Leptonic sources of (ultra)high-energy v’s:

Key physics and a new public code
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> Part I: Recap where we stand & standard lore

> Part lI: Peculiarities of UHE regime & high-z
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Recently opened High-Energy window
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Other searches at high energy: current and future

4) double-bang shower 1) regular shower

Nature accelerates at least up to 3x1020 eV (UHECRs) ~~_initiated by v, ioiiabed by proton

. . . . ' 2) deep shower
 Searches in shower experiments like Auger , S intbated by v
* Future projects, including radio (IceCube-gen2, §) down-going SHCREE Ny
inibated by v, e 3) up-going shower
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> We do not know where the bulk of detected lceCube ¥’s come from (not only type of object,

also redshift!)
» UHEv window (=10!7 eV) yet to be opened, but technology exists and fluxes should be there




High-energy sky at high-z is precluded to photons!

Gamma-rays (produced either leptonically 103
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High-energy sky at high-z is precluded to photons!
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Essential limitation to Extragalactic astronomy E"
already at ~TeV, even to Galactic astronomy at PeV! 10
9
8
7

1073 102 0.1 1
€ [eV]

| | .
'I v-domain I ]
{ | o
{
'I | vis -
=TT TS
o g 15l w
-l : | = = ]
o - E |E )
{E 8 & & "
8 S g2 |8 ]
| ]
E |. aasassd s s sasanld o s aasasdl s sasssd o l...n.l PEEW YT P ..Ii_’y.e. Py §

10° 10° 10° 10° 10 10° 10' 10° 10°

redshift z

J. G. Learned and K. Mannheim, “High-energy neutrino astrophysics,” Ann. Rev. Nucl. Part. Sci. 50 (2000), 679-749

10



...and to charged UHECRSs, too! Photomeson production

p+.— n(p) +nt(x°)

CMB

» Threshold

» Inelasticity of order mz/my~0.15

» Most important process limiting the
propagation of extragalactic p, so
dramatic to be known as Greisen-
Zatsepin-Kuzmin cutoff

(predicted soon after CMB discovery)

» Associated to a “guaranteed” UHE
neutrino production (cosmogenic),
via charged pion decays
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The standard lore

Assumed » from hadronic production of pions, either via py (at source

or in propagation) or pp (at source) which creates tight v-y flux link

E.g. for pp, well above threshold, almost I:1:I| ratio of pions of different charges
(manifestation of isospin symmetry)
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The standard lore

Assumed » from hadronic production of pions, either via py (at source

or in propagation) or pp (at source) which creates tight v-y flux link

E.g. for pp, well above threshold, almost I:1:I| ratio of pions of different charges
(manifestation of isospin symmetry)
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This link is ‘as it is’ if the sky is transparent to gammas, otherwise...

—“Bolometric” link between ‘degraded’ y (diffuse) spectra and ¥’s



Electromagnetic cascades

Basic processes are : —+ -
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Electromagnetic cascades

Basic processes are : 4+ —
fy /Y bck € €

\

Particle multiplication é "}/ bok — € ”y
and energy redistribution T ‘

4 =)
At threshold for PP, Ec~E:hresn/2 and the corresponding maximal IC photon energy Ex~Ethresn/3

Below this energy, the number of particles is fixed by the number of e “available” (no more
multiplication possible), the resulting scale-invariant spectrum goes as E-3/2

Above Ex and below the effective cutoff imposed by PP, the energy of particles in the
cascade is conserved (E2dN/dE~ const), hence spectrum E-2




Electromagnetic cascades
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At threshold for PP, Ec~E:hresn/2 and the corresponding maximal IC photon energy Ex~Ethresn/3

Below this energy, the number of particles is fixed by the number of e “available” (no more
multiplication possible), the resulting scale-invariant spectrum goes as E-3/2

Above Ex and below the effective cutoff imposed by PP, the energy of particles in the
cascade is conserved (E2dN/dE~ const), hence spectrum E-2

Some ‘leakage’ at low energy via synchrotron radiation if B-fields present




A different environment at high-z (=5-10): Paper |

* Photon backgrounds (radio, UV...) other than CMB go to zero.
* The medium, at least the extragalactic one, should be unmagnetised

What’s the fate of an UHE electron or photon in this environment?
Quite different if muon production threshold is open!

Notably

-

ée ©
® |C in the deep Klein-Nishina regime, so ‘

even ‘frequent’ e-y interactions not

associated to significant E-loss
Stop-Shot 0

\_

-
® Need to compare the rare (but highly inelastic) ¢ production processes mean

free path with the ‘traditionally considered’ E=loss range (as well as some
usually neglected QED processes...)




A different environment at high-z (=5-10): Paper |

Process Name Acronym
Yy — etTe™ Electron Pair Production EPP
Yy — p,+y._ Muon Pair Production MPP
YY — etTe ete™ Double Pair Production DPP
Ny = T Charged Pion Pair Production | CPPP
ey — ey Inverse Compton Scattering ICS
ey — e,u+p_ Electron Muon-Pair Production| EMPP
ey — ecete Electron Triplet Production ETP
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E?dN, /dE [eV]

Impact

Assuming ‘conventional’ hadronic production:
Monochromatic m* - m® at 2x1020-21 eV, hence photons from m® @ 1020-2! eV
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> |-2 orders of magnitude enhancement of flux at peak sensitivity e.g. of GRAND,

> ‘Shoulder’ could be a signature of prominent emission from high-z




Impact

Assuming ‘conventional’ hadronic production:
Monochromatic m* - m® at 2x1020-21 eV, hence photons from m® @ 1020-2! eV
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> |-2 orders of magnitude enhancement of flux at peak sensitivity e.g. of GRAND,
> ‘Shoulder’ could be a signature of prominent emission from high-z

Remember the “tight v-y (calorimetric) flux link” ?

