysics, Chicago, USA
 ³University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL, USA and
 ⁴California Institute of Technology, Department of Astronomy, Pasadena, CA, USA (Dated: May 22, 2023)

Conclusions

- ν sky already full of surprises, e.g. accumulating evidence for γ-opaque sources (dense, energetic photon backgrounds like coronas surrounding active, supermassive BH?)
- ν's can also reach us from remote distances, i.e. sources in the young universe, whose high-energy features are virtually unknown.
- (Guaranteed) UHE window still to be opened, but realistic pathway to detection.
- Peculiarities of UHE regime & high-z: The standard lore of ν's from π's may be incomplete.

First step to provide a tool to explore the relevant (astro)physics.

Conclusions

- ν sky already full of surprises, e.g. accumulating evidence for γ-opaque sources (dense, energetic photon backgrounds like coronas surrounding active, supermassive BH?)
- ν's can also reach us from remote distances, i.e. sources in the young universe, whose high-energy features are virtually unknown.
- (Guaranteed) UHE window still to be opened, but realistic pathway to detection.
- Peculiarities of UHE regime & high-z: The standard lore of ν's from π's may be incomplete.

First step to provide a tool to explore the relevant (astro)physics.

Thank you

,訴

Extra slides

Result of earlier simulations - QI

We follow the QED cascade with a dedicated Monte Carlo (Here 10⁴ photon simulations)

Question I How many γ 's induce cascades experiencing MPP, hence producing ν 's?

@E=10¹⁹ eV z = 5 , ~12% of the photons experience MPP. At z=10 grows to ~25% and at z=15 it grows to~ 35%

@E=10²⁰ eV, >70% of photons experience MPP at $z \ge 5$, with this fraction exceeding 94% at z = 15.

QII: fraction of initial γ energy channelled into ν 's

FIG. 3. The mean fraction of the initial photon's energy ending up in neutrinos, f_{ν} , for three different energies of the initial photon. The bars show the standard deviation around the mean value depicted by solid curves.

QIII: How many MPP events?

 $E_{y} = 10^{19} eV$

Multiple productions more and more relevant at high-E and/or high-z!

This effect is virtually impossible to quantify without MC simulations...

New vs. earlier simplified calculation of cosmo cascade

Slight (~10%) enhancement at high-E (π^{\pm} production, here Born approx of spinless elementary particle...) Enhanced tail (improved description of cascade, extra processes...)

Ancillary results: DPP inelasticity (leading particle)

 $\eta(s) \approx a + b \exp\left[-(s_{\rm th}/s)^c\right]$ $a = 0.32, \ b = 0.45, c = 0.44$

Approximations suggested in the only existing treatment* lead to~30% errors

*S. V. Demidov and O. E. Kalashev, J. Exp. Theor. Phys. 108, 764 (2009), arXiv:0812.0859

Ancillary results: EMPP

calcHEP-based, leading order calculation Approximation in * acceptable (at the ~ 30% level) only at the lowest energies considered, near threshold

*H. Athar, G.-L. Lin, and J.-J. Tseng, Phys. Rev. D 64, 071302(R) (2001), arXiv:hep-ph/0104185.