Introduction to Chiral Perturbation Theory

Feng-Kun Guo

Institute of Theoretical Physics, CAS

The 2023 Zhujiang Winter School on Theoretical Physics
Dec. 04-09, 2023 @ SCNU, Guangzhou
https://indico.ihep.ac.cn/event/20519/

Outline

(1) Chiral symmetry
(2) Chiral perturbation theory

- Effective field theory in a nut shell
- Transformation properties
- CHPT at leading order
- Including quark masses
- Effects of virtual photons
- Pion-pion scattering at LO
- CHPT with matter fields
- Baryon CHPT at LO
- CHPT at the next-to-leading order
(3) Exercises

Light vector and pseudoscalar mesons

Light meson $\operatorname{SU}(3)[u, d, s]$ multiplets (octet + singlet):

- Vector mesons

meson	quark content	mass (MeV)
ρ^{+} / ρ^{-}	$u \bar{d} / d \bar{u}$	775
ρ^{0}	$(u \bar{u}-d \bar{d}) / \sqrt{2}$	775
K^{*+} / K^{*-}	$u \bar{s} / s \bar{u}$	892
$K^{* 0} / \bar{K}^{* 0}$	$d \bar{s} / s \bar{d}$	896
ω	$(u \bar{u}+d \bar{d}) / \sqrt{2}$	783
ϕ	$s \bar{s}$	1019

approximate SU(3) symmetry
very good isospin SU(2) symmetry

$$
m_{\rho^{0}}-m_{\rho^{ \pm}}=(-0.7 \pm 0.8) \mathrm{MeV}, \quad m_{K^{* 0}}-m_{K^{* \pm}}=(6.7 \pm 1.2) \mathrm{MeV}
$$

Light vector and pseudoscalar mesons

Light meson $\mathrm{SU}(3)[u, d, s]$ multiplets (octet + singlet):

- Pseudoscalar mesons

meson	quark content	mass (MeV)
π^{+} / π^{-}	$u \bar{d} / d \bar{u}$	140
π^{0}	$(u \bar{u}-d \bar{d}) / \sqrt{2}$	135
K^{+} / K^{-}	$u \bar{s} / s \bar{u}$	494
K^{0} / \bar{K}^{0}	$d \bar{s} / s \bar{d}$	498
η	$\sim(u \bar{u}+d \bar{d}-2 s \bar{s}) / \sqrt{6}$	548
η^{\prime}	$\sim(u \bar{u}+d \bar{d}+s \bar{s}) / \sqrt{3}$	958

very good isospin $\mathrm{SU}(2)$ symmetry

$$
m_{\pi^{ \pm}}-m_{\pi^{0}}=(4.5936 \pm 0.0005) \mathrm{MeV}, \quad m_{K^{0}}-m_{K^{ \pm}}=(3.937 \pm 0.028) \mathrm{MeV}
$$

Why are the pions so light? Pseudo-Nambu-Goldstone bosons of the spontaneous breaking of chiral symmetry: $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$

QCD symmetries

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{\substack{\begin{subarray}{c}{u, d, s, c, b, t} }}\end{subarray}} \bar{q}_{f}\left(i \not D-m_{f}\right) q_{f}-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}+\frac{g_{s}^{2} \theta}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}
$$

- Exact: Lorentz-invariance, $\mathrm{SU}(3)_{c}$ gauge, C (and P, T for $\theta=0 \mathrm{w} /$ real m_{f})
- Approximate:

Spontaneously broken chiral symmetry:
$\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R} \xrightarrow{\text { SSB }}$ $\operatorname{SU}\left(N_{f}\right)_{V}$

Heavy quark spin symmetry (HQSS)
nes Heavy quark flavor symmetry (HQFS)
(8) Heavy aiquark-diquark symmetry (HADS)

Chiral symmetry

Chiral symmetry (1)

- Masses of the three lightest quarks u, d, s are small
\Rightarrow approximate chiral symmetry
- Chiral decomposition of fermion fields:

$$
\psi=\frac{1}{2}\left(1-\gamma_{5}\right) \psi+\frac{1}{2}\left(1+\gamma_{5}\right) \psi \equiv P_{L} \psi+P_{R} \psi=\psi_{L}+\psi_{R}
$$

$$
\begin{aligned}
& \text { Properties: }\left(\gamma_{5}\right)^{2}=1,\left\{\gamma_{5}, \gamma_{\mu}\right\}=0 \\
& P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \\
& P_{L} P_{R}=P_{R} P_{L}=0, \quad P_{L}+P_{R}=1
\end{aligned}
$$

- For massless fermions, left-/right-handed fields do not interact with each other

$$
\begin{aligned}
& \mathcal{L}\left[\psi_{L}, \psi_{R}\right]= i \bar{\psi}_{L} \not D \psi_{L}+i \bar{\psi}_{R} \not D \psi_{R}-m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) \\
& \text { gluon } \\
& \psi_{R} \psi_{R}
\end{aligned}
$$

Chiral symmetry (2)

- Decompose $\mathcal{L}_{\mathrm{QCD}}$ into $\mathcal{L}_{\mathrm{QCD}}^{0}$, the QCD Lagrangian in the 3-flavor chiral limit $m_{u}=m_{d}=m_{s}=0$, and the light quark mass term:

$$
\mathcal{L}_{\mathrm{QCD}}=\mathcal{L}_{\mathrm{QCD}}^{0}-\bar{q} \mathcal{M} q, \quad q=(u, d, s)^{T}, \quad \mathcal{M}=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)
$$

- $\mathcal{L}_{\mathrm{QCD}}^{0}=i \bar{q}_{L} \not D q_{L}+i \bar{q}_{R} \not D q_{R}+\ldots$
is invariant under $\mathrm{U}(3)_{L} \times \mathrm{U}(3)_{R}$ transformations:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}}^{0}\left(G_{\mu \nu}, q^{\prime}, D_{\mu} q^{\prime}\right) & =\mathcal{L}_{\mathrm{QCD}}^{0}\left(G_{\mu \nu}, q, D_{\mu} q\right) \\
q^{\prime} & =R P_{R} q+L P_{L} q=R q_{R}+L q_{L} \\
R & \in \mathrm{U}(3)_{R}, \quad L \in \mathrm{U}(3)_{L}
\end{aligned}
$$

- Parity: $q(t, \vec{x}) \xrightarrow{P} \gamma^{0} q(t,-\vec{x})$

$$
\begin{aligned}
\Rightarrow \quad & q_{R}(t, \vec{x}) \xrightarrow{P} P_{R} \gamma^{0} q(t,-\vec{x})=\gamma^{0} P_{L} q(t,-\vec{x})=\gamma^{0} q_{L}(t,-\vec{x}) \\
& q_{L}(t, \vec{x}) \xrightarrow{P} \gamma^{0} q_{R}(t,-\vec{x})
\end{aligned}
$$

- $\mathrm{U}(3)_{L} \times \mathrm{U}(3)_{R}=\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \times \mathrm{U}(1)_{L} \times \mathrm{U}(1)_{R}$

Chiral symmetry (3)

$$
\begin{aligned}
& q_{\zeta_{R} \Rightarrow} \Rightarrow L_{R} q_{L_{R}}=e^{-i \alpha_{R}^{a} T_{R}^{a}} e^{-i \alpha_{k} q_{L / R}} . \\
& q=q_{L}+q_{R}=\frac{1-r_{5}}{2} q+\frac{1+r_{5}}{2} q \\
& \rightarrow \frac{1}{2}\left(e^{-i \alpha_{L}^{a} T^{a}} e^{-i \alpha_{L}}+e^{-i \alpha_{R}^{a} T^{a}} e^{-i \alpha_{R}}\right) q+\frac{r_{E}}{2}\left(-e^{-i \alpha_{L} T^{a}} e^{-i \alpha_{L}}+e^{-i \alpha_{R} \alpha_{k}^{a}} e^{-i \alpha_{e}}\right) q \\
& =\frac{1}{2}\left(2-i \alpha_{L}^{a} T^{a}-i \alpha_{L}-i \alpha_{R}^{a} T^{a}-i \alpha_{R}\right) q+\frac{r_{5}}{2}\left(i \alpha_{L}^{a} T^{a}+i \alpha_{L}-i \alpha_{R}^{a} T^{a}-i \alpha_{R}\right) q \\
& =\left(1-i \alpha_{V}^{a} T^{a}-i \alpha_{V}\right) q+\left(-i \alpha_{A}^{a} T^{a}-i \alpha_{A}\right) \gamma_{5} q+\ldots \\
& \prod_{\frac{1}{2}\left(\alpha_{L}^{a}+\alpha_{k}^{a}\right)}^{\pi} \prod_{\frac{1}{2}\left(\alpha_{L}+\alpha_{k}\right)}^{\pi} \quad \frac{1}{2}\left(\alpha_{R}^{a}-\alpha_{l}^{a}\right) \quad{ }_{2}^{1}\left(\alpha_{k}-\alpha_{k}\right)
\end{aligned}
$$

- $\mathrm{U}(3)_{L} \times \mathrm{U}(3)_{R}=\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \times \mathrm{U}(1)_{V} \times \mathrm{U}(1)_{A}$
- $\left\{e^{-i \alpha_{A}^{a} T^{a} \gamma_{5}}\right\}\left(\alpha_{A}^{a} \in \mathbb{R}\right)$ do not form a group (the closure property not satisfied).

Baker-Compbell-Hausdorff formula: $e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]+\ldots} ;\left(\gamma_{5}\right)^{2}=1$

Chiral symmetry (4)

- Decompose $\mathrm{U}(3)_{L} \times \mathrm{U}(3)_{R}=\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R} \times \mathrm{U}(1)_{V} \times \mathrm{U}(1)_{A}$: 18 conserved (Noether) currents for massless QCD at the classical level $J_{L, R}^{\mu, a}=\bar{q}_{L, R} \gamma^{\mu} \frac{\lambda^{a}}{2} q_{L, R}, \quad J_{L, R}^{\mu, 0}=\bar{q}_{L, R} \gamma^{\mu} q_{L, R}, \quad\left(\lambda_{a}:\right.$ Gell-Mann matrices $)$
- rewritten in terms of vector $(V=L+R)$ and axial vector $(A=R-L)$ currents

$$
\begin{aligned}
V^{\mu, a}=\bar{q} \gamma^{\mu} \frac{\lambda^{a}}{2} q, & A^{\mu, a}=\bar{q} \gamma^{\mu} \gamma_{5} \frac{\lambda^{a}}{2} q \\
\partial_{\mu} V^{\mu, a}=0, & \partial_{\mu} A^{\mu, a}=0
\end{aligned}
$$

- $\mathrm{U}(1)_{V}$: baryon or quark number conservation

$$
V^{\mu, 0}=\bar{q} \gamma_{\mu} q, \quad \partial_{\mu} V^{\mu, 0}=0
$$

- $\mathrm{U}(1)_{A}$: explicitly broken by quantum effects, anomaly

$$
A^{\mu, 0}=\bar{q} \gamma_{\mu} \gamma_{5} q, \quad \partial_{\mu} A^{\mu, 0}=\frac{N_{f} g_{s}^{2}}{32 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}
$$

\Rightarrow the θ-term, $|\bar{\theta}| \lesssim 10^{-10}(\bar{\theta} \equiv \theta+\arg \operatorname{det} \mathcal{M}) \Rightarrow$ strong CP problem

- Is $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ realized in hadron spectrum?

Wigner-Weyl v.s. Nambu-Goldstone

- Noether's theorem: continuous symmetry \Rightarrow conserved currents

Let Q^{a} be symmetry charges: $\quad Q^{a}=\int d^{3} \vec{x} J^{a, 0}(t, \vec{x}), \quad \partial_{\mu} J^{a, \mu}=0$

- Q^{a} is the symmetry generator: $g=e^{i \alpha^{a} Q^{a}}, H$: Hamiltonian, thus

$$
\begin{gathered}
g H g^{-1}=H \Rightarrow\left[Q^{a}, H\right]=0 \\
{\left[Q^{a}, H\right]|0\rangle=Q^{a} \underbrace{H|0\rangle}_{=0}-H Q^{a}|0\rangle=0}
\end{gathered}
$$

- Wigner-Weyl mode: $\quad Q^{a}|0\rangle=0$ or equivalently $g|0\rangle=|0\rangle$ degeneracy in mass spectrum
- Nambu-Goldstone mode: $\quad g|0\rangle \neq|0\rangle$, spontaneously broken (hidden) $Q^{a}|0\rangle \neq 0$: new states degenerate with vacuum $\left(H Q^{a}|0\rangle=0\right)$, massless Goldstone bosons
spontaneously broken continuous global symmetry \Rightarrow massless GBs
the same quantum numbers as $Q^{a}|0\rangle \Rightarrow$ spinless
$\#(\mathrm{GBs})=\#$ (broken generators)

Fate of $\mathrm{SU}(\mathbf{3})_{L} \times \mathbf{S U}(3)_{R}(\mathbf{1})$

Vector and axial charges:

$$
Q_{V}^{a}=Q_{L}^{a}+Q_{R}^{a}, \quad Q_{A}^{a}=Q_{R}^{a}-Q_{L}^{a}, \quad\left[Q_{V, A}^{a}, H_{\mathrm{QCD}}^{0}\right]=0
$$

here H_{QCD}^{0} : QCD Hamiltonian in the chiral limit.
Under parity transformation: $q_{R} \rightarrow \gamma^{0} q_{L}, q_{L} \rightarrow \gamma^{0} q_{R}$

$$
\begin{aligned}
J_{L}^{\mu, a} \rightarrow J_{R, \mu}^{a}, & J_{R}^{\mu, a} \rightarrow J_{L, \mu}^{a} \\
\Rightarrow \quad P Q_{V}^{a} P^{-1}=Q_{V}^{a}, & P Q_{A}^{a} P^{-1}=-Q_{A}^{a}
\end{aligned}
$$

