SMEFT phenomendogy	
Why EFT?	
(we think) Every theory is an effective theory	2!
natural units: $[unit [E] ~ [L]$	-
classical Mechanics (supersymmetric?)	UV
IR mellear physics SM SUSY? GUT? quantum Mellear physics SM SUSY? GUT? gravity Mellev Tell SUSS or SOLO Mp SUSS (xSUS), xUC)	E -> - distance scal
A more fundamental theory will approx	avitance s con
at a higher energy (smaller scale.	steps
Or maybe there is some ultimate theory? Quantum gravity (=) space fine quantized? notion of energy breaks dann?	Same Mere?
key ingredient: Locality (many definitions, here	it means)
Measurements at low energy should no	t bc
Sensitive to the physics at small distance high energy	
Éngineers dont need to learn QFT to buil	d bridges ! car
classical Mechanics is not wrong, it's a low energy	

- Why SMEFT ?
- SM is in complete (dark matter anti-matter asymmetry) • There must be BSM New physics but We don't know what it is. (some people thack) they know

light particle heavy particle (M>>v) vory neak coupling SMEET SMEET

bottom up approach
Be agnositic about the UV physics and try to systematically parameterize its effects at low energies.
Write down all possibilities
=) write down a basis (eliminate redundant operators)
=) all wilson coefficients are free parameters
to be measured by experiments (pheno)

$$V(\vec{r}) = \frac{1}{r} \sum_{l,m} b_{lm} \frac{1}{r^{2}} Y_{lm}(\theta, \theta)$$
Spherical harmonics
$$= \frac{1}{r} \sum_{l,m} c_{lm}(\frac{\alpha}{r})^{l} Y_{lm} \qquad b_{lm} \equiv c_{lm} \alpha^{l}$$
(Im S are dimensionless parameters (would of order 1).
Separation of scales $(\frac{\alpha}{r} < c_{l}) \Rightarrow$ The expansion is useful,
i.e. we only need to keep a few terms
in the l expansion to get a good approximation
(more terms \Rightarrow better accuracy)
dictance
expansion $\frac{\alpha}{r} = \frac{E}{\Lambda} (or V)$
UV $\alpha = \Lambda \sim 1/\alpha$ findle of new physics
expansion $\frac{\alpha}{r} = \frac{E}{\Lambda} (or \frac{V}{\Lambda})$
There is no precise definition of α . One could only
measure the charge distribution, we can do the expansion to
find out all the $k_{m}(c_{lm})$. This is called matching.
If we don't know $\dots we can treat all cum s as free parameters
if we don't know $\dots we can treat all cum s as free parameters$$

· After truncating the series (thraning away terms with (>(max) there are a finite number of purameters. If we make enough measurements we can constrain all purameters. (Cim) • To precisely determine the values of Cim we can either make very precise measurement at large & (low energy) make measurements at small r (high energy) energy vs. precision (or both!) Important aspects for colliders. If $r \approx a$, the expansion breaks down! r. (a.)) multiple scales [-ligh energy is charge god, but EFT may not be valid !

example 2 Fermi's theory mnon de cay $\mathcal{N} = \left(\frac{-ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{S}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{e}}_{L} \mathcal{S}^{U} \mathcal{V}_{e}\right) \cdot \frac{-ig_{uv}}{p^{2} - \mathcal{M}_{u}^{2}}$ $\mathcal{N} = \left(ig_{nore} \quad w \quad width \quad since \quad p^{2} \mathcal{L}(\mathcal{M}_{u}^{2})\right)$ $\stackrel{ig_{uv}}{=} \frac{1}{f_{\Sigma}} \left(\overline{\mathcal{V}}_{e} \quad (ig_{nore} \quad w \quad width \quad since \quad p^{2} \mathcal{L}(\mathcal{M}_{u}^{2})\right)$

