Project 8 Towards a Precise Measurement of the Neutrino Mass

Karsten Heeger Yale University

On behalf of the Project 8 collaboration

NPB 2024 February 19, 2024

Neutrino Mass from Tritium β^- Spectroscopy

Tritium β - spectroscopy is the leading technique for direct neutrino mass measurements

Why tritium? Q = 18.6 keV

- Well understood spectral shape
- Relatively low endpoint of 18.6 keV and short half-life of 12.3 years
- 2x10⁻¹³ within 1eV below endpoint

 m^2

Energy spectrum of electrons emitted from tritium β - decay

Project 8 Collaboration

This work was supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all collaborating institutions.

www.project8.org

Case Western Reserve University

• Razu Mohiuddin, Benjamin Monreal, Yu-Hao Sun Ruprecht Karls-Universität Heidelberg

• Felix Spanier

University of Illinois Urbana-Champaign

Chen-Yu Liu

Indiana University

• Robert Cabral, Manjinder Oueslati, Walter Pettus, Anna Reine

Johannes Gutenberg-Universität Mainz

· Sebastian Böser, Martin Fertl, Alec Lindman, Christian Matthé, Brunilda Mucogllava, René Reimann, Florian Thomas, Larisa Thorne

Karlsruher Institut für Technologie

Thomas Thümmler

Lawrence Berkeley National Laboratory

Alan Poon

Lawrence Livermore National Laboratory

Kareem Kazkaz

Massachusetts Institute of Technology

Joseph Formaggio, Mingyu Li, Junior Peña,

Juliana Stachurska, Wouter Van De Pontseele **Pacific Northwest National Laboratory**

· Benjamin Foust, Jeremy Gaison, Noah Oblath, Jonathan Tedeschi, Brent VanDevender

Pennsylvania State University

 Srinikitha Bhagvati, Matthew Brandsema, Carmen Carmona-Benitez, Richard Mueller, Luiz de Viveiros, Andrew Ziegler

University of Pittsburgh

Pranava Teja Surukuchi

University of Texas at Arlington

- Benjamin Jones, Akshima Negi, Faith Beall University of Washington
- Ali Ashtari Esfahani, Christine Claessens, Peter Doe, Sanshiro Enomoto, Alex Golub, Alexander Marsteller, Elise Novitski, Hamish Robertson, Gray Rybka, Megan Wynne

Yale University

 Karsten Heeger, James Nikkel, Penny Slocum, Arina Telles, Talia Weiss

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Working principle

 Source gas in a strong homogeneous magnetic field

- Trap electron in magnetic bottle trap
- Electrons emit cyclotron radiation
- Detect radiation and reconstruct kinetic energy

Axial distance

B

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Working principle

 Source gas in a strong homogeneous magnetic field

• Trap electron in magnetic bottle trap

 Electrons emit cyclotron radiation

 Detect radiation and reconstruct kinetic energy

B

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

- Magnetic trap (no energy change)
- Extends observation time of electron (*time)
- Knowledge of B places limit on energy resolution

$$\triangle E = \frac{\triangle B}{B} (m_e c^2 + E_{kin})$$

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Frequency [GHz]	24.79	
	24.787	
	24.784	
	24.781	Sta fre
	24.778 0.0)79

0.08 0.082 0.084 0.085 Time [s]

In uniform magnetic field, a charged particle will have a helical trajectory

Accelerating electron will radiate EM waves at frequency:

$$f_{Cyc} = \frac{1}{2\pi} \frac{q B}{m\gamma} = \frac{1}{2\pi} \frac{q B}{m_e + E_e}$$

Frequency measurement \implies High precision

- Source is transparent to microwave radiation
- No electron transport; volume scaling
- Differential spectrometer \implies Increased statistical efficiency
- Compatible with atomic tritium \implies Avoids T₂ final-state broadening
 - Low background \implies More info near endpoint

Project 8 - Sensitivity Goal

Goals

Sensitivity to 0.04 eV/c² neutrino mass

Measure neutrino mass or exclude inverted hierarchy

Simultaneous sensitivity to active and sterile neutrinos

10

Project 8

Phase I first demonstration of CRES

Phase II first CRES experiment with molecular tritium, sensitivity to neutrino mass