For an eigenstate of $H_{\mathrm{QCD}}^{0},\left|\psi_{\alpha}\right\rangle=b_{\alpha}^{\dagger}|0\rangle: H_{\mathrm{QCD}}^{0}\left|\psi_{\alpha}\right\rangle=E\left|\psi_{\alpha}\right\rangle$ with $P\left|\psi_{\alpha}\right\rangle=\eta_{P}\left|\psi_{\alpha}\right\rangle$, then

$$
\begin{aligned}
& H_{\mathrm{QCD}}^{0} Q_{A}^{a}\left|\psi_{\alpha}\right\rangle=Q_{A}^{a} H_{\mathrm{QCD}}^{0}\left|\psi_{\alpha}\right\rangle=E Q_{A}^{a}\left|\psi_{\alpha}\right\rangle, \\
& P Q_{A}^{a}\left|\psi_{\alpha}\right\rangle=P Q_{A}^{a} P^{-1} P\left|\psi_{\alpha}\right\rangle=-\eta_{P} Q_{A}^{a}\left|\psi_{\alpha}\right\rangle
\end{aligned}
$$

Parity doubling: $Q_{A}^{a}\left|\psi_{\alpha}\right\rangle=Q_{A}^{a} b_{\alpha}^{\dagger}|0\rangle=\underbrace{\left[Q_{A}^{a}, b_{\alpha}^{\dagger}\right]|0\rangle}_{=\left(t^{a}\right)}+b_{\alpha}^{\dagger} Q_{A}^{a}|0\rangle$ has the same mass
but opposite parity

Fate of $\mathbf{S U (3)})_{L} \times \mathbf{S U}(\mathbf{3})_{R}$ (2)

- But, in the hadron spectrum:

$$
\begin{gathered}
m_{\text {Nucleon, } P=+}=939 \mathrm{MeV} \ll m_{N^{*}(1535), P=-}=1535 \mathrm{MeV} \\
m_{\pi, P=-}=139 \mathrm{MeV} \ll m_{a_{0}(980), P=+}=980 \mathrm{MeV}
\end{gathered}
$$

- No parity doubling in hadron spectrum \Rightarrow

$$
Q_{A}^{a}|0\rangle \neq 0, \quad \text { or } \quad e^{i \alpha^{a} Q_{A}^{a}}|0\rangle \neq|0\rangle
$$

Nambu-Goldstone mode (hidden symmetry):
In QCD, $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ is spontaneously broken down to $\mathrm{SU}(3)_{V}$

- GBs should have $J^{P}=0^{-}$

SSB in linear σ model (1)

- Linear σ model with an $O(4)$ symmetry

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LSM}} & =\frac{1}{2} \partial_{\mu} \Phi^{T} \partial^{\mu} \Phi-V(\Phi), \\
V(\Phi) & =\frac{\lambda}{4}\left(\Phi^{T} \Phi-v^{2}\right)^{2}, \quad \text { with } \Phi^{T}=\left(\sigma, \pi_{1}, \pi_{2}, \pi_{3}\right)
\end{aligned}
$$

- $\sigma=\pi_{a}=0$ is not a minimum of $V(\Phi)$ for $v^{2}>0$

There is a continuum of degenerate vacua: $\quad \Phi_{\min }^{T} \Phi_{\min }=v^{2}$
Choose $\Phi_{\text {min }}=(v, 0,0,0)$, vacuum is only invariant under $O(3)$ rotations spontaneous symmetry breaking: $O(4) \rightarrow O(3)$

- Perturb around $\Phi_{\text {min }}=(v, \overrightarrow{0})$, let $\Phi=\Phi_{\text {min }}+\left(\sigma^{\prime}, \pi_{1}, \pi_{2}, \pi_{3}\right)^{T}$, then

$$
\mathcal{L}_{\mathrm{LSM}}=\frac{1}{2} \partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a}+\frac{1}{2} \partial_{\mu} \sigma^{\prime} \partial^{\mu} \sigma^{\prime}-\frac{\lambda}{4}\left(\sigma^{\prime 2}+\pi_{a} \pi_{a}+2 v \sigma^{\prime}\right)^{2}
$$

Goldstone bosons (GBs): π_{a} 's are massless
σ^{\prime} is massive: $m_{\sigma^{\prime}}^{2}=2 \lambda v^{2}$
$m_{\sigma^{\prime}}$ and 5 interaction terms described by only 2 parameters

SSB in linear σ model (2)

$$
\mathcal{L}_{\mathrm{LSM}}=\frac{1}{2} \partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a}+\frac{1}{2} \partial_{\mu} \sigma^{\prime} \partial^{\mu} \sigma^{\prime}-\frac{\lambda}{4}\left(\sigma^{\prime 2}+\pi_{a} \pi_{a}+2 v \sigma^{\prime}\right)^{2}
$$

Only 2 parameters, important for cancellation!
Examples: tree-level scattering amplitudes

- $\pi_{3}\left(p_{1}\right) \pi_{3}\left(p_{2}\right) \rightarrow \pi_{3}\left(p_{3}\right) \pi_{3}\left(p_{4}\right) \quad$ (individually large terms!)

p_{π} : a generic momentum of GBs
Mandelstam variables: $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}, u=\left(p_{1}-p_{4}\right)^{2}$,
$s+t+u=\sum_{i} p_{i}^{2}$

SSB in linear σ model (3)

- $\pi_{3} \sigma^{\prime} \rightarrow \pi_{3} \sigma^{\prime}$

Exercise: Show that at tree-level

$$
\mathcal{A}\left(\pi_{3} \sigma^{\prime} \rightarrow \pi_{3} \sigma^{\prime}\right)=\mathcal{O}\left(\frac{p_{\pi}^{2}}{m_{\sigma}^{2}}\right)
$$

Lessons from the linear σ model:
SSB happens when there is a degeneracy of the vacuum
nes nonvanishing VEV of some Hermitian operator, here $\langle\sigma\rangle=v$
SSB \Rightarrow massless GBs $\left(\pi_{a}\right), \quad \#=\operatorname{dim}(O(4))-\operatorname{dim}(O(3))=3$
(1) GBs decouple at vanishing momenta!

Derivative coupling

Symmetry implies a derivative coupling for GBs, i.e.,

GBs do not interact at vanishing momenta

- Consider GB $\pi^{a}: \quad\left\langle\pi^{a}\right| Q_{A}^{a}|0\rangle=\int d^{3} x\left\langle\pi^{a}\right| A_{0}^{a}(x)|0\rangle \neq 0$ Lorentz invariance $\Rightarrow\left\langle\pi^{a}(q)\right| A_{\mu}^{a}(0)|0\rangle=-i q_{\mu} F_{\pi}$
- Consider the matrix element

$$
\begin{aligned}
\left\langle\psi_{1}\right| A_{\mu}^{a}(0)\left|\psi_{2}\right\rangle & =\frac{\psi_{1} \sum_{\mu}^{A_{\mu}^{a}} \psi_{2}}{\psi_{\mu}^{a}}+\frac{\psi_{1} i^{a} \psi_{2}}{F_{\pi} q^{\mu} \frac{1}{q^{2}} T^{a}} \\
& =R^{a}
\end{aligned}
$$

Current conservation $\Rightarrow q^{\mu} A_{\mu}^{a}=0$, thus

$$
q^{\mu} R_{\mu}^{a}+F_{\pi} T^{a}=0 \quad \Rightarrow \quad \lim _{q^{\mu} \rightarrow 0} T^{a}=0
$$

- \Rightarrow GBs couple in a derivative form !!

SSB in QCD

- Hamiltonian invariant under a group $G=\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$,
vacuum invariant under its vector subgroup $H=\operatorname{SU}\left(N_{f}\right)_{V}$.

$$
Q_{V}^{a}|0\rangle=0, \quad Q_{A}^{a}|0\rangle \neq 0
$$

- Nonvanishing chiral condensate: $\langle\bar{q} q\rangle=\langle 0|\left(\bar{q}_{L} q_{R}+\bar{q}_{R} q_{L}\right)|0\rangle \neq 0$
- $\mathrm{SSB} \Rightarrow$ massless pseudoscalar Goldstone bosons
$\#(\mathrm{GBs})=\operatorname{dim}(G)-\operatorname{dim}(H)=N_{f}^{2}-1$
for $N_{f}=3,8$ GBs: $\pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \bar{K}^{0}, \eta$
for $N_{f}=2,3$ GBs: $\pi^{ \pm}, \pi^{0}$
Pions get a small mass due to explicit symmetry breaking by tiny $m_{u, d}$ (a few MeV)
$M_{\pi} \ll M_{\text {other hadron }}$

also, $m_{s} \gg m_{u, d} \Rightarrow \quad M_{K} \gg M_{\pi}$
- Mechanism for $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R} \rightarrow \mathrm{SU}\left(N_{f}\right)_{V}$ in QCD not well understood

Chiral perturbation theory

Low-energy effective field theory (EFT)

S. Weinberg, "Phenomenological Lagrangians", Physica 96A (1979) 327

been proven, but which I cannot imagine could be wrong. The "theorem" says that although individual quantum field theories have of course a good deal of content, quantum field theory itself has no content beyond analyticity, unitarity, cluster decomposition, and symmetry. This can be put more precisely in the context of perturbation theory: if one writes down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry principles. As I said, this has not

Translation:
The most general effective Lagrangian, up to a given order, consistent with the symmetries of the underlying theory
\Rightarrow results consistent with the underlying theory (with unitarity satisfied only perturbatively)!
The degrees of freedom can be different from those of the underlining theory \Rightarrow we can work with hadrons directly for low-energy QCD, really effective!

Low-energy EFT (2)

However, the "most general" means

- an infinite number of parameters \Rightarrow intractable (?)
- nonrenormalizable (in contrast to, e.g., QED and QCD)

Solution: systematic expansion with a power counting

- only a finite number of parameters at a given order, can be determined from experiments
lattice calculations for QCD
- renormalize order by order
- existence of a small (dimensionless) quantity, e.g., separation of energy scales, $E \ll \Lambda \Rightarrow$ expansion in powers of (E / Λ) Neutron decay ($n \rightarrow p e^{-} \bar{v}_{e}$): weak interactions for $\left|q^{2}\right| \ll M_{W}^{2}$ (decoupling EFT)

$$
\begin{aligned}
& \frac{e^{2}}{2 \sin ^{2} \theta_{W}} \frac{1}{M_{W}^{2}-q^{2}} \\
= & \frac{e^{2}}{2 M_{W}^{2} \sin ^{2} \theta_{W}}\left(1+\frac{q^{2}}{M_{W}^{2}}+\ldots\right) \\
= & \frac{4 G_{F}}{\sqrt{2}}+\mathcal{O}\left(\frac{q^{2}}{M_{W}^{2}}\right)
\end{aligned}
$$

- Pro: model-independent, controlled uncertainty
- Con: number of parameters increases fast when going to higher orders Things need to be remembered for an EFT:
- separation of energy scales: systematic expansion with a power counting
- symmetry constraints from the full theory

For low-energy QCD, we consider
(approximate) chiral symmetry of light quarks
\Rightarrow CHiral Perturbation Theory (non-decoupling EFT)
full theory \Rightarrow EFT via spontaneous symmetry breaking (SSB)
generation of new light degrees of freedom
heavy quark symmetry: spin and flavor

CHPT: a low energy EFT for QCD:

- an example for a non-decoupling EFT:
degrees of freedom are different from those of the underlying theory
- a theory for the Goldstone bosons of $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R} \rightarrow \operatorname{SU}\left(N_{f}\right)_{V}$
- most general Lagrangian with the same global symmetries as QCD

How do the Goldstone bosons transform under $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$?

Nonlinear realization of chiral symmetry (1)

Weinberg (1968); Coleman, Wess, Zumino (1969); Callan, Coleman, Wess, Zumino (1969)

To study the transformation properties of the Goldstone bosons (GBs)

- Assume $G \xrightarrow{\text { SSB }} H$, we have GBs

$$
\Phi=\left(\phi_{i}, \ldots, \phi_{n}\right), \quad n=\operatorname{dim}(G)-\operatorname{dim}(H)
$$

- Recall for SSB, $g|0\rangle \neq|0\rangle$ produces massless GBs

$$
g|0\rangle=g h|0\rangle \text { since the vacuum is invariant under } h \in H
$$

GBs are defined up to the equivalence $g \sim g h$, i.e., GBs live in the coset space G/H

- Left coset of H with respect to $g \in G: g H=\{g h \mid h \in H\}$ coset space G / H : set of all left cosets $\{g H \mid g \in G\}$
Two left cosets either completely overlap or completely disjoint

$$
\text { If } \underbrace{g_{1} h_{1}}_{\in g_{1} H}=\underbrace{g_{2} h_{2}}_{\in g_{2} H} \text {, then } \underbrace{g_{1} h_{1} H}_{=g_{1} H}=\underbrace{g_{2} h_{2} H}_{=g_{2} H}
$$

$$
\operatorname{dim}(G / H)=\operatorname{dim}(G)-\operatorname{dim}(H)
$$

- GBs live in the coset space G / H :

Nonlinear realization of chiral symmetry (2)

- Cosets either completely overlap or completely disjoint
\Rightarrow free to choose the set of representative elements / set of coordinates on G / H
E.g., for $h_{1,2} \in H$, we can choose either $g h_{1}$ or $g h_{2}$ to represent the coset $g H$
- Transformation properties of the GBs uniquely determined once the set of rep. elements have been chosen:

Parameterizing GBs by $u \in G / H$
transformation under $g \in G$

$$
g u=u^{\prime} h(g, u)
$$

since any element of the coset $\left\{u^{\prime} h(g, u) \mid h(g, u) \in H\right\}$ can be used
$\Rightarrow \quad$ Nonlinear transformation of GBs

$$
u \stackrel{g \in G}{\rightarrow} u^{\prime}=g u h^{-1}(g, u)
$$

Application to QCD (1)

For QCD, $G=\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R} \xrightarrow{\mathrm{SSB}} H=\mathrm{SU}\left(N_{f}\right)_{V}$

- $g=\left(g_{L}, g_{R}\right) \in \operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$ for $g_{L} \in \operatorname{SU}\left(N_{f}\right)_{L}, g_{R} \in \operatorname{SU}\left(N_{f}\right)_{R}$

$$
g_{1} g_{2}=\left(g_{L_{1}}, g_{R_{1}}\right)\left(g_{L_{2}}, g_{R_{2}}\right)=\left(g_{L_{1}} g_{L_{2}}, g_{R_{1}} g_{R_{2}}\right)
$$

- Choice of a representative element inside each left coset is free

$$
\left(g_{L}, g_{R}\right) H=\left(g_{L} g_{R}^{\dagger}, \mathbb{1}\right) \underbrace{\left(g_{R}, g_{R}\right)}_{\in H=\operatorname{SU}\left(N_{f}\right)_{V}} H=\left(g_{L} g_{R}^{\dagger}, \mathbb{1}\right) H
$$

Goldstone bosons can be parameterized by

$$
U=g_{L} g_{R}^{\dagger}=\exp \left(i \frac{\phi}{F^{\prime}}\right)
$$

here, $\phi=\sum_{a=1}^{8} \lambda_{a} \phi_{a}$ for $\operatorname{SU}(3)$, and $\vec{\tau} \cdot \vec{\pi}$ for $\operatorname{SU}(2)$
λ_{a} : Gell-Mann matrices, $\quad \tau_{i}(i=1,2,3)$: Pauli matrices
$\phi_{a}\left(\pi_{i}\right)$: Goldstone boson fields
F^{\prime} : dimensionful constant (to be determined later)

Application to QCD (2)

- Acting $g=(L, R) \in G$ on the $\operatorname{coset}(U, \mathbb{1}) H$

$$
g(U, \mathbb{1}) H=(L U, R) H=\left(L U R^{\dagger} R, R\right) H=\left(L U R^{\dagger}, \mathbb{1}\right) \underbrace{(R, R)}_{\in \operatorname{SU}\left(N_{f}\right)_{V}} H
$$

\Rightarrow transformation property of U :

$$
U \xrightarrow{g} L U R^{\dagger}
$$

One can also parametrize the GBs such that $U \xrightarrow{g} R U L^{\dagger}$. Any one is okay if used consistently.