For
$$p^{2}(\ell M_{uv}^{2})$$
, we can expand the operator

$$\frac{1}{p^{2}-M_{uv}^{2}} = -\frac{1}{M_{uv}^{2}}\left(1+\frac{p^{2}}{M_{uv}^{2}}+\frac{p^{4}}{M_{uv}^{2}}+\cdots\right)$$
Keeping only the 1st term we have
 $iM = \frac{-ig^{2}}{2M_{uv}^{2}}\left(\overline{\nu}_{m}\gamma^{m}M_{u}\right)\left(\overline{e}_{L}\gamma_{m}\nu_{e}\right) + O\left(\frac{1}{M_{uv}^{2}}\right)$
 q -fermin
 m (in tact interaction
 d -fermin $\frac{\nu}{e^{-}}$
which can be produced by the local Lagrangian
 $J = -\frac{g^{2}}{2M_{uv}^{2}}\left(\overline{\nu}_{m}\gamma^{m}M_{u}\right)\left(\overline{e}_{L}\gamma_{m}\nu_{e}\right) + O\left(\frac{1}{M_{uv}^{2}}\right)$
 d -intension- b operator, what Fermi wrote dawn.
 $EFT: \times \sim \frac{E^{2}}{\Lambda^{2}}(n-m_{uv})$, breaks down at large E !
If we keep more terms in the Lagrangian we'll generator
higher dimensional operators, eg. the $\frac{1}{M_{uv}}$ term corresponds
to dimension to use on-shell amplitudes!

This is the simplest example of the matching between the full model (SM) and the low-energy effective field theory (Fermi's theory).

- For $p^2 \ll M_W^2$, the 4F operator gives a very good approximation of the full theory. This is the case for mum decay. $(p^2 \ll m_m^2 - 10^6)$
- The coefficient of the 4F operator is $-\frac{g^2}{2m_w^2} \sim \frac{1}{v^2}$. Measuring muon decay only tells us the value of v $(or G_F = \frac{1}{5z}v^2)$ but not Mw, which depends on g.
 - · Mu is the scale at which the EFT breaks down!

$$\frac{1}{p^{2}-m_{w}^{2}} = -\frac{1}{m_{w}^{2}} \left(1 + \frac{p^{2}}{m_{w}^{2}} + \frac{p^{4}}{m_{w}^{4}} + \dots\right)$$

breaks down at $p^{2} - m_{w}^{2}$!
In air world, $g \approx 0.65$.
If g is { vory small, w, \geq would be much lighter
lef g is { vory small, w, \geq would be much lighter
lef g is { vory large, \dots henvior.
(but if $g \geq 4\pi$, the theory becomes non-porturbative)

- In this simple example, if we also measure the dim-8 coefficient $\left(-\frac{9^2}{M_{\pi}^4}\right)$ we can derive the W mass. In more complicated cases (with multiple heavy particles) it is in general not possible.
 - · global from

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{2} \frac{\zeta_{i}^{(\mu)}}{\Lambda} \mathcal{O}_{i}^{(s)} + \frac{1}{2} \frac{\zeta_{i}^{(\omega)}}{\Lambda^{2}} \mathcal{O}_{i}^{(s)} + \frac{1}{2} \frac{\zeta_{i}^{(\nu)}}{\Lambda^{2}} \mathcal{O}_{i}^{(\nu)} +$$

dim 5: only I type of operators ~ LLHH (Weinberg down)
HW: write down the exact form of the Weinberg operator
neutrino majorana mass

$$\mathcal{L} \sim \frac{C}{\Lambda}$$
 LLHH $\rightarrow \frac{C}{\Lambda} \frac{V}{VV}$ $\binom{C-1}{\Lambda \sim \Lambda_{Gut}} = M_V \sim 10^{-2} eV$
Seesaw mechanism !
 $\mathcal{B} \ \mathcal{K}$ effects are usually strongly constrained (e.g. photom decay).
Assuming B, L are conserved around the TeV scale
 \mathcal{L} sin EFT = $\mathcal{L}_{SH} + \sum_{i} \frac{C_i^{(D)}}{\Lambda^2} O_i^{(e)} + \sum_{i} \frac{C_i^{(D)}}{\Lambda^2} O_i^{(g)} + \cdots$
Nie Integration by parts, e. C.M., (Field predofinition)
to eliminate redundant operators...
How many independent parameters do we have ?
I generation B genemations
dim - 6 76 webset 2499 1312.2014
dim - 8 895 36971 2005 website
ISTERS in Many parameters?
Is 2499 too many parameters?
I seed too many parameters?
I seed too many parameters?

Warson basis 1008.4884 • first to write down a complete d6 basis • try to eliminate operators with more derivatives in towar of operators with more fields.