Can be altered by a factor ~2!

E,>2/3(4/3) €&,
pp Py
£ ~0.44(0.77) £,



(New) features of the new public code (Paper Il)

MUons and Neutrinos in High-energy Electromagnetic CAscades

https://github. com/afesmaeili/ MUNHECA.git

\
*  Monte Carlo tracking of particles along the cascade evolution (recording all the u, m, v,
y,e spectra), occurrences of v-producing processes for each injected y realisation.
\. Secondary routine reads the u, m outputs & yields the corresponding v spectra @ Earth )
Input background: 10-15
» CMB EY= 10?2 eV z=10 L1 Ni
> other blackbody (T) -
> power-Law (Emin, Emax) 0
|
Z
Input spectrum:- 101
> Monochromatic =
> Power-law (w or w/o exp cutoff) 5
> user-defined 102!
Other: 03
> Free redshift z 1077 1078 107 1020 10%
> Free lowest E of followed particles EleV]
> More processes included (CPPP, EMPP) U, T spectra generated in the evolution of a cascade

> New evaluation of DPP



Spectral modeling of lceCube v candidate NGC 1068

arXiv:2305.06375

A Leptonic Model for Neutrino Emission From Active Galactic Nuclei

Dan Hooper!?3* and Kathryn Plant*!

! Fermi National Accelerator Laboratory, Theoretical Astrophysics Department, Batavia, IL, USA
2 University of Chicago, Department of Astronomy & Astrophysics, Chicago, USA
3 University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL, USA and
4 California Institute of Technology, Department of Astronomy, Pasadena, CA, USA

cascade development
inside a source

target: X-rays in the SMBH

corona, Tx= | keV
(Threshold ~10 TeV)

u multiplicity matters

(green vs. black)
extra reactions matter
(red vs. green)

(Dated: May 22, 2023)

1024 — MUNHECA full

- {1 —-- MUNHECA customised input spectrum
. | ==+ arXiv:2305.06375
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Conclusions

(= sky already full of surprises, e.g. accumulating evidence for y-opaque

sources (dense, energetic photon backgrounds like coronas
surrounding active, supermassive BH?)

= 9’s can also reach us from remote distances, i.e. sources in the young
universe, whose high-energy features are virtually unknown.

= (Guaranteed) UHE window still to be opened, but realistic pathway to
detection.

= Peculiarities of UHE regime & high-z:The standard lore of ¥’s from m’s
may be incomplete.

I First step to provide a tool to explore the relevant (astro)physics.
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| Thank you E5




Extra slides



Result of earlier
simulations - QI

We follow the QED cascade with
a dedicated Monte Carlo
(Here 10*photon simulations)

Question |
How many y’s induce cascades

experiencing MPP, hence producing v’s?

@E=10!% eV
z=15,~12% of the photons
experience MPP.

At z=10 grows to ~25% and at
z=15 it grows to~ 35%

@E=102 eV,
>70% of photons experience
MPP atz =5,

with this fraction exceeding
94% at z = |5.
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QIl: fraction of initial y energy channelled into v’s
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FIG. 3. The mean fraction of the initial photon’s energy end-
ing up in neutrinos, f,, for three different energies of the
initial photon. The bars show the standard deviation around
the mean value depicted by solid curves.



QIll:

How many
MPP events?

Multiple productions more and
more relevant at high-E and/or
high-z!

This effect is virtually impossible to
quantify without MC simulations...
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New vs. earlier simplified calculation of cosmo cascade

z=10
10214 E,= 10 ev 10% eV
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Slight (~10%) enhancement at high-E (r* production, here Born approx of spinless elementary particle...)

Enhanced tail (improved description of cascade, extra processes...)



Ancillary results: Double pair production

vy e’

e €

calcHEP-based,
leading order calculation
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Ancillary results: DPP inelasticity (leading particle)

0.75 1
0.70 1
»
=
0.60 1
0.55 = Numerical from calcHEP
; = == our approximation
10~ 102 100 102
s [GeV?]
n(s) =~ a+ b exp [—(stn/s)°] a=032, b=045,c=044

Approximations suggested in the only existing treatment* lead to~30% errors

*S. V. Demidov and O. E. Kalashev, J. Exp. Theor. Phys. 108, 764 (2009), arXiv:0812.0859



Ancillary results: EMPP

vy = p e’

(a) (b)
e—p—p—c¢€ e—p——>»r—2=¢
v Z i v, Z i
| 7 ! ik
i . I
v 7 0 fi
(©) (@

calcHEP-based,
leading order calculation

*H. Athar, G.-L. Lin, and J.-J. Tseng, Phys. Rev. D 64, 071302(R) (2001), arXiv:hep-ph/0104185.
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= Total muon inelasticity

} Inelasticity of each muon
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Approximation in * acceptable (at the ~ 30% level) only at the
lowest energies considered, near threshold