- For $g \in H=\operatorname{SU}\left(N_{f}\right)_{V}$, we have $R=L$

$$
U \rightarrow L U L^{\dagger} \quad \Rightarrow \quad \phi \rightarrow L \phi L^{\dagger}
$$

i.e., GB fields transform linearly under $\operatorname{SU}\left(N_{f}\right)_{V}$

CHPT at leading order

Construction of the effective Lagrangian for GBs (1)

Aim: reproduce low-energy structure of QCD

- Effective Lagrangian invariant under $G=\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$ (and C, P)

$$
U \xrightarrow{G} L U R^{\dagger}, \quad U \xrightarrow{C} U^{T}, \quad U \xrightarrow{P} U^{\dagger}
$$

- What does "low-energy" mean here?

Goldstone boson fields (contained in U) as the only degrees of freedom
\Rightarrow energy range restricted to well below 1 GeV
(separation of energy scales, more see later)

- Low energies: expand in powers of momenta (= number of derivatives)
- Lorentz invariance \Rightarrow only even number of derivatives are allowed

$$
\mathcal{L}=\mathcal{L}^{(0)}+\mathcal{L}^{(2)}+\mathcal{L}^{(4)}+\ldots
$$

- $\mathcal{L}^{(0)} ? U$ is unitary, $U U^{\dagger}=\mathbb{1}$, hence

$$
\left\langle\left(U U^{\dagger}\right)^{n}\right\rangle=\text { const. }, \quad\langle\ldots\rangle \equiv \operatorname{Tr}_{\text {flavor }}[\ldots]
$$

\Rightarrow Leading non-trivial term is $\mathcal{L}^{(2)}$

Construction of the effective Lagrangian for GBs (2)

- Leading term of the effective Lagrangian is $\mathcal{L}^{(2)}$ just one single term (nonlinear σ model):

$$
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle \quad \text { with } \quad U=\exp \left(\frac{i \phi}{F^{\prime}}\right)
$$

$$
\phi_{\mathrm{SU}(2)}=\left(\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}
\end{array}\right), \quad \phi_{\mathrm{SU}(3)}=\sqrt{2}\left(\begin{array}{ccc}
\frac{\phi_{3}}{\sqrt{2}}+\frac{\phi_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\phi_{3}}{\sqrt{2}}+\frac{\phi_{8}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2 \phi_{8}}{\sqrt{6}}
\end{array}\right)
$$

i.e. $\phi_{\mathrm{SU}(2)}=\tau^{a} \pi^{a}, \phi_{\mathrm{SU}(3)}=\lambda^{a} \phi^{a}$, with $\tau^{a}(a=1,2,3)$ and $\lambda^{a}(a=1,2, \ldots, 8)$ the Pauli and Gell-Mann matrices, respectively

- $\mathcal{L}^{(2)}$ is invariant under $\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$:

$$
\begin{aligned}
\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle & \rightarrow\left\langle\partial_{\mu} U^{\prime} \partial^{\mu} U^{\prime \dagger}\right\rangle \\
& =\left\langle L \partial_{\mu} U R^{\dagger} R \partial^{\mu} U^{\dagger} L^{\dagger}\right\rangle=\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle
\end{aligned}
$$

Note that $\left\langle U \partial^{\mu} U^{\dagger}\right\rangle=0$, therefore $\left\langle U \partial_{\mu} U^{\dagger}\right\rangle\left\langle U \partial^{\mu} U^{\dagger}\right\rangle$ is not present.

The low-energy constant F

- Expand U in powers of $\phi, \quad U=1+\frac{i \phi}{F^{\prime}}-\frac{\phi^{2}}{2 F^{\prime 2}}+\ldots$
\Rightarrow canonical kinetic terms $\quad \mathcal{L}^{(2)}=\partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-}+\partial_{\mu} K^{+} \partial^{\mu} K^{-}+\ldots$ for

$$
F^{\prime}=F
$$

- Calculate the Noether currents L_{a}^{μ}, R_{a}^{μ} from $\mathcal{L}^{(2)} \Rightarrow$

$$
\begin{aligned}
V_{a}^{\mu} & =R_{a}^{\mu}+L_{a}^{\mu}=i \frac{F^{2}}{4}\left\langle\lambda_{a}\left[\partial^{\mu} U, U^{\dagger}\right]\right\rangle \\
A_{a}^{\mu} & =R_{a}^{\mu}-L_{a}^{\mu}=i \frac{F^{2}}{4}\left\langle\lambda_{a}\left\{\partial^{\mu} U, U^{\dagger}\right\}\right\rangle
\end{aligned}
$$

- Expand the currents in powers of $\phi, \quad A_{a}^{\mu}=-F \partial^{\mu} \phi_{a}+\mathcal{O}\left(\phi^{3}\right)$

$$
\langle 0| A_{a}^{\mu}(x)\left|\phi_{b}(p)\right\rangle=i p^{\mu} F e^{-i p \cdot x} \delta_{a b}
$$

$\Rightarrow F$ is the pion decay constant in the chiral limit

$$
F \approx F_{\pi}
$$

$F_{\pi}=92.2 \mathrm{MeV}$ measured in the leptonic decay of the pion $\pi^{+} \rightarrow \ell^{+} \nu_{\ell}$

So far, only considered chiral limit $m_{u}=m_{d}=m_{s}=0$.
For non-zero quark masses,

- the singlet vector current still conserved (baryon number conservation)

$$
\partial^{\mu} V_{\mu}=0
$$

- vector currents V_{μ}^{a} conserved when $m_{u}=m_{d}=m_{s}=m$ (i.e., $\mathcal{M}=m \mathbb{1}$)

$$
\partial^{\mu} V_{\mu}^{a}=i \bar{q}\left[\mathcal{M}, \frac{\lambda^{a}}{2}\right] q
$$

- A_{μ}^{a} not conserved any more: Partially Conserved Axial Current (PCAC)

$$
\partial^{\mu} A_{\mu}^{a}=i \bar{q}\left\{\mathcal{M}, \frac{\lambda^{a}}{2}\right\} q
$$

Explicit symmetry breaking: quark masses

- In the chiral limit $m_{u}=m_{d}=m_{s}=0$
$\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle$ contains no terms $\propto M^{2} \phi^{2}$
theory for massless Goldstone bosons, but pions have nonvanishing masses
- In nature, u, d, s quark masses are small ($m_{u, d, s} \ll \Lambda_{\mathrm{QCD}}$), but non-zero (1) chiral symmetry explicitly broken

$$
\mathcal{L}_{m}=-\bar{q}_{R} m q_{L}-\bar{q}_{L} m q_{R}
$$

if symmetry breaking is weak \Rightarrow
a perturbative expansion in the quark masses

- Effective Lagrangian is still an appropriate tool to systematically derive all symmetry relations

CHiral Perturbation Theory (CHPT):
double expansion in low momenta and quark masses

Explicit symmetry breaking: the spurion trick (1)

Spurion in 3 steps: very useful trick for explicit symmetry breaking

1. Introduce a spurion field (e.g. quark mass, electric charge, γ_{μ}, \ldots) with a transformation property so that the symmetry breaking term in the full theory is invariant
2. Write down invariant operators in EFT including the spurion field
3. Set the spurion field to the value which it should take

Explicit symmetry breaking: the spurion trick (2)

- Apply the spurion trick to quark masses:

$$
\mathcal{L}_{\mathrm{QCD}}=\mathcal{L}_{\mathrm{QCD}}^{0}-\bar{q}_{L} \mathcal{M} q_{R}-\bar{q}_{R} \mathcal{M}^{\dagger} q_{L}
$$

(18) Treat \mathcal{M} as a complex spurion field

$$
\mathcal{M} \rightarrow \mathcal{M}^{\prime}=L \mathcal{M} R^{\dagger}
$$

Then construct Lagrangian invariant under $\operatorname{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{eff}}\left(U, \partial U, \partial^{2} U, \ldots, \mathcal{M}\right)
$$

128) This procedure guarantees that chiral symmetry is broken in exactly the same way in the effective theory as it is in QCD

$$
\mathcal{L}_{2}=\frac{F^{2}}{4}\left[\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle+2 B\left\langle\mathcal{M} U^{\dagger}+\mathcal{M}^{\dagger} U\right\rangle\right] \quad \text { with } U \rightarrow L U R^{\dagger}
$$

- The spurion trick is very useful to construct EFT operators with a given symmetry transformation property

LO chiral Lagrangian with the mass term (1)

$$
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left[\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle+2 B\left\langle\mathcal{M} U^{\dagger}+\mathcal{M}^{\dagger} U\right\rangle\right]
$$

- At LO [SU(3)]:

$$
\begin{aligned}
M_{\pi^{ \pm}}^{2} & =B\left(m_{u}+m_{d}\right) \\
M_{K^{ \pm}}^{2} & =B\left(m_{u}+m_{s}\right) \\
M_{K^{0}}^{2} & =B\left(m_{d}+m_{s}\right)
\end{aligned}
$$

- Gell-Mann-Oakes-Renner (GMOR) relation:

$$
M_{\mathrm{GB}}^{2} \propto m_{q}
$$

CHPT can be used to extrapolate lattice results from large to the physical values of $m_{u, d}$ (or equivalently pion masses)

GMOR relation on lattice:

- Unified power counting for derivative and quark mass expansions:

$$
m_{q}=\mathcal{O}\left(p^{2}\right)
$$

LO chiral Lagrangian with the mass term (2)

$$
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left[\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle+2 B\left\langle\mathcal{M} U^{\dagger}+\mathcal{M}^{\dagger} U\right\rangle\right]
$$

- Flavor-neutral states ϕ_{3}, ϕ_{8} are mixed:

$$
\frac{B}{2}\binom{\phi_{3}}{\phi_{8}}^{T}\left(\begin{array}{cc}
m_{u}+m_{d} & \frac{1}{\sqrt{3}}\left(m_{u}-m_{d}\right) \\
\frac{1}{\sqrt{3}}\left(m_{u}-m_{d}\right) & \frac{1}{3}\left(m_{u}+m_{d}+4 m_{s}\right)
\end{array}\right)\binom{\phi_{3}}{\phi_{8}}
$$

- Diagonalize with

$$
\binom{\pi^{0}}{\eta}=\left(\begin{array}{cc}
\cos \epsilon_{\pi^{0} \eta} & \sin \epsilon_{\pi^{0} \eta} \\
-\sin \epsilon_{\pi^{0} \eta} & \cos \epsilon_{\pi^{0} \eta}
\end{array}\right)\binom{\phi_{3}}{\phi_{8}}
$$

- Exercise: derive the $\pi^{0} \eta$ mixing angle:

$$
\epsilon_{\pi^{0} \eta}=\frac{1}{2} \arctan \left(\frac{\sqrt{3}\left(m_{d}-m_{u}\right)}{2 m_{s}-m_{u}-m_{d}}\right) \simeq \frac{\sqrt{3}}{2} \frac{m_{d}-m_{u}}{2 m_{s}-m_{u}-m_{d}}
$$

LO chiral Lagrangian with the mass term (3)

- Mass eigenvalues:

$$
\begin{aligned}
M_{\pi^{0}}^{2} & =B\left(m_{u}+m_{d}\right)-\mathcal{O}\left(\left(m_{u}-m_{d}\right)^{2}\right) \\
M_{\eta}^{2} & =\frac{B}{3}\left(m_{u}+m_{d}+4 m_{s}\right)+\mathcal{O}\left(\left(m_{u}-m_{d}\right)^{2}\right)
\end{aligned}
$$

- At LO w/o electromagnetic effects,

$$
M_{\pi^{ \pm}}^{2}=M_{\pi^{0}}^{2}
$$

in the isospin limit $m_{u}=m_{d}$:

$$
M_{K^{ \pm}}^{2}=M_{K^{0}}^{2} \quad \text { (of course!) }
$$

- Gell-Mann-Okubo (GMO) mass formula for pseudoscalars:

$$
4 M_{K}^{2}=3 M_{\eta}^{2}+M_{\pi}^{2}
$$

\Rightarrow a LO relation, fulfilled in nature at 7% accuracy

LO chiral Lagrangian with the mass term (4)

Exercise: One possible solution of the strong CP problem is the Peccei-Quinn (PQ) mechanism which introduces a global $\mathrm{U}(1)$ symmetry, called the PQ symmetry. Axion is the pseudo-Goldstone boson of the spontaneous breaking of this symmetry. Its properties can be studied in CHPT by changing the quark mass matrix \mathcal{M} to $\mathcal{M} e^{i X a / f_{a}}$ with a the axion field, f_{a} the axion decay constant, and X satisfying $\langle X\rangle=1$. Consider the LO mass term of the SU(2) version of CHPT with axion,

$$
\mathcal{L}_{a}^{(2)}=\frac{F^{2}}{2} B\left\langle\mathcal{M} e^{i X a / f_{a}} U^{\dagger}+\text { h.c. }\right\rangle,
$$

where h.c. represents the Hermitian conjugated term.