Buchmüller & Wyler almost did it in 1986 (why no one completed) it in 24 years?)

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^\dagger arphi) (ar l_p e_r arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$arphi^{\dagger} arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$ Q_{\varphi \widetilde{W}} $	$arphi^{\dagger} arphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^{\dagger} au^{I} arphi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	ating	
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight.$	$^{T}Qu_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{fk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(a_s^{\gamma})^T C e_t \right]$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq} \qquad \varepsilon^{\alpha\beta\gamma} z_{jn} \varepsilon_{km} \left[(q_p^{\alpha j})^T C q_p^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma} ig[(d_p^lpha)^T$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$			/	/ /

4+3+3

8×3

briefly explain each type of operators...

5+7+8

ollerntry

1) (transverse) anomalous triple gauge coupling aTGC & (quertic GC) aGGC 2) $\varphi(\rightarrow) \downarrow ||1|^6 \rightarrow h^3 \mod h^3 Rh^4$ (211-12) medify duch duch, he have function renormalization Shift Higgs couplings [HtDM]] ² modifies ma 3) y² q³ -> modify Yukawa conphiling (relation between m & y) 25 4) $|H|^2 V_{n\nu} V^{n\nu} - \frac{1}{2}$ hhvarvar X different from h 2"2" hwww 5) HAV dipole Vou fre veal magnetic FR imginary electric modifies SM VIJ rouphly contact interaction

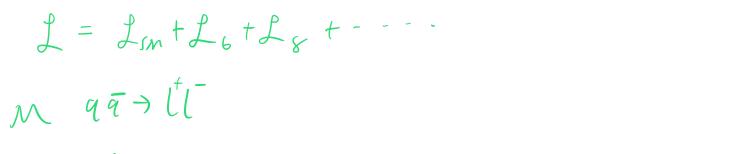
3 generations: 2499 parameters! (many of them are 4f operators)

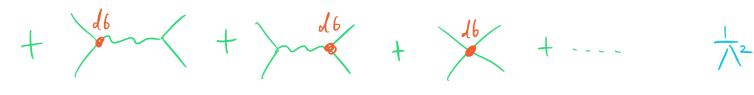
In other bases, we sometimes keep aperators with more derivatives.

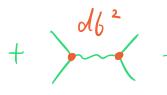
E.g.
$$(b_{2w} = -\frac{1}{2} (D^{n} W_{nv}^{\alpha})^{2} (b_{2s}^{2} = -\frac{1}{2} (\partial^{n} B_{nv})^{2})^{2}$$

useful in describing universal contributions to 4f interactions.
 $(D_{Hw} = ig(D^{n}H)^{\dagger} G^{\alpha} (D^{\nu}H) W_{nv}^{\alpha}$
 $D_{Hg} = ig'(D^{n}H)^{\dagger} (D^{\nu}H) B_{nv}$
 $(longitudinal)$
useful for describing anomalous triple gauge couplings
 (αTGc_{s})