~mm³ effective volume

11

Wave guide experiment for molecular tritium

field Δ 0.85 mT F

First molecular tritium spectrum recorded with CRES

- 3770 events after all cuts
- Frequency range corresponds to 16.2 19.7 keV
- No background events beyond the endpoint

^{83m}Kr data for systematic studies and calibration

- Quasi-monoenergetic internal conversion lines
- 17.8 keV is close to tritium endpoint (18.6 keV)
- Ideal for calibration and systematic studies
- Resolution width depends on magnetic trap depth

- Count rate: 3770 events over 82 days. T₂ at 10⁻⁶ mbar
- Resolution: 54.3 eV (FWHM)
- Effective volume: 1.20 ± 0.09 mm³

Demonstrated understanding of **detector response**, control of systematic effects from scattering & field inhomogeneity (statistics-limited)

Stringent **background limit**, no events above endpoint!

T₂ endpoint measurement in agreement with literature

First **neutrino mass** measurement using CRES

Background rate

 $\leq 3 \times 10^{-10} \text{ eV}^{-1} \text{s}^{-1}$ (90% C.I.)

T₂ endpoint

Frequentist: $E_0 = (18548^{+19}_{-19}) \text{ eV} (1\sigma)$ $E_0 = (18553^{+18}_{-19}) \text{ eV} (1\sigma)$ Bayesian:

Neutrino mass

Frequentist: $\leq 152 \text{ eV/c}^2$ (90% C.L.) $\leq 155 \text{ eV/c}^2 (90\% \text{ C.L.})$ Bayesian:

Beyond Phase II - Path Towards 40 meV

Atomic Tritium Development

Atomic T for Project 8: 10¹⁴ atoms/s at ~2 mK

- Theoretical and computational basis for evaporative cooling in a beam.
- Demonstrations in progress now. Developing all steps of atomic tritium production and cooling to 50mK

Beyond Phase II - Path Towards 40 meV

- Develop atomic tritium source
 - Overcome systematic of molecular final states
- Improve resolution, control of systematics, field homogeneity, scattering effects
- Increase event rate
 - Larger volume
 - Higher efficiency

Cavity CRES in Project 8

e-

ſQ

Key Elements of CRES

- Tritium
- Atomic source
- Magnetic trap for atoms
- Uniform magnetic field
- Magnetic trap for e-
- Cavity
- Sensitive receiver

Cavity CRES in Project 8

A Low-Frequency Cavity Experiment

Low field

- smaller losses of atomic tritium
- Need spin selected atomic tritium to trap magnetically

Low frequency

- Large cavity volume scales with 1/f³
- Simpler mode structure

Developing CRES Techniques

Increasing volume and efficiencies with cavities

volume

First cavity geometry demonstrator:**mm³-**scale effectiv

Position-sensitive reconstruction for better resolution; improved simulations

Improved signal with quantum amplifiers

New calibration techniques and optimized magnetic trapping field shape for higher resolution

Demonstrating Key Technologies

Atomic trap demonstrator

Large-volume cavity-based CRES

Project 8 Collaboration, Contribution to Snowmass 2021, arXiv:2203.07349 (2022).

Future of Project 8

Phase III

- Sensitivity to ~ 0.1 eV/c²
 neutrino mass
- Leading sensitivity to eV-scale sterile neutrinos

Phase IV

- Sensitivity to 0.04 eV/c2
 (40 meV/c²) neutrino mass
- Measure neutrino mass or exclude inverted ordering

Future of Project 8

Phase III

- Sensitivity to ~ 0.1 eV/c² neutrino mass
- Sensitivity to eV-scale sterile neutrinos

Phase IV

- Sensitivity to 0.04 eV/c2 (40 meV/c2) neutrino mass
- Measure neutrino mass or exclude inverted ordering

Summary and Outlook

CRES established as a promising technique for a neutrino mass experiment

Phase II demonstrated background-free operation, control of systematics, first CRES limit

Progress toward key technology demonstrations, sub-eV neutrino mass sensitivity, and the path to the 40 meV experiment. Stay tuned!