1) show that there will be no $a-\pi^{0}$ mixing if we choose $X=\mathcal{M}^{-1} /\left\langle\mathcal{M}^{-1}\right\rangle$;
2) show that the axion mass squared is given by

$$
m_{a}^{2}=\frac{F^{2} M_{\pi}^{2}}{f_{a}^{2}} \frac{m_{u} m_{d}}{\left(m_{u}+m_{d}\right)^{2}}
$$

Quark mass ratios

- Unknown parameter B prevents quark mass determination
- Quark mass ratios:

$$
\begin{aligned}
& \frac{m_{u}}{m_{d}}=\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}+M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}} \approx 0.67 \\
& \frac{m_{s}}{m_{d}}=\frac{M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}} \approx 22
\end{aligned}
$$

- Sizable m_{u} / m_{d}, but why no large isospin violation in nature?
($\left.m_{d}-m_{u}\right) / m_{s}$ (see $\pi^{0} \eta$ mixing angle) is small
$\left(m_{d}-m_{u}\right) / \Lambda_{\text {QCD }}$ is small
- Pion mass difference due to $m_{d}-m_{u}$:

$$
M_{\pi^{0}}^{2}=M_{\pi^{+}}^{2}\left\{1-\frac{\left(m_{d}-m_{u}\right)^{2}}{8 \hat{m}\left(m_{s}-\hat{m}\right)}+\ldots\right\}
$$

this leads to

$$
M_{\pi^{+}}-M_{\pi^{0}} \approx 0.2 \mathrm{MeV}
$$

vs. $\quad\left(M_{\pi^{+}}-M_{\pi^{0}}\right)_{\exp } \approx 4.6 \mathrm{MeV}$

Electromagnetic effects

- Two sources of isospin symmetry breaking:
\& $m_{u} \neq m_{d}$
electromagnetic effects, $Q_{u}\left(=\frac{2}{3}\right) \neq Q_{d}\left(=-\frac{1}{3}\right) \quad$ (in units of e)
- Coupling of $\mathcal{L}^{(2)}$ to external vector $\left(v_{\mu}\right)$ / axial vector $\left(a_{\mu}\right)$ currents via covariant derivative straightforward:

$$
\partial_{\mu} U \longrightarrow D_{\mu} U=\partial_{\mu} U-i\left[v_{\mu}, U\right]+i\left\{a_{\mu}, U\right\}
$$

$\left\langle D_{\mu} U D^{\mu} U^{\dagger}\right\rangle$ contains $\frac{\pi^{+}}{\left\{^{s^{2}}{ }^{\gamma} \xi\right.}$, but misses, e.g.,

- Including photons only through the minimal substitution does not generate the most general e.m. effects
\Rightarrow has to include chirally invariant local operators of $\mathcal{O}\left(e^{2}\right)$ for virtual photons

Virtual photons (1)

- Using the spurion trick for quark electric charge matrix $Q=e \operatorname{diag}\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right)$ as for the quark mass term:

$$
\mathcal{L}_{\text {em }}=-\bar{q} Q A q \longrightarrow-\bar{q}_{L} Q_{L} A q_{L}-\bar{q}_{R} Q_{R} A q_{R}
$$

Pretend $Q_{L, R}$ transform as:

$$
Q_{L} \longmapsto L Q_{L} L^{\dagger}, \quad Q_{R} \longmapsto R Q_{R} R^{\dagger}
$$

Construct terms invariant under $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$
Set $Q_{L}=Q_{R}=Q$ in the end

- Power counting: $Q_{L, R}=\mathcal{O}(p)$
- Only one term at $\mathcal{O}\left(e^{2}\right)=\mathcal{O}\left(p^{2}\right)$

$$
\mathcal{L}_{\mathrm{em}}^{(2)}=C\left\langle Q_{L} U Q_{R} U^{\dagger}\right\rangle
$$

Virtual photons (2)

- Contribution to the meson masses:

$$
M_{\pi^{ \pm}}^{2}=B\left(m_{u}+m_{d}\right)+\frac{2 C e^{2}}{F^{2}}, \quad M_{K^{ \pm}}^{2}=B\left(m_{u}+m_{s}\right)+\frac{2 C e^{2}}{F^{2}}
$$

no contributions to neutral meson masses or $\pi^{0} \eta$ mixing

- Dashen's theorem:

$$
\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}}=\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}
$$

in the chiral limit

- Constant C fixed: $\quad C=\frac{F_{\pi}^{2}}{2 e^{2}}\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)$
- Improved quark mass ratio

$$
\frac{m_{u}}{m_{d}}=\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}+2 M_{\pi^{0}}^{2}-M_{\pi^{+}}^{2}}{M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}}=0.56 \quad \text { instead of } 0.67
$$

- The $\pi^{0}-\eta$ mixing angle can be constructed:

$$
\epsilon_{\pi^{0} \eta} \simeq \frac{\sqrt{3}}{2} \frac{m_{d}-m_{u}}{2 m_{s}-m_{u}-m_{d}} \simeq \frac{\sqrt{3}}{2} \frac{M_{K^{0}}^{2}-M_{K^{ \pm}}^{2}-M_{\pi^{0}}^{2}+M_{\pi^{ \pm}}^{2}}{M_{K^{0}}^{2}+M_{K^{ \pm}}^{2}-M_{\pi^{0}}^{2}-M_{\pi^{ \pm}}^{2}} \simeq 0.0099
$$

Representation invariance

- Freedom to choose coordinates on coset space G / H
- Haag's theorem on field redefinition:

If fields ϕ and χ are related nonlinearly by a local function as

$$
\phi=\chi F[\chi] \text { with } F[0]=1,
$$

then the same physical observables (on-shell S-matrices) can be obtained using either field ϕ with Lagrangian $\mathcal{L}[\phi]$ or χ with $\mathcal{L}[\chi F[\chi]]$.

$\pi \pi$ scattering (1)

In the chiral limit, $\quad \mathcal{L}^{(2)}=\frac{F^{2}}{4}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle$
Amplitude for $\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right) \rightarrow \pi^{0}\left(p_{3}\right) \pi^{0}\left(p_{4}\right): \mathcal{A}(s, t, u)$

- Exponential representation:

$$
U=\exp \frac{i \phi}{F}
$$

with $\phi=\vec{\tau} \cdot \vec{\pi}, \pi^{0}=\pi_{3}, \pi^{ \pm}=\frac{1}{\sqrt{2}}\left(\pi_{1} \mp i \pi_{2}\right)$ for $\operatorname{SU}(2)$.

$$
\mathcal{A}(s, t, u)=\frac{s}{F^{2}}
$$

18 parameter-free prediction
in accordance with Goldstone theorem: vanishes at zero-momentum

- Square-root representation:

$$
U=\frac{1}{F}\left(\sqrt{F^{2}-\vec{\pi}^{\prime 2}}+i \vec{\tau} \cdot \vec{\pi}^{\prime}\right)
$$

calculating with $\vec{\pi}^{\prime}$ as the pion fields gives the same scattering amplitude.

$\pi \pi$ scattering (2)

Exercise: Calculate the amplitude and show that the two representations are related by the following field redefinition:

$$
\vec{\pi}^{\prime}=\vec{\pi} \frac{F}{|\vec{\pi}|} \sin \left(\frac{|\vec{\pi}|}{F}\right)=\vec{\pi}+\text { nonlinear terms, } \quad \text { here }|\vec{\pi}| \equiv \sqrt{\vec{\pi}^{2}}
$$

Hint: The following relations of Pauli matrices might be useful:

$$
\begin{aligned}
& {\left[\tau^{a}, \tau^{b}\right]=2 i \epsilon^{a b c} \tau^{c}, \quad\left\{\tau^{a}, \tau^{b}\right\}=2 \delta^{a b} \mathbb{1}} \\
& \vec{\tau} \cdot \vec{A} \vec{\tau} \cdot \vec{B}=\vec{A} \cdot \vec{B} \mathbb{1}+i \vec{\tau} \cdot(\vec{A} \times \vec{B}), \quad \exp (i \vec{\tau} \cdot \vec{\pi})=\cos (|\vec{\pi}|) \mathbb{1}+i \frac{\vec{\tau} \cdot \vec{\pi}}{|\vec{\pi}|} \sin (|\vec{\pi}|) \\
& \operatorname{Tr}\left(\tau^{a}\right)=0, \quad \operatorname{Tr}\left(\tau^{a} \tau^{b}\right)=2 \delta^{a b}, \quad \operatorname{Tr}\left(\tau^{a} \tau^{b} \tau^{c}\right)=2 i \epsilon^{a b c} \\
& \operatorname{Tr}\left(\tau^{a} \tau^{b} \tau^{c} \tau^{d}\right)=2\left(\delta^{a b} \delta^{c d}+\delta^{a d} \delta^{b c}-\delta^{a c} \delta^{b d}\right)
\end{aligned}
$$

- The amplitude with the quark mass term included reads

$$
A(s, t, u)=\frac{s-M_{\pi}^{2}}{F_{\pi}^{2}}
$$

$\pi \pi$ scattering (3)

- Pions: isospin $I=1$. From particle basis to isospin basis $\left(\left|I, I_{3}\right\rangle\right)$, choosing phase convention:

$$
\begin{aligned}
\left|\pi^{+}\right\rangle=-\mid \pi ; I & \left.=1, I_{3}=1\right\rangle,\left|\pi^{0}\right\rangle=|\pi ; 1,0\rangle,\left|\pi^{-}\right\rangle=|\pi ; 1,-1\rangle, \text { then } \\
\left|\pi^{+} \pi^{-}\right\rangle & =-\left(\frac{1}{\sqrt{6}}|\pi \pi ; 2,0\rangle+\frac{1}{\sqrt{2}}|\pi \pi ; 1,0\rangle+\frac{1}{\sqrt{3}}|\pi \pi ; 0,0\rangle\right), \\
\left|\pi^{0} \pi^{0}\right\rangle & =\sqrt{\frac{2}{3}}|\pi \pi ; 2,0\rangle-\frac{1}{\sqrt{3}}|\pi \pi ; 0,0\rangle \\
\left|\pi^{+} \pi^{0}\right\rangle & =-\frac{1}{\sqrt{2}}(|\pi \pi ; 2,1\rangle+|\pi \pi ; 1,1\rangle) \\
\left|\pi^{0} \pi^{+}\right\rangle & =-\frac{1}{\sqrt{2}}(|\pi \pi ; 2,1\rangle-|\pi \pi ; 1,1\rangle)
\end{aligned}
$$

- Crossing symmetry (recall $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}, u=\left(p_{1}-p_{4}\right)^{2}$): Let $T(s, t, u)$ denotes the amplitude for $A\left(p_{1}\right) B\left(p_{2}\right) \rightarrow C\left(p_{3}\right) D\left(p_{4}\right)$, then

$$
\begin{array}{ll}
T(t, s, u): & A\left(p_{1}\right) \bar{C}\left(-p_{3}\right) \rightarrow \bar{B}\left(-p_{2}\right) D\left(p_{4}\right) \\
T(u, t, s): & A\left(p_{1}\right) \bar{D}\left(-p_{4}\right) \rightarrow C\left(p_{3}\right) \bar{B}\left(-p_{2}\right)
\end{array}
$$

CG coefficients

44. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15$ read $-\sqrt{8 / 15}$.

$$
\begin{aligned}
Y_{1}^{0} & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1}^{1} & =-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
Y_{2}^{0} & =\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
Y_{2}^{1} & =-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
Y_{2}^{2} & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi}
\end{aligned}
$$

$$
3 / 2 \times 1
$$

5	$5 / 2$	$3 / 2$
$-1 / 2$	$-1 / 2$	
$2 / 5$	$2 / 5$	
	$2 / 5$	$-3 / 5$

$\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} J M\right\rangle$
$=(-1)^{J-j_{1}-j_{2}}\left\langle j_{2} j_{1} m_{2} m_{1} \mid j_{2} j_{1} J M\right\rangle$
http://pdg.lbl.gov/2018/reviews/rpp2018-rev-clebsch-gordan-coefs.pdf

- Isospin symmetry: isospin is conserved (for strong interaction with $m_{u}=m_{d}$)

$$
\begin{aligned}
& \mathcal{A}(s, t, u)=T_{\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}}(s, t, u)=\frac{1}{3}\left(T^{I=0}(s, t, u)-T^{I=2}(s, t, u)\right), \\
& \mathcal{A}(t, s, u)=T_{\pi^{+} \pi^{0} \rightarrow \pi^{+} \pi^{0}}(s, t, u)=\frac{1}{2}\left(T^{I=1}(s, t, u)+T^{I=2}(s, t, u)\right), \\
& \mathcal{A}(u, t, s)=T_{\pi^{+} \pi^{0} \rightarrow \pi^{0} \pi^{+}}(s, t, u)=\frac{1}{2}\left(T^{I=2}(s, t, u)-T^{I=1}(s, t, u)\right) .
\end{aligned}
$$

- Crossing symmetry + isospin symmetry \Rightarrow isospin amplitudes

$$
\begin{aligned}
& T^{I=0}(s, t, u)=3 \mathcal{A}(s, t, u)+\mathcal{A}(t, s, u)+\mathcal{A}(u, t, s) \\
& T^{I=1}(s, t, u)=\mathcal{A}(t, s, u)-\mathcal{A}(u, t, s) \\
& T^{I=2}(s, t, u)=\mathcal{A}(t, s, u)+\mathcal{A}(u, t, s)
\end{aligned}
$$

- S-wave scattering lengths (unit: $\left.M_{\pi}^{-1}\right): \quad a_{0}^{I}=\frac{1}{32 \pi} T^{I}\left(s=4 M_{\pi}^{2}, t=u=0\right)$

$$
a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}=0.16, \quad a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}=-0.045
$$

- How do the LO predictions compare with data?

Precise measurements from NA48/2 ($K_{e 4}$ decays \& $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}$)

$$
\begin{aligned}
a_{0}^{0} & =0.2210 \pm 0.0047_{\text {stat }} \pm 0.0015_{\text {syst }} \\
a_{0}^{2} & =-0.0429 \pm 0.0044_{\text {stat }} \pm 0.0016_{\text {syst }} \\
a_{0}^{0}-a_{0}^{2} & =0.2639 \pm 0.0020_{\text {stat }} \pm 0.0004_{\text {syst }}
\end{aligned}
$$

from DIRAC (life time of $\pi^{+} \pi^{-}$atom)

$$
\left|a_{0}^{0}-a_{0}^{2}\right|=\left.\left.0.2533_{-0.0078}^{+0.0080}\right|_{\text {stat }-0.0073} ^{+0.0078}\right|_{\text {syst }}
$$

CHPT with matter fields

Including matter fields

- So far, EFT for (pseudo-)Goldstone bosons
- Matter fields (fields which are not Goldstone bosons) can be included as well, e.g.
baryon CHPT:
nucleons $[\mathrm{SU}(2)]$ / baryon ground state octet [SU(3)]
SU(2) kaon CHPT:
kaons treated as matter fields rather than GBs
heavy-hadron CHPT:
heavy-flavor (charm, bottom) mesons and baryons
- Feature:
a new mass scale: mass of the matter field, non-vanishing in the chiral limit

$$
\left.m_{N}\right|_{m_{q}=0}=\mathcal{O}\left(\left.m_{N}\right|_{m_{q}=m_{q}^{\text {phys. }}}\right)
$$

will cause a problem in power counting

- At low-energies, 3 -momenta remain small $\sim M_{\pi}$, derivative expansion is feasible

Transformation of matter fields

- Proceed as before
ne need to know how matter fields transform under $\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$
(1) construct effective Lagrangians according to increasing number of momenta
- Transformation properties of matter fields:
well-defined transformation rule under the unbroken $\mathrm{SU}\left(N_{f}\right)_{V}$
not necessarily form representations of $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$: transformation of matter fields under $\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$ not uniquely defined, related by field redefinition (again: representation invariance)

Two examples:
(1) Baryon CHPT
(2) Heavy meson CHPT (see backup slides)

Baryon CHPT at LO

Baryon CHPT: transformation of baryon fields (1)

Consider the $\operatorname{SU}(3)$ case, the baryon ground state octet:

$$
B=\left(\begin{array}{ccc}
\frac{\Sigma}{}^{0} \\
\sqrt{2}
\end{array} \frac{\Lambda}{\sqrt{6}} \quad \Sigma^{+} \quad p ~\left(\Sigma^{-}\right)\right.
$$

transform under the global unbroken $H=\mathrm{SU}(3)_{V}$ as

$$
B \xrightarrow{V \in H} V B V^{\dagger}
$$

- Representation invariance: free to choose how B transforms under $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ as long as it reduces to the above under $\operatorname{SU}(3)_{V}$
- Example:
describe the baryons by B_{1} or B_{2}, under $g=(L, R) \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$

$$
B_{1} \xrightarrow{g} L B_{1} L^{\dagger}, \quad B_{2} \xrightarrow{g} L B_{2} R^{\dagger}
$$

both transform as an octet under $(V, V) \in \mathrm{SU}(3)_{V}$

Baryon CHPT: transformation of baryon fields (2)

- Example:
describe the baryons by B_{1} or B_{2}, under $g=(L, R) \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$

$$
B_{1} \xrightarrow{g} L B_{1} L^{\dagger}, \quad B_{2} \xrightarrow{g} L B_{2} R^{\dagger}
$$

both transform as an octet under $(V, V) \in \mathrm{SU}(3)_{V}$

- Related to each other through field redefinition:

$$
B_{2}=B_{1} U=B_{1}+\frac{i}{F} B_{1} \phi+\ldots, \quad U=\exp \left(\frac{i}{F} \phi\right) \xrightarrow{g} L U R^{\dagger}
$$

- But $B_{1,2}$ are inconvenient: not parity (P) "invariant"
$L\left(L^{\dagger}\right)$ needs to be replaced by $R\left(R^{\dagger}\right)$ under parity \Rightarrow

$$
B_{1}(t, \vec{x}) \xrightarrow{P} U^{\dagger} \gamma^{0} B_{1}(t,-\vec{x}) U \xrightarrow{g} R U^{\dagger} \gamma^{0} B_{1}(t,-\vec{x}) U R^{\dagger}
$$

Baryon CHPT: transformation of baryon fields (3)

- An elegant/convenient way:
introduce $u=\exp \left(\frac{i \phi}{2 F}\right)$ or $u^{2}=U$
it transforms under $g \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ as (recall $U \xrightarrow{g} L U R^{\dagger}$)

$$
u \xrightarrow{g} L u h^{\dagger}(L, R, \phi)=h(L, R, \phi) u R^{\dagger}
$$

$h(L, R, \phi)$: space-time dependent nonlinear function, called compensator field For for $\operatorname{SU}(3)_{V}$ transformations $(L=R)$, reduces to $h(L, R, \phi)=L=R$

- We can construct $B=u^{\dagger} B_{1} u$, it transforms as

$$
B \xrightarrow{g} h B h^{\dagger}
$$

h is invariant under parity, i.e. $h(t, \vec{x}) \xrightarrow{P} h(t,-\vec{x}) \quad \Rightarrow B \xrightarrow{P} \gamma^{0} B$

- For the $\operatorname{SU}(2)$ case, proton and neutron form an isospin doublet $N=(p, n)^{T}$, construct N such that

$$
N \xrightarrow{g} h N
$$

Building blocks of the meson-baryon Lagrangian

- Useful to introduce combinations of u whose transformations only involve h :

$$
\begin{aligned}
\Gamma^{\mu} & =\frac{1}{2}\left[u^{\dagger}\left(\partial^{\mu}-i l^{\mu}\right) u+u\left(\partial^{\mu}-i r^{\mu}\right) u^{\dagger}\right] \\
u^{\mu} & =i\left[u^{\dagger}\left(\partial^{\mu}-i l^{\mu}\right) u-u\left(\partial^{\mu}-i r^{\mu}\right) u^{\dagger}\right]
\end{aligned}
$$

Γ^{μ} : chiral connection, vector; $\quad u^{\mu}$: chiral vielbein, axial vector

$$
\Gamma^{\mu} \xrightarrow{g} h \Gamma^{\mu} h^{\dagger}+h \partial^{\mu} h^{\dagger}, \quad u^{\mu} \xrightarrow{g} h u^{\mu} h^{\dagger}
$$

- Introduce a covariant derivative:

$$
\mathcal{D}^{\mu} B=\partial^{\mu} B+\left[\Gamma^{\mu}, B\right], \quad \mathcal{D}^{\mu} N=\left(\partial^{\mu}+\Gamma^{\mu}\right) N
$$

which transform as the baryon fields under $\mathrm{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$

$$
\mathcal{D}^{\mu} B \xrightarrow{g} h \mathcal{D}^{\mu} B h^{\dagger}, \quad \mathcal{D}^{\mu} N \xrightarrow{g} h \mathcal{D}^{\mu} N
$$

- Include the quark mass term $\chi=2 B(s+i p)=2 B \mathcal{M}+\ldots$ by introducing

$$
\chi_{+}=u^{\dagger} \chi u^{\dagger}+u \chi^{\dagger} u, \quad \chi_{+} \rightarrow h \chi_{+} h^{\dagger}
$$

All fields transform in terms of h, convenient to construct the effective Lagrangians

$$
\begin{aligned}
\mathcal{L}_{\pi N}^{(1)} & =\bar{N}\left(i \gamma_{\mu} \mathcal{D}^{\mu}-m+\frac{g_{A}}{2} \gamma_{\mu} \gamma_{5} u^{\mu}\right) N \\
\mathcal{L}_{\phi B}^{(1)} & =\left\langle\bar{B}\left(i \gamma_{\mu} \mathcal{D}^{\mu}-m\right) B\right\rangle+\frac{D}{2}\left\langle\bar{B} \gamma_{\mu} \gamma_{5}\left\{u^{\mu}, B\right\}\right\rangle+\frac{F}{2}\left\langle\bar{B} \gamma_{\mu} \gamma_{5}\left[u^{\mu}, B\right]\right\rangle
\end{aligned}
$$

Remark:

- in meson CHPT, Lagrangian has even powers of momenta (Lorentz invariance)
- here, due to Dirac structures, odd powers possible

New parameters:

- m : nucleon (baryon) mass in the chiral limit
- g_{A} : expand $u_{\mu}=l_{\mu}-r_{\mu}+\mathcal{O}(\phi) \Rightarrow$ axial vector coupling known from neutron beta decay, $g_{A}=1.27$
- D / F : two axial vector couplings in $\mathrm{SU}(3)$, can be determined from semileptonic hyperon decays ($D \approx 0.804, F \approx 0.463$), $\mathrm{SU}(2)$ constraint

$$
D+F=g_{A}
$$

- Lagrangians need to respect the global symmetries of QCD, explicit symmetry breaking can be included using the spurion technique
- The LO mesonic chiral Lagrangian invariant under $\mathrm{SU}\left(N_{f}\right)_{L} \times \mathrm{SU}\left(N_{f}\right)_{R}$

$$
\mathcal{L}^{(2)}=\frac{F^{2}}{4}\left[\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle+2 B\left\langle\mathcal{M} U^{\dagger}+\mathcal{M}^{\dagger} U\right\rangle\right] \quad \text { with } U=e^{i \phi / F}
$$

GMOR relation: $M_{\pi}^{2} \propto m_{q}$

- Physical observables do not change under nonlinear field redefinition satisfying:

$$
\phi=\chi F[\chi] \text { with } F[0]=1
$$

- Under $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$, matter fields do not have a unique transformation law, convenient to introduce the compensator field h, and use a field transforming in the same way under $\operatorname{SU}\left(N_{f}\right)_{V}$, e.g.,

$$
\text { if } X \xrightarrow{V \in H} V X V^{\dagger}, \text { then choose } X \xrightarrow{g \in G} h X h^{\dagger}
$$

CHPT at NLO

Unitarity of S-matrix

- Probability conservation \Rightarrow unitarity of the S-matrix

$$
S S^{\dagger}=S^{\dagger} S=\mathbb{1}
$$

T-matrix: $S=\mathbb{1}+i T \Rightarrow \quad T-T^{\dagger}=i T T^{\dagger}$
thus, unitarity dictates a relation for the partial-wave scattering amplitude t_{ℓ} :

$$
\operatorname{Im} t_{\ell}(s)=\sigma(s)\left|t_{\ell}(s)\right|^{2}
$$

here $\sigma(s)$: two-body phase space factor

- From the LO CHPT, the $\pi \pi$ scattering amplitude $A(s, t, u)=\frac{s-M_{\pi}^{2}}{F^{2}}$, no imaginary part! \Rightarrow unitarity is broken

Going to higher orders

- Perturbative unitarity: imaginary part given by loops

$$
\operatorname{Im} t_{\ell}^{(2)}(s)=0, \quad \operatorname{Im} t_{\ell}^{(4)}(s)=\sigma(s)\left|t_{\ell}^{(2)}(s)\right|^{2}, \ldots
$$

- Symmetries do not forbid higher order terms in effective Lagrangians: more derivatives, more insertion of quark masses
- More derivatives \Rightarrow non-renormalizable
..., if we include in the Lagrangian all of the infinite number of interactions allowed by symmetries, then there will be a counterterm available to cancel every ultraviolet divergence. In this sense, ..., non-renormalizable theories are just as renormalizable as renormalizable theories, as long as we include all possible terms in the Lagrangian.

```
S.Weinberg, The Quantum Theory of Fields, Vol. }
```

- Q: How should we deal with the infinite number of terms?

A: Power counting is needed: organize the infinite number of terms according to power of the expansion parameter, finite number of terms up to a given order

Necessity of higher order Lagrangian from renormalization

Consider the example of $\pi \pi$ scattering

- At LO, $\mathcal{O}\left(p^{2}\right)$: two derivatives or one quark mass insertion

$$
\searrow=\mathcal{O}\left(p^{2}\right)
$$

- One-loop with two $\mathcal{O}\left(p^{2}\right)$ vertices:

$$
\begin{aligned}
& =\int d^{4} q \frac{q_{1} q_{2} q_{3} q_{4}}{\left(q^{2}-M_{\pi}^{2}\right)\left[(p-q)^{2}-M_{\pi}^{2}\right]} \\
& =\mathcal{O}\left(p^{4+4-4}\right)=\mathcal{O}\left(p^{4}\right)
\end{aligned}
$$

- The loop is divergent, divergence absorbed by the counterterms in the $\mathcal{O}\left(p^{4}\right)$ Lagrangian

How can we construct the higher order Lagrangian?

Building blocks

- Powerful to include external fields
\Rightarrow incorporate electroweak interactions, quark masses:

$$
\begin{gathered}
\mathcal{L}_{\mathrm{QCD}}=\mathcal{L}_{\mathrm{QCD}}^{0}+\bar{q} \gamma^{\mu}\left(v_{\mu}+\gamma_{5} a_{\mu}\right) q-\bar{q}\left(s+i \gamma_{5} p\right) q \\
\quad=\mathcal{L}_{\mathrm{QCD}}^{0}+\bar{q}_{L} \gamma^{\mu} l_{\mu} q_{L}+\bar{q}_{R} \gamma^{\mu} r_{\mu} q_{R}-\bar{q}_{L}(s+i p) q_{R}-\bar{q}_{R}(s-i p) q_{L} \\
\begin{array}{l}
l_{\mu}=v_{\mu}-a_{\mu}, \quad r_{\mu}=v_{\mu}+a_{\mu} \\
F_{R}^{\mu \nu}=\partial^{\mu} r^{\nu}-\partial^{\nu} r^{\mu}-i\left[r^{\mu}, r^{\nu}\right], \quad F_{L}^{\mu \nu}=\partial^{\mu} l^{\nu}-\partial^{\nu} l^{\mu}-i\left[l^{\mu}, l^{\nu}\right] \\
\chi=2 B(s+i p)=2 B \mathcal{M}+\ldots
\end{array} \quad \text { left-/right-handed sources } \\
\chi \quad \text { scalar/pseudoscalar sources }
\end{gathered}
$$

- Transformation laws for the building blocks:

$$
\begin{aligned}
U \rightarrow L U R^{\dagger}, & \chi \rightarrow L \chi R^{\dagger} \\
F_{L}^{\mu \nu} \rightarrow L F_{L}^{\mu \nu} L^{\dagger}, & F_{R}^{\mu \nu} \rightarrow R F_{R}^{\mu \nu} R^{\dagger}
\end{aligned}
$$

- Another set of building blocks: $u_{\mu}, \chi_{ \pm}$and $f_{ \pm}^{\mu \nu} . \quad f_{ \pm}^{\mu \nu}=u F_{L}^{\mu \nu} u^{\dagger} \pm u^{\dagger} F_{R}^{\mu \nu} u$ They all transform as $O \rightarrow h O h^{\dagger}$

Construction of higher order chiral Lagrangian

- We need a counting scheme (more see later):

U	$\sim \mathcal{O}\left(p^{0}\right)$	
small momentum / derivative	$\sim \mathcal{O}(p)$	
light quark masses χ	$\sim \mathcal{O}\left(p^{2}\right)$	$\Leftarrow M_{\mathrm{GB}}^{2} \sim m_{q}$
external fields l_{μ}, r_{μ}	$\sim \mathcal{O}(p)$	$\Leftarrow D_{\mu} U=\partial_{\mu} U-i l_{\mu} U+i U r_{\mu}$

- At a given order, write down the most general Lagrangian allowed by symmetries (for $\theta=0$):

$$
\text { chiral symmetry, } P, C \text { and } T
$$

most general \Rightarrow be able to absorb all divergences at the same order

SU(3) chiral Lagrangian at NLO

- SU(3) chiral Lagrangian at $\mathcal{O}\left(p^{4}\right)$

$$
\begin{aligned}
\mathcal{L}^{(4)}= & L_{1}\left\langle D_{\mu} U^{\dagger} D^{\mu} U\right\rangle^{2}+L_{2}\left\langle D_{\mu} U^{\dagger} D_{\nu} U\right\rangle\left\langle D^{\mu} U^{\dagger} D^{\nu} U\right\rangle \\
& +L_{3}\left\langle D_{\mu} U^{\dagger} D^{\mu} U D_{\nu} U^{\dagger} D^{\nu} U\right\rangle+L_{4}\left\langle D_{\mu} U^{\dagger} D^{\mu} U\right\rangle\left\langle\chi^{\dagger} U+\chi U^{\dagger}\right\rangle \\
& +L_{5}\left\langle D_{\mu} U^{\dagger} D^{\mu} U\left(\chi^{\dagger} U+\chi U^{\dagger}\right)\right\rangle+L_{6}\left\langle\chi^{\dagger} U+\chi U^{\dagger}\right\rangle^{2} \\
& +L_{7}\left\langle\chi^{\dagger} U-\chi U^{\dagger}\right\rangle^{2}+L_{8}\left\langle\chi^{\dagger} U \chi^{\dagger} U+\chi U^{\dagger} \chi U^{\dagger}\right\rangle \\
& -i L_{9}\left\langle F_{L}^{\mu \nu} D_{\mu} U D_{\nu} U^{\dagger}+F_{R}^{\mu \nu} D_{\mu} U^{\dagger} D_{\nu} U\right\rangle+L_{10}\left\langle U^{\dagger} F_{L}^{\mu \nu} U F_{R \mu \nu}\right\rangle
\end{aligned}
$$

+2 contact terms

- $L_{1, \ldots, 10}$: low-energy constants (LECs)
- NLO SU(2) chiral Lagrangian contains 7 terms: $\ell_{1, \ldots, 7}$

Low-energy constants

- One loop diagrams with vertices from $\mathcal{L}^{(2)}$ are of $\mathcal{O}\left(p^{4}\right)$, divergences should be absorbed by counterterms in $\mathcal{L}^{(4)}$, can be derived using background field method with heat kernel technique, for detailed derivations, see the attached file chpt_heat_kernel_renormalization.pdf
- Low-energy constants generally contain two parts:

$$
L_{i}=L_{i}^{r}(\mu)+\Gamma_{i} \times \text { divergence }
$$

renormalized LECs $L_{i}^{r}(\mu)$ are finite, scale-dependent

- Scale dependence of LECs cancel the one from loop integrals
\Rightarrow physical observables are scale-independent!
- L_{i}^{r} 's are independent of light quark masses by construction, parameterize the short-distance physics

Values not fixed by chiral symmetry:
ne8 extracted using experimental data
泡
UR using lattice simulations

Chiral Lagrangian at higher orders

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}^{(2)}+\mathcal{L}^{(4)}+\mathcal{L}^{(6)}+\ldots
$$

- Number of terms allowed by the symmetries increases very fast
- How many LECs are contained in these for $\operatorname{SU}(N), N=(2,3)$?

$\mathcal{L}^{(2)}$	contains	$(2,2)$	constants	(F, B)
$\mathcal{L}^{(4)}$	contains	$(7,10)$	constants	Gasser, Leutwyler (1984, 1985)
$\mathcal{L}^{(6)}$	contains	$(53,90)$	constants	Bijnens, Colangelo, Ecker (1999)

- Why different for $\mathrm{SU}(2) / \mathrm{SU}(3)$?
same most general $\mathrm{SU}(N)$ Lagrangian, but matrix-trace relations [Cayley-Hamilton] render some of the structures redundant.
Example: Cayley-Hamilton relation for 2×2 matrices A, B,

$$
\{A, B\}=A\langle B\rangle+B\langle A\rangle+\langle A B\rangle-\langle A\rangle\langle B\rangle
$$

Weinberg's power counting

- Consider an arbitrary Feynman diagram with L loops, I internal lines, V_{d} vertices of order d :

$$
c^{(d)}<\sim p^{d}
$$

$$
\mathcal{A} \propto \int\left(d^{4} p\right)^{L} \frac{1}{\left(p^{2}\right)^{I}} \prod_{d}\left(p^{d}\right)^{V_{d}}
$$

$$
\int d^{4} p \sim p^{4}
$$

- The chiral dimension of \mathcal{A}

$$
D=4 L-2 I+\sum_{d} d V_{d}
$$

- Use topological identity for L to eliminate $I, L=I-\sum_{d} V_{d}+1$

$$
D=\sum_{d} V_{d}(d-2)+2 L+2
$$

Lowest order is $\mathcal{O}\left(p^{2}\right)$, i.e. $d \geq 2 \Rightarrow$ rhs is a sum of non-negative numbers
For a given order D, there is only a finite number of combinations of L and V_{d}

Each loop is suppressed by two orders in the momentum expansion

Power counting - example: $\pi \pi$ scattering (1)

$$
D=\sum_{d} V_{d}(d-2)+2 L+2
$$

- $D=2$
$L=0$, lowest order tree-level diagram only
- $D=4$
$L=0$, tree-level diagram with one insertion from $\mathcal{L}^{(4)}$

$$
V_{4}=1, V_{d>4}=0
$$

(18) $L=1$, one-loop diagram with only $d=2$ vertices

$$
V_{d>2}=0
$$

Power counting - example: $\pi \pi$ scattering (2)

$$
D=\sum_{d} V_{d}(d-2)+2 L+2
$$

- $D=6$
$L=0$, tree-level diagram with one insertion from $\mathcal{L}^{(6)}$
$L=0$, tree-level diagram with two insertions from $\mathcal{L}^{(4)}$
$L=1$, one-loop diagram with one insertion from $\mathcal{L}^{(4)}$
$L=2$, two-loop diagram with $V_{d}=2$ vertices

Chiral symmetry breaking scale Λ_{χ}

$$
\mathcal{L}_{\text {eff }}=\frac{F^{2}}{4}\left(\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right\rangle+\frac{1}{\Lambda_{\chi}^{2}} \tilde{\mathcal{L}}^{(4)}+\frac{1}{\Lambda_{\chi}^{4}} \tilde{\mathcal{L}}^{(6)}+\ldots\right)
$$

- What is the scale Λ_{χ} ?
hard energy scale where the momentum expansion definitely fails
uncertainty estimate: higher-order corrections are suppressed by $\sim p^{2} / \Lambda_{\chi}^{2}$ \Rightarrow how big?
- Estimate with resonance masses:

The only dynamical degrees of freedom are the GBs, no resonances
\Rightarrow CHPT must fail once the energy reaches the resonance region: a perturbative momentum expansion cannot generate a pole

$$
\Lambda_{\chi} \approx M_{\mathrm{res}}
$$

Lowest narrow resonance $M_{\rho} \approx 770 \mathrm{MeV}$, typically

$$
M_{\mathrm{res}} \sim 1 \mathrm{GeV}
$$

Chiral symmetry breaking scale Λ_{χ} (2)

$$
\mathcal{L}_{\mathrm{eff}}=\frac{F^{2}}{4}\left(\left\langle D_{\mu} U D^{\mu} U^{\dagger}+\chi U^{\dagger}+\chi^{\dagger} U\right\rangle+\frac{1}{\Lambda_{\chi}^{2}} \tilde{\mathcal{L}}^{(4)}+\frac{1}{\Lambda_{\chi}^{4}} \tilde{\mathcal{L}}^{(6)}+\ldots\right)
$$

- Naturalness argument:

Compare

$$
\propto<\left(\frac{p^{2}}{F^{2}}\right)^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{\left(q^{2}\right)^{2}} \stackrel{\text { dim.reg }}{\propto} \frac{1}{(4 \pi)^{2}} \frac{p^{4}}{F^{4}} \log \mu
$$

- Scale-dependent LEC $\tilde{\ell}_{i}(\mu)$ compensates for $\log \mu$ dependence of the loop graph
- If no accidental fine-tuning (naturalness), $\tilde{\ell}_{i}(\mu)$ should be at least of similar size as the shift induced by change in scale $\mu \quad \Rightarrow$

$$
\Lambda_{\chi} \approx 4 \pi F \approx 1.2 \mathrm{GeV}
$$

- Using the naturalness assumption, the size of L_{i}^{r} in $\mathcal{L}^{(4)}: \sim \mathcal{O}\left(\frac{1}{(4 \pi)^{2}}\right)$

Meson masses at NLO (1)

Take the pion mass as an example of NLO calculations.

- Mass: pole in the two point correlation function

$$
\text { At LO, } \quad M_{\pi}^{2}=M^{2} \equiv B\left(m_{u}+m_{d}\right)
$$

- Higher orders: self-energy

$$
\begin{aligned}
i \delta^{a b} \Delta_{\pi}(p) & =\int d^{4} x e^{-i p x}\langle 0| T\left[\pi^{a}(x) \pi^{b}(0)\right]|0\rangle \\
& =\frac{i}{1 \mathbf{P I}-}+-\mathbf{P I}-1 \mathbf{P I}-\cdots \\
& =\frac{i}{p^{2}-M^{2}+i \epsilon}+\frac{i}{p^{2}-M^{2}+i \epsilon}\left[-i \Sigma\left(p^{2}\right)\right] \frac{i}{p^{2}-M^{2}+i \epsilon}+\ldots \\
& =\frac{i Z_{\pi}}{p^{2}-M^{2}-\Sigma\left(p^{2}\right)+i \epsilon}=\frac{i}{p^{2}-M_{\pi}^{2}+i \epsilon}+\text { non-singular terms }
\end{aligned}
$$

M_{π} : physical pion mass, solution of the equation

$$
M_{\pi}^{2}-M^{2}-\Sigma\left(M_{\pi}^{2}\right)=0
$$

Exercise: show that the wave function renormalization constant is

$$
Z_{\pi}=\frac{1}{1-\Sigma^{\prime}\left(M_{\pi}^{2}\right)}, \quad \text { with }\left.\quad \Sigma^{\prime}\left(M_{\pi}^{2}\right) \equiv \frac{d \Sigma\left(p^{2}\right)}{d p^{2}}\right|_{\substack{p^{2}=M_{\pi}^{2}}}
$$

Meson masses at NLO (2)

- Self-energy contains two parts:
π, K, η tadpole loops and counterterms in $\mathcal{L}^{(4)}$

Assuming isospin symmetry $\left(m_{u}=m_{d}=\hat{m}\right)$, the pion mass at NLO:

$$
M_{\pi}^{2}=M^{2}\left[1+\frac{I\left(M^{2}\right)}{2 F^{2}}-\frac{I\left(M_{\eta, 2}^{2}\right)}{2 F^{2}}+\frac{8 M^{2}}{F^{2}}\left(2 L_{8}-L_{5}\right)+\frac{24 M_{\eta, 2}^{2}}{F^{2}}\left(2 L_{6}-L_{4}\right)\right]
$$

here $M^{2}=2 B \hat{m}, \quad M_{\eta, 2}^{2}=\frac{2}{3} B\left(2 \hat{m}+m_{s}\right)$

- Loop is divergent, in dimensional regularization (good for preserving symmetry)

$$
\begin{aligned}
I\left(M^{2}\right) & =i \mu^{4-d} \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{1}{l^{2}-M^{2}+i \epsilon}=\frac{M^{2}}{16 F^{2}}\left(\lambda+\log \frac{M^{2}}{\mu^{2}}\right) \\
\lambda & =\frac{2}{d-4}-\left[\log (4 \pi)+\Gamma^{\prime}(1)+1\right], \quad \text { divergent for } d=4!
\end{aligned}
$$

On the other hand, L_{i} 's are divergent either $\quad L_{i}=L_{i}^{r}+\frac{\Gamma_{i}}{32 \pi^{2}} \lambda$

$$
\Gamma_{4}=\frac{1}{8}, \quad \Gamma_{5}=\frac{3}{8}, \quad \Gamma_{6}=\frac{11}{144}, \quad \Gamma_{8}=\frac{5}{48}
$$

Useful formulae in dim.reg.: the Peskin \& Schroeder QFT book, App. A.4, p. 807

Meson masses at NLO (3)

- Self-energy contains two parts:
π, K, η tadpole loops and counterterms in $\mathcal{L}^{(4)}$

Assuming isospin symmetry ($m_{u}=m_{d}=\hat{m}$), the pion mass at NLO:

$$
M_{\pi}^{2}=M^{2}\left[1+\frac{I\left(M^{2}\right)}{2 F^{2}}-\frac{I\left(M_{n, 2}^{2}\right)}{2 F^{2}}+\frac{8 M^{2}}{F^{2}}\left(2 L_{8}-L_{5}\right)+\frac{24 M_{n, 2}^{2}}{F^{2}}\left(2 L_{6}-L_{4}\right)\right]
$$

here $M^{2}=2 B \hat{m}, \quad M_{\eta, 2}^{2}=\frac{2}{3} B\left(2 \hat{m}+m_{s}\right)$

- Renormalization: divergences from LECs (i.e., counterterms) and loops cancel out (as well as the μ-dependence)
\Rightarrow the pion mass is finite and μ-independent

$$
\begin{aligned}
M_{\pi}^{2}= & M^{2}\left[1+\frac{1}{32 \pi^{2} F^{2}} M^{2} \log \frac{M^{2}}{\mu^{2}}-\frac{1}{96 \pi^{2} F^{2}} M_{\eta, 2}^{2} \log \frac{M_{\eta, 2}^{2}}{\mu^{2}}\right. \\
& \left.+\frac{8 M^{2}}{F^{2}}\left(2 L_{8}^{r}-L_{5}^{r}\right)+\frac{24 M_{\eta, 2}^{2}}{F^{2}}\left(2 L_{6}^{r}-L_{4}^{r}\right)\right]
\end{aligned}
$$

- M_{π}^{2} vanishes in chiral limit, loop correction does not generate a non-zero mass
- Chiral logarithm: non-analytic in the light quark masses

Quark mass ratios revisited (1)

- Calculate pion/kaon masses beyond leading order:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=B\left(m_{u}+m_{d}\right)\left[1+\mathcal{O}\left(\hat{m}, m_{s}\right)\right] \\
& M_{K^{+}}^{2}=B\left(m_{u}+m_{s}\right)\left[1+\mathcal{O}\left(\hat{m}, m_{s}\right)\right]
\end{aligned}
$$

- Form dimensionless ratios:

$$
\begin{aligned}
\frac{M_{K}^{2}}{M_{\pi}^{2}} & =\frac{m_{s}+\hat{m}}{m_{u}+m_{d}}\left[1+\Delta_{M}+\mathcal{O}\left(m_{q}^{2}\right)\right] \\
\frac{\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}\right)_{\text {strong }}}{M_{K}^{2}-M_{\pi}^{2}} & =\frac{m_{d}-m_{u}}{m_{s}-\hat{m}}\left[1+\Delta_{M}+\mathcal{O}\left(m_{q}^{2}\right)\right] \\
\Delta_{M} & =\frac{8\left(M_{K}^{2}-M_{\pi}^{2}\right)}{F_{\pi}^{2}}\left(2 L_{8}^{r}-L_{5}^{r}\right)+\text { chiral logs }
\end{aligned}
$$

- Double ratio Q^{2} particularly stable:

$$
\left.Q^{2}=\frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}=\frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}\right)_{\text {strong }}}\left[1+\mathcal{O}\left(m_{q}^{2}\right)\right)\right]
$$

Quark mass ratios revisited (2)

- Leutwyler's ellipse:

$$
\left(\frac{m_{u}}{m_{d}}\right)^{2}+\frac{1}{Q^{2}}\left(\frac{m_{s}}{m_{d}}\right)^{2}=1
$$

- Recall Dashen's theorem:

$$
\begin{gathered}
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}=\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}}+\mathcal{O}\left(e^{2} m_{q}\right) \\
Q_{\text {Dashen }}=24.2
\end{gathered}
$$

- Value extracted from lattice simulations FLAG, EPJC77, 112 (2017); arXiv:2111.09849 [hep-lat]

$$
\begin{array}{ll}
N_{f}=2: & 24.3 \pm 1.4 \pm 0.6 \\
N_{f}=2+1: & 23.3 \pm 0.5 \\
N_{f}=2+1+1: & 22.5 \pm 0.5
\end{array}
$$

$\pi \pi$ scattering beyond LO

- S-wave scattering lengths:

	a_{0}^{0}	a_{0}^{2}	
LO	0.16	-0.045	Weinberg (1966)
NLO (one-loop)	0.20 ± 0.01	-0.042 ± 0.002	Gasser, Leutwyler (1983)
NNLO (two-loop)	$0.217 \pm \ldots$	$-0.041 \pm \ldots$	Binens et al. (1996)
NNLO + Roy eq.	0.220 ± 0.005	-0.0444 ± 0.0010	Colangelo et al. (2001)

- Compare again with the modern data from NA48/2 ($K_{e 4}$ decays \& $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}$)

$$
\begin{aligned}
& a_{0}^{0}=0.2210 \pm 0.0047_{\text {stat }} \pm 0.0015_{\text {syst }} \\
& a_{0}^{2}=-0.0429 \pm 0.0044_{\text {stat }} \pm 0.0016_{\text {syst }}
\end{aligned}
$$

Exercises

2-5) Derive the $\pi^{0} \eta$ mixing angle:

$$
\epsilon_{\pi^{0} \eta}=\frac{1}{2} \arctan \left(\frac{\sqrt{3}\left(m_{d}-m_{u}\right)}{2 m_{s}-m_{u}-m_{d}}\right) \simeq \frac{\sqrt{3}}{2} \frac{m_{d}-m_{u}}{2 m_{s}-m_{u}-m_{d}}
$$

2-6) One possible solution of the strong CP problem is the Peccei-Quinn (PQ) mechanism which introduces a global $U(1)$ symmetry, called the PQ symmetry. Axion is the pseudoGoldstone boson of the spontaneous breaking of this symmetry. Its properties can be studied in CHPT by changing the quark mass matrix \mathcal{M} to $\mathcal{M} e^{i X a / f_{a}}$ with a the axion field, f_{a} the axion decay constant, and X satisfying $\langle X\rangle=1$. Consider the LO mass term of the $\operatorname{SU}(2)$ version of CHPT with axion,

$$
\mathcal{L}_{a}^{(2)}=\frac{F^{2}}{2} B\left\langle\mathcal{M} e^{i X a / f_{a}} U^{\dagger}+\text { h.c. }\right\rangle,
$$

where h.c. represents the Hermitian conjugated term.

1) show that there will be no $a-\pi^{0}$ mixing if we choose $X=\mathcal{M}^{-1} /\left\langle\mathcal{M}^{-1}\right\rangle$;
2) show that the axion mass squared is given by $m_{a}^{2}=\frac{F^{2} M_{\pi}^{2}}{f_{a}^{2}} \frac{m_{u} m_{d}}{\left(m_{u}+m_{d}\right)^{2}}$.

Exercises

2-7) Show that the leading order chiral amplitude for $\pi^{+}\left(p_{1}\right) \pi^{-}\left(p_{2}\right) \rightarrow \pi^{0}\left(p_{3}\right) \pi^{0}\left(p_{4}\right)$ in the chiral limit is given by

$$
\mathcal{A}(s, t, u)=\frac{s}{F^{2}}
$$

and show that the exponential and square-root representations are related by the following field redefinition:

$$
\vec{\pi}^{\prime}=\vec{\pi} \frac{F}{|\vec{\pi}|} \sin \left(\frac{|\vec{\pi}|}{F}\right)=\vec{\pi}+\text { nonlinear terms }, \quad \text { here }|\vec{\pi}| \equiv \sqrt{\vec{\pi}^{2}}
$$

$2-8)$ The pion mass is given by the pole of the pion propagator,

$$
i \delta^{a b} \Delta_{\pi}(p)=\frac{i}{p^{2}-M^{2}-\Sigma\left(p^{2}\right)+i \epsilon}=\frac{i Z_{\pi}}{p^{2}-M_{\pi}^{2}+i \epsilon}+\text { non-singular terms }
$$

where $\Sigma\left(p^{2}\right)$ is the pion self-energy. Show that the wave function renormalization constant is

$$
Z_{\pi}=\frac{1}{1-\Sigma^{\prime}\left(M_{\pi}^{2}\right)}, \quad \text { with }\left.\quad \Sigma^{\prime}\left(M_{\pi}^{2}\right) \equiv \frac{d \Sigma\left(p^{2}\right)}{d p^{2}}\right|_{p^{2}=M_{\pi}^{2}}
$$

Further Reading: Heavy meson CHPT

Transformations of heavy meson fields (1)

For $\mathrm{SU}(3)$, the charmed meson ground state flavor anti-triplet (a : light flavor index):

$$
P_{a}=\left(D^{0}, D^{+}, D_{s}^{+}\right)_{a}, \quad P_{a}^{*}=\left(D^{* 0}, D^{*+}, D_{s}^{*+}\right)_{a} \quad[(c \bar{u}, c \bar{d}, c \bar{s})]
$$

Let H denote heavy mesons. It transforms under the global unbroken $\mathrm{SU}(3)_{V}$ as

$$
H \xrightarrow{V \in \mathrm{SU}(3) V} H V^{\dagger}
$$

- Representation independence: free to choose how H transforms under $\mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ as long as it reduces to the above under $\operatorname{SU}(3)_{V}$
- Example:
describe the heavy mesons by H_{1} or H_{2}, under
$g=(L, R) \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$

$$
H_{1} \xrightarrow{g} H_{1} L^{\dagger}, \quad H_{2} \xrightarrow{g} H_{2} R^{\dagger}
$$

both transform as an anti-triplet under $(V, V) \in \mathrm{SU}(3)_{V}$

Transformations of heavy meson fields (2)

- Example:
describe the heavy mesons by H_{1} or H_{2}, under
$g=(L, R) \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$

$$
H_{1} \xrightarrow{g} H_{1} L^{\dagger}, \quad H_{2} \xrightarrow{g} H_{2} R^{\dagger}
$$

both transform as an anti-triplet under $(V, V) \in \mathrm{SU}(3)_{V}$

- Related to each other through field redefinition:

$$
H_{2}=H_{1} U=H_{1}+\frac{i}{F} H_{1} \phi+\ldots, \quad U=\exp \left(\frac{i}{F} \phi\right) \xrightarrow{g} L U R^{\dagger}
$$

- But $H_{1,2}$ are inconvenient: complicated parity transformation (P)
$L\left(L^{\dagger}\right)$ needs to be replaced by $R\left(R^{\dagger}\right)$ under parity \Rightarrow

$$
H_{1, a}(t, \vec{x}) \xrightarrow{P} \gamma^{0} H_{1, b}(t,-\vec{x}) \gamma^{0} U_{b a} \xrightarrow{g} \gamma^{0} H_{1, b}(t,-\vec{x}) \gamma^{0} U_{b a} R^{\dagger}
$$

[recall for a spinor: $\psi(t, \vec{x}) \xrightarrow{P} \gamma^{0} \psi(t,-\vec{x})$]

Transformations of heavy meson fields (3)

- An elegant/convenient way:
introduce

$$
u=\exp \left(\frac{i \phi}{2 F}\right) \quad \text { or } \quad u^{2}=U
$$

it transforms under $g \in \mathrm{SU}(3)_{L} \times \mathrm{SU}(3)_{R}$ as (recall $U \xrightarrow{g} L U R^{\dagger}$)

$$
u \xrightarrow{g} L u h^{\dagger}(L, R, \phi)=h(L, R, \phi) u R^{\dagger}
$$

$h(L, R, \phi)$: space-time dependent nonlinear function, called compensator field.
From the above definition, we can express h in terms of L, R, U :

$$
h=\sqrt{L U R^{\dagger}} R \sqrt{U^{\dagger}}=\sqrt{R U^{\dagger} L^{\dagger}} L \sqrt{U}
$$

- For for $\mathrm{SU}(3)_{V}$ transformations $(L=R=V)$, reduces to $h(L, R, \phi)=V$
- We can construct $H=H_{1} u$ or $H=H_{2} u^{\dagger}$, it transforms as

$$
H \xrightarrow{g} H h^{\dagger}
$$

Under parity transformation $h(t, \vec{x}) \xrightarrow{P} h(t,-\vec{x})$, and $H(t, \vec{x}) \xrightarrow{P} \gamma^{0} H(t,-\vec{x}) \gamma^{0}$.

Building blocks of the chiral Lagrangian

- Useful to introduce combinations of u whose transformations only involve h :

$$
\begin{aligned}
\Gamma^{\mu} & =\frac{1}{2}\left[u^{\dagger}\left(\partial^{\mu}-i l^{\mu}\right) u+u\left(\partial^{\mu}-i r^{\mu}\right) u^{\dagger}\right] \\
u^{\mu} & =i\left[u^{\dagger}\left(\partial^{\mu}-i l^{\mu}\right) u-u\left(\partial^{\mu}-i r^{\mu}\right) u^{\dagger}\right]
\end{aligned}
$$

Γ^{μ} : chiral connection, vector; $\quad u^{\mu}$: chiral vielbein, axial vector

$$
\Gamma^{\mu} \xrightarrow{g} h \Gamma^{\mu} h^{\dagger}+h \partial^{\mu} h^{\dagger}, \quad u^{\mu} \xrightarrow{g} h u^{\mu} h^{\dagger}
$$

- Introduce a covariant derivative:

$$
\mathcal{D}^{\mu} H=\partial^{\mu} H-H \Gamma^{\mu}
$$

which transform the same way as H under $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$

$$
\mathcal{D}^{\mu} H \xrightarrow{g} \mathcal{D}^{\mu} H h^{\dagger}
$$

- Include the quark mass term $\chi=2 B(s+i p)=2 B \mathcal{M}+\ldots$ by introducing

$$
\chi_{+}=u^{\dagger} \chi u^{\dagger}+u \chi^{\dagger} u, \quad \chi_{+} \rightarrow h \chi_{+} h^{\dagger}
$$

All fields transform in terms of h, convenient to construct the effective Lagrangians

Simplified two-component notation

The superfield for pseudoscalar and vector heavy mesons: (${ }^{(4)}$ means 4 -component)

$$
H_{a}^{(4)}=\frac{1+\psi}{2}\left[P_{a}^{* \mu} \gamma_{\mu}-P_{a} \gamma_{5}\right]
$$

In the rest frame of heavy meson, $v^{\mu}=(1, \mathbf{0})$. We take the Dirac basis

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right), \quad \gamma^{5}\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) .
$$

Simplifications: $\frac{1+\nLeftarrow}{2}=\frac{1+\gamma^{0}}{2}=\left(\begin{array}{ll}\mathbb{1} & 0 \\ 0 & 0\end{array}\right)$

$$
H_{a}^{(4)}=\left(\begin{array}{cc}
0 & -\left(P_{a}+\boldsymbol{P}_{a}^{*} \cdot \boldsymbol{\sigma}\right) \\
0 & 0
\end{array}\right), \quad \bar{H}_{a}^{(4)}=\left(\begin{array}{cc}
0 & 0 \\
\left(P_{a}^{\dagger}+\boldsymbol{P}_{a}^{* \dagger} \cdot \boldsymbol{\sigma}\right) & 0
\end{array}\right)
$$

Thus, it is convenient to simply use the two-component notation

$$
H_{a}=P_{a}+P_{a}^{*} \cdot \sigma, \quad H_{a}^{(4)} \rightarrow-H_{a}, \quad \bar{H}_{a}^{(4)} \rightarrow H_{a}^{\dagger}
$$

Heavy meson CHPT at LO

The LO Lagrangian $[\mathcal{O}(p)]$:

$$
\mathcal{L}_{\mathrm{HM}}^{(1)}=\underbrace{-i \operatorname{Tr}\left[\bar{H}_{a} v_{\mu}\left(\mathcal{D}^{\mu} H\right)_{a}\right]}_{\text {kinetic term }+D \pi \text { scattering }+\ldots}+\underbrace{\frac{g}{2} \operatorname{Tr}\left[\bar{H}_{a} H_{b} \gamma_{\mu} \gamma_{5}\right] u_{b a}^{\mu}}_{\text {terms for } D^{*} \rightarrow D \pi+\ldots}
$$

invariant under Lorentz transformation, chiral symmetry, parity
狍 Tr: trace in the spinor space, a, b : indices in the light flavor space

- The chirally covariant kinetic term:

$$
\begin{aligned}
&-i \operatorname{Tr}\left[\bar{H}_{a}^{(4)} v_{\mu}\left(\mathcal{D}^{\mu} H\right)_{a}^{(4)}\right]= \\
&=\left.2 i\left(P_{a}^{\dagger} \partial^{0} P_{a}+P_{a}^{* i \dagger} H_{a}^{\dagger}\left(\partial^{0} \partial_{a}^{* i}\right)+H_{a}-H_{b} \Gamma_{b a}^{0}\right)\right] \\
& \underbrace{\frac{-i}{4 F^{2}}\left(P_{a}^{\dagger} P_{b}+\boldsymbol{P}_{a}^{* \dagger} \cdot P_{b}^{*}\right)\left[\phi, \partial^{0} \phi\right]_{b a}}_{\text {scattering between }\left(D, D^{*}, \bar{B}, \bar{B}^{*}\right) \text { and } \operatorname{GBs}(\pi, K, \eta)}+\ldots
\end{aligned}
$$

Universality of the LO, $\mathcal{O}(p)$, scattering amplitudes: completely determined by chiral symmetry (strength in term of F)! the Weinberg-Tomozawa term

Axial coupling

- The axial coupling term $\left(u^{k}=-\frac{1}{F} \partial^{k} \phi+\ldots\right)$:

$$
\begin{aligned}
& \frac{g}{2} \operatorname{Tr}\left[\bar{H}_{a}^{(4)} H_{b}^{(4)} \gamma_{\mu} \gamma_{5}\right] u_{b a}^{\mu}=-\frac{g}{2} \operatorname{Tr}\left[H_{a}^{\dagger} H_{b} \sigma^{i}\right] u_{b a}^{i} \\
= & -\frac{g}{2} \operatorname{Tr}\left[\left(P_{a}^{* i \dagger} \sigma^{i}+P_{a}^{\dagger}\right)\left(P_{b}^{* j} \sigma^{j}+P_{b}^{\dagger}\right) \sigma^{k}\right] u_{b a}^{k} \\
= & \underbrace{\frac{g}{F} P_{a}^{\dagger} P_{b}^{* i} \partial^{i} \phi_{b a}}_{\text {term for } D^{*} \rightarrow D \pi}+\frac{g}{F} P_{a}^{* i \dagger} P_{b} \partial^{i} \phi_{b a}+\underbrace{i \frac{g}{F} \epsilon^{i j k} P_{a}^{* i \dagger} P_{b}^{* j} \partial^{k} \phi_{b a}}_{D^{*} D^{*} \pi \text { coupling }}+\mathcal{O}\left(\frac{\phi^{3}}{F^{3}}\right)
\end{aligned}
$$

- Decay amplitude:

$$
\mathcal{A}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=\frac{i \sqrt{2} g}{F} \boldsymbol{\varepsilon}_{(\lambda)} \cdot \boldsymbol{q}_{\pi} \quad \underbrace{\sqrt{M_{D^{*}} M_{D}}}
$$

and the two-body decay width
accounts for NR normalization

$$
\Gamma\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=\frac{1}{8 \pi} \frac{\left|\boldsymbol{q}_{\pi}\right|}{M_{D^{*}}^{2}} \frac{1}{3} \sum_{\lambda}|\mathcal{A}|^{2}=\frac{g^{2} M_{D}\left|\boldsymbol{q}_{\pi}\right|^{3}}{12 \pi F^{2} M_{D^{*}}}
$$

where we used $\sum_{\lambda} \varepsilon_{(\lambda)}^{i} \varepsilon_{(\lambda)}^{j}=\delta_{i j}$

Determination of g

- Measured D^{*} widths:

$$
\begin{gathered}
\Gamma\left(D^{* 0}\right)<2.1 \mathrm{MeV}, \quad \Gamma\left(D^{* \pm}\right)=(83.4 \pm 1.8) \mathrm{keV} \\
\mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=(67.7 \pm 0.5) \%, \quad \mathcal{B}\left(D^{*+} \rightarrow D^{+} \pi^{0}\right)=(30.7 \pm 0.5) \%
\end{gathered}
$$

- The two-body decay width

$$
\Gamma\left(D^{*+} \rightarrow D^{0} \pi^{+}\right)=\frac{g^{2} M_{D}\left|\boldsymbol{q}_{\pi}\right|^{3}}{12 \pi F^{2} M_{D^{*}}} \Rightarrow|g| \simeq 0.57
$$

For $D^{* 0}$, with measured branching fraction $\mathcal{B}\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)=(64.7 \pm 0.9) \%$, we can predict:

$$
\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right)=\frac{g^{2} M_{D}\left|\boldsymbol{q}_{\pi}\right|^{3}}{24 \pi F^{2} M_{D^{*}}} \Rightarrow \Gamma\left(D^{* 0}\right)=(55.3 \pm 1.4) \mathrm{keV}
$$

- HQFS: g should be approximately the same in bottom sector with
a relative uncertainty of $\sim \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}-\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \sim \mathcal{O}(20 \%)$ Lattice QCD results:

$$
\begin{array}{lr}
g_{b}=0.492 \pm 0.029 & \text { ALPHA Collaboration, Phys. Lett. B } 740(2015) 278 \\
g_{b}=0.56 \pm 0.03 \pm 0.07 & \text { RBC and UKQCD Collaborations, Phys. Rev. D } 93 \text { (2016) } 014510
\end{array}
$$

Mass splittings among heavy mesons (2)

- Light quark mass-dependent terms in two-component notation:

$$
\mathcal{L}_{\chi}=-\lambda_{1} \operatorname{Tr}\left[H_{a}^{\dagger} H_{b}\right] \chi_{+, b a}-\lambda_{1}^{\prime} \operatorname{Tr}\left[H_{a}^{\dagger} H_{a}\right] \chi_{+, b b}
$$

here,

$$
\chi_{+}=u^{\dagger} \chi u^{\dagger}+u \chi^{\dagger} u=4 B \mathcal{M}-\frac{B}{2 F^{2}}\{\phi,\{\phi, \mathcal{M}\}\}+\ldots
$$

SU(3) mass differences:

$$
\begin{aligned}
& M_{D_{0}^{+}}-M_{D^{+}}=4 \lambda_{1} B\left(m_{s}-m_{d}\right)=4 \lambda_{1}\left(M_{K^{ \pm}}^{2}-M_{\pi^{ \pm}}^{2}\right) \\
\Rightarrow \quad & \lambda_{1} \simeq 0.11 \mathrm{GeV}^{-1}
\end{aligned}
$$

Isospin splitting induced by $m_{d}-m_{u}$:

$$
\begin{aligned}
\left(M_{D^{0}}-M_{D^{+}}\right)_{\text {quark mass }} & =4 \lambda_{1} B\left(m_{u}-m_{d}\right) \\
& =4 \lambda_{1}\left(M_{K^{ \pm}}^{2}-M_{K^{0}}^{2}-M_{\pi^{ \pm}}^{2}+M_{\pi^{0}}^{2}\right) \\
& =-2.3 \mathrm{MeV}
\end{aligned}
$$

Exp. value: $M_{D^{0}}-M_{D^{+}}=-(4.77 \pm 0.08) \mathrm{MeV}$

$$
=\left(M_{D^{0}}-M_{D^{+}}\right)_{\text {quark mass }}+\left(M_{D^{0}}-M_{D^{+}}\right)_{\text {e.m. }}
$$

- \mathcal{L}_{χ} also contributes to scattering between a heavy meson and the lightest pseudoscalar mesons (GBs)

Baryon CHPT at NLO

Baryon CHPT beyond LO

- CHPT is useful in the low-energy region
- Remember:
the nucleon mass does not vanish in the chiral limit ($M_{\pi}=0$)

$$
\begin{aligned}
\left.m_{N}\right|_{M_{\pi}=0} & \left.\sim m_{N}\right|_{M_{\pi}=M_{\pi}^{\text {phys. }}} \\
& \sim \Lambda_{\chi}=\mathcal{O}(1 \mathrm{GeV})
\end{aligned}
$$

\Rightarrow a large mass scale \gg low-momenta, M_{π}

- As a result, the power counting of baryon CHPT is different:
$q^{2}-m^{2}=\left(q^{0}+\sqrt{\vec{q}^{2}+m^{2}}\right)\left(q^{0}-\sqrt{\vec{q}^{2}+m^{2}}\right)=\mathcal{O}(p)$
$\mathcal{L}_{\pi N}=\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\ldots \quad$ not only even powers

Weinberg's power counting for baryon CHPT (1)

- Consider an arbitrary L-loop 1-baryon diagram with $V_{d}^{\pi \pi}$ meson-meson vertices of order d, $V_{d^{\prime}}^{\pi N}$ meson-baryon vertices of order d^{\prime}, and $I_{\pi}\left(I_{N}\right)$ internal meson (baryon) lines.

- Chiral dimension D is

$$
D=4 L-2 I_{\pi}-I_{N}+\sum_{d} V_{d}^{\pi \pi} d+\sum_{d^{\prime}} V_{d^{\prime}}^{\pi N} d^{\prime}
$$

Again, topological relation: $L=I_{\pi}+I_{N}-\sum_{d} V_{d}^{\pi \pi}-\sum_{d^{\prime}} V_{d^{\prime}}^{\pi N}+1$
Baryon number conservation $\Rightarrow \sum_{d^{\prime}} V_{d^{\prime}}^{\pi N}=I_{N}+1$

- We get

$$
D=2 L+1+\sum_{d} V_{d}^{\pi \pi}(d-2)+\sum_{d^{\prime}} V_{d^{\prime}}^{\pi N}\left(d^{\prime}-1\right)
$$

Weinberg's power counting for baryon CHPT (2)

$$
D=2 L+1+\sum_{d} V_{d}^{\pi \pi}(d-2)+\sum_{d^{\prime}} V_{d^{\prime}}^{\pi N}\left(d^{\prime}-1\right)
$$

Note again: $d \geq 2, d^{\prime} \geq 1 \Rightarrow D \geq 1$

- Therefore,
$\mathcal{O}\left(p^{1}\right), \mathcal{O}\left(p^{2}\right)$: tree-level only
$\mathcal{O}\left(p^{3}\right), \mathcal{O}\left(p^{4}\right)$: tree-level + one-loop
$\mathcal{O}\left(p^{5}\right), \mathcal{O}\left(p^{6}\right)$: tree-level + one-loop + two-loop
- But, the problem is it does not naively work:
e.g., $\mathcal{O}\left(p^{2}\right)$ receives contribution from any loop diagram if we use dimensional regularization with the $\overline{\mathrm{MS}}$ scheme (subtracting $\left.\lambda=\frac{2}{d-4}-\left[\log (4 \pi)+\Gamma^{\prime}(1)+1\right]\right)$!

Problem of power counting in baryon CHPT (1)

- In Goldstone boson sector, all masses are small quantities: $M \sim p \ll \Lambda_{\chi}$
- With baryons, loop integration picks up momenta of order $m_{N} \sim \Lambda_{\chi}$
- Schematically,

ne "One no longer has a one-to-one mapping between the loop and smallmomentum expansion"
Higher-order loops renormalize lower-order couplings

Problem of power counting in baryon CHPT (2)

- To see the problem, consider the nucleon self-energy

$$
\begin{aligned}
\Sigma_{N} & \sim M^{2} I_{\pi N}\left(p_{N}^{2}\right)+\ldots \\
I_{\pi N}\left(p_{N}^{2}\right) & =\mu^{4-d} i \int \frac{d^{d} l}{(2 \pi)^{d}} \frac{1}{\left[\left(p_{N}-l\right)^{2}-m^{2}+i \epsilon\right]\left(l^{2}-M^{2}+i \epsilon\right)} \\
& =\frac{1}{16 \pi^{2}}[\lambda \underbrace{-1}_{=\mathcal{O}(1)}+\mathcal{O}(M)] \\
\Rightarrow \text { nucleon mass to } \mathcal