Phenomenology expand in terms of $\frac{1}{\Lambda}$



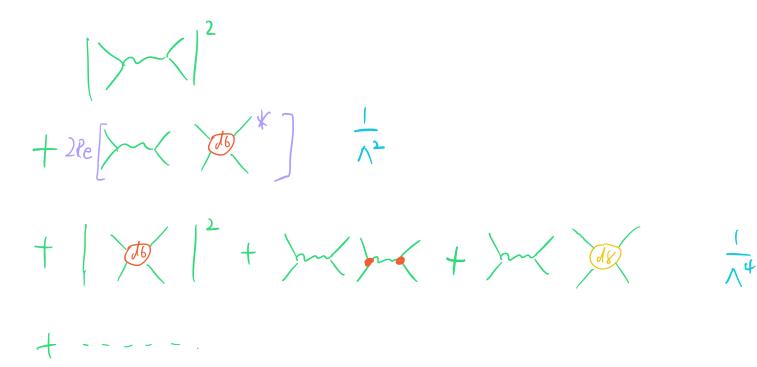




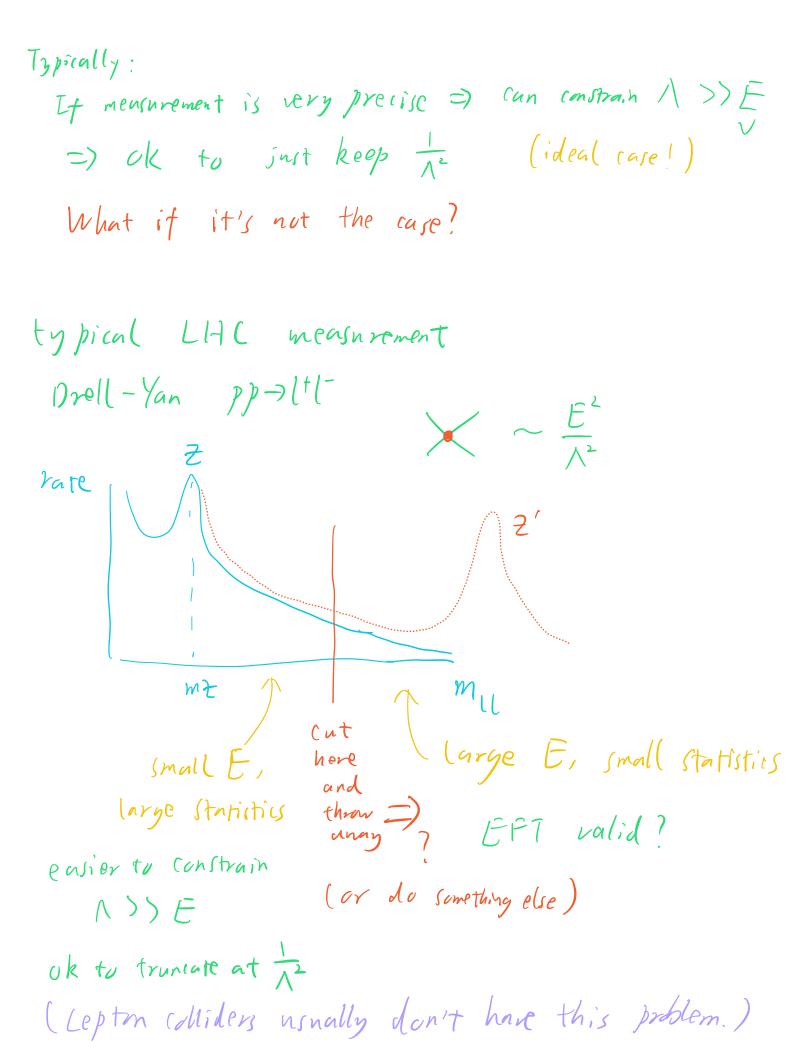
- - - - .

(db² & ds are formally) in distinguishable

Higher dimensional appratus can con	tribute to M, T, which appears
in dinominators 1 P-m2-imp	
(or just expand !)	
$G \sim M ^2$	



We can trancate G at collider $\frac{1}{\Lambda^2}$ is a very good approximation if $V < C \wedge$ $(|+\chi)^2 \simeq |+2\chi$ if x is very small! 1 strictly speaking need to calculate d8 what if Air at that tange shall we keep dt 2



When	where	1's	EF7	incal	îd]
•		-			1 A A A A A A A A A A A A A A A A A A A

This depends on the coupling strength!

d6: ne only measure the combination

$$\frac{(9^*)^{\prime}}{M_{z'}^{2}} \sim \frac{\mathcal{L}}{\Lambda^2}$$

Mz' is the scale near which EFT breaks down!

9* is small
large
$$\leq 4\pi$$
 \Rightarrow M_{\pm}' is $large$
 $d_{6^{2}}: \frac{(5^{*})^{4}}{m_{\Xi}^{*}}$ $\leq 10^{2}$ M_{Ξ}^{*} $d_{6^{2}} \gg d_{\Xi}$ if 9_{*} is large!
e.g. $\int \int from the measurement I have
 $\left|\frac{\zeta}{\Lambda^{2}}\right| \leq |TeV|^{-2}$
is the EFT valid?
 $\zeta = 1 : \frac{\Lambda}{\Lambda^{2}} \approx |$ maybe not?
 $\zeta = 9 : \frac{\Lambda}{\Lambda^{2}} \approx 3$ maybe yes.$

- Important exceptions of the 1/2 yourer counting · SM contribution is absent or suppressed leading order: $db^2 \sim \frac{1}{\chi^4}$ SM. d6 is very small, SM. d8 << d6² · rare process flavor violation ... proton decay $T_p \sim \frac{m_p^5}{\Lambda^4}$ $\Lambda \gtrsim 10^{15} \text{ GeV}$ · Fermi's theory: Weak interaction $m = \frac{m}{\lambda_{e}} \quad T_{m} \sim \frac{m_{m}^{3}}{\lambda_{ew}^{4}}$ no interference with GED!
 - The interference term with SM is suppressed.
 Different helicity amplitudes...
 e.g. Z_n F_s^n f_z Z_n v F_c on v f_R
 e.g. t +/- nv interference in the m_t -v limit!

SM input parameters, and hav SMEFT modifies them.
The SM has a set of free parameters to be fixed
by experiments.

$$g g' \vee \lambda \quad y_t \quad \dots \quad \dots$$

which are related to
 $M_{\Xi}, \quad M_w, \quad G_E, \quad \lambda, \quad M_h, \quad M_t, \quad \dots \quad \dots$
 $muon \quad electron \quad megnetic \quad \dots \quad megnetic \quad \dots \quad megnetic \quad \dots \quad \dots$
There relations can be incidified by higher dimensional operators!
 $e.g. \quad L > y_t \quad \overline{Q}_{E}^{(0)} +_R \widetilde{H} \quad + \quad \frac{C_t}{\Lambda^2} \quad |H|^2 \quad \overline{Q}_{L}^{(0)} +_R \widetilde{H} \quad + h.c. \quad \dots \quad \dots \quad \dots \quad \dots$
 $= \frac{y_t}{f_{\Sigma}} (\nu + h) \quad \overline{f_L} +_R \quad + \quad \frac{(t + (\nu + h)^3)}{2f_{\Sigma}} \quad \overline{f_L} +_R \quad + h.c. \quad + \dots \quad \dots \quad \dots$

$$\int M \quad (t = 0) : \quad \mathcal{L} = \underbrace{\frac{y_{t}v}{J\Sigma}}_{m_{t}} \overline{t}_{L} t_{R} + \underbrace{\frac{y_{t}}{J\Sigma}}_{\eta_{htt}} h \ \overline{t}_{L} t_{R} + h.c. + \cdots$$

with
$$C_{t}$$
: $\mathcal{I} = \left(\frac{\gamma_{t}\nu}{J_{\Sigma}} + \frac{C_{t}\nu^{3}}{2J_{\Sigma}\Lambda^{2}}\right)\overline{t}_{L}t_{R} + \left(\frac{\gamma_{t}}{J_{\Sigma}} + \frac{C_{t}^{3}\nu^{2}}{2J_{\Sigma}\Lambda^{2}}\right)h\overline{t}_{L}t_{R} + hL$
 m_{t}
 η_{ntt}

Anespin: Does the measurement of M_{t} gives us a constraint on (t]

In other words, Ct changes the relation between Mt & ghtt

$$m_{t} = \frac{y_{t}\nu}{\sqrt{2}} + \frac{(t \nu)^{3}}{2\sqrt{2}\Lambda^{2}} \qquad \qquad \frac{y_{t}}{\sqrt{2}} = \frac{m_{t}}{\nu} - \frac{(t \nu)^{2}}{2\sqrt{2}\Lambda^{2}}$$

$$\mathcal{I}_{h+t} = \frac{m_t}{V} + \frac{2(t_t)^2}{2J_2 \Lambda^2}$$

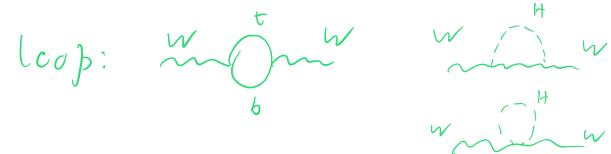
More generally, any operator of the form

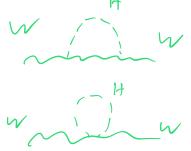
$$|H|^2 O_{sm}$$
 can cally be probed with the
"Higgs particle"!
 $g_{sm} O_{sm}$ vs. $g_{sm} O_{sm} + \frac{C}{\Lambda^2} |H|^2 O_{sm}$
 $= g_{sm} O_{sm} + \frac{C}{\Lambda^2} \frac{V^2}{2} O_{sm} + terms with h$
 $= (g_{sm} + \frac{CV^2}{2\Lambda^2}) O_{sm} + terms with h$
redefine $\overline{g} = g_{sm} + \frac{CV^2}{2\Lambda^2}$
 $= \overline{g} O_{sm} + terms with h$
(can also be h in the loop)
Similarly, $O_6 = (H^{\dagger}H)^3$ can only be probed
by measuring the Higgs self coupling i
HW

SM EW	sector	W & Z	light Fermions	(ignore Hogys)
tree level	L 3 param	etors	V	
9 SV(2)	9' U(1)y	V		
su precile	that we simply home, (M2, GE,	ignore the e	error !	
M Z	= 91,1876	± 0.0021	GeV	
	= 1.1663787 ±6	×10 ⁻⁵ Gev -2	muon	decay
2	2 ⁻¹ (m ₂) = 127.	952 ± 0.009	e magnel moninly from (ontributi	tic moment had
	$G_F = \frac{1}{\pi v^2}$	$\lambda = \frac{c^2}{4\chi}$	tan Ow =	<u>9'</u> J
e 10m <u>j</u>	$m_2 = \frac{1}{2} \frac{9V}{C_w}$	$M_w = \frac{1}{2}$	91	

SM tree level: Mm is totally fixed! Mm = Costin

precision >> tree





((
$$\int M$$
 prediction ' $f M_{N}$ (with input measurements)
 $m_{Z} G_{F} Q M_{t} M_{H}$

$$M_{w} = 80357 \pm 4_{input} \pm 4_{theory} MeV$$

$$M_{w} = 80357 \pm 4_{input} \pm 4_{theory} MeV$$

$$M_{t} = 0$$

(CDF Mu mensurement is significantly different from it)

Add to
$$f_{SM}$$
 the following dimension 6 operators

$$f = \frac{S}{m_{w}^{2}} \frac{1}{4} 99' H^{\dagger} 6^{n} H w_{nv}^{a} g^{nv} + \frac{T}{v^{2}} \frac{1}{2} (H^{\dagger} \int_{D^{n}}^{\infty} H)^{2}$$

$$+ \frac{(m_{v}^{n})}{v_{z}} (\overline{\iota}_{1} \gamma^{n} (\iota) (\overline{\iota}_{2} \gamma_{m} (\iota))$$
They can modify m_{w} ! $\begin{pmatrix} by \\ by \\ iaferred \\ values \\ of \\ gurane tos \end{pmatrix}$

$$M_{z}^{2}$$

$$O_{T} : \frac{1}{2} \left(\frac{9v}{2\iota_{v}} \right)^{2} h^{2} h^{2} m = \frac{1}{2} \left(\frac{9v}{2\iota_{w}} \right)^{2} (1 - \overline{1}) 2h^{2} m$$

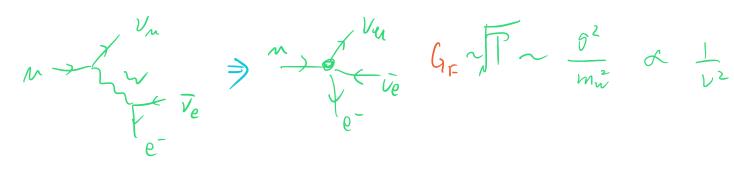
$$m_{z}^{2} = M_{z}^{2} (1 + \delta m_{z}^{2}) \qquad \delta m_{z}^{2} = -\overline{7}$$

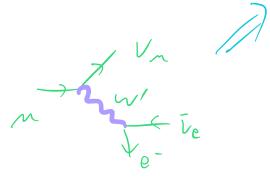
$$\int \frac{9v}{2\iota_{w}} is \ changed$$

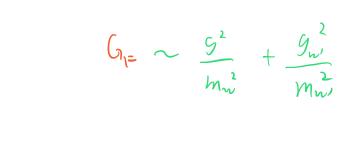
$$91.1876 \pm 0.0021 \ GeV$$

$O_{\overline{1}}$:	Mw	7 Cos Qu
\sim (Mz	1 5-4

mnon decay







$$G_{F} = G_{F}^{SM} (1 + SG_{F}) \qquad C_{II}^{[22]} = -2SG_{F}$$

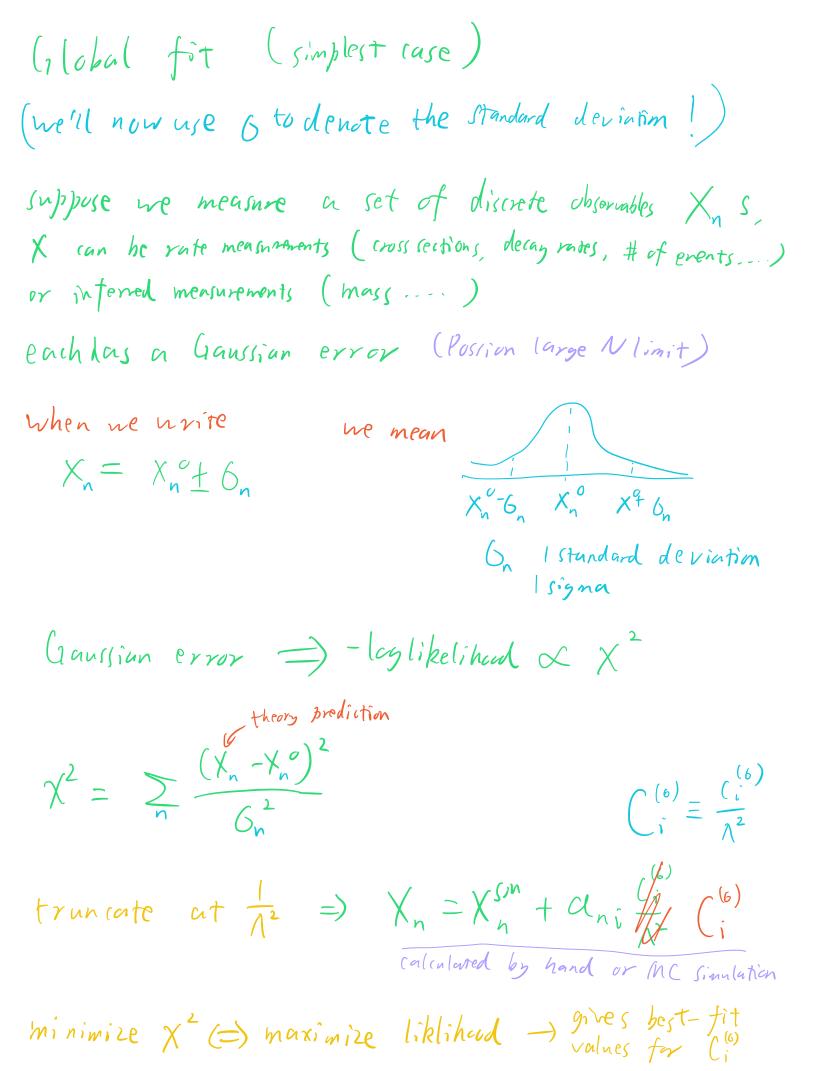
measured inferred SM value

value

1663787 × 10⁻⁵ Gev⁻² SG_{F} + C_{II}^{-2}

 $V \neq 246G_{F}eV$

One : kinetic mixing =) redefine =) $\delta m_z^2 =$) modify SM parameters $\delta m_w = \frac{1}{2C_{2W}} \left[C_w^2 - S_w^2 \left(SG_F + 2S \right) \right]$ There operators also modify 2 pole observables....



 $\Rightarrow \chi^{2} = \sum_{ij} \left(\left(\left(- \left(- \frac{0}{i} \right) \right) \left[- \frac{0}{ij} \right]_{ij} \left(\left(- \frac{0}{j} \right) + \chi^{2}_{min} \right) \right)$ $5^{-2} \equiv (5\vec{c} \cdot \vec{P} \cdot \vec{S} \cdot \vec{C})^{-1}$ inverse covariance matrix : best-fit values : one-signa precion, Pij: correlation matrix results of the Global fit OX² gives a measure of the "goudness ffit". fixed ox and and contractions of Ci = ellipses! Imagine this in n-dimensional (2purameter space ((2), (3))project to 6x2=1 C,0 $C_{1}^{-} - SC_{1}$ $C_{1}^{\circ} + SC_{1}$ Beyond 1/2 => not (roustion anymore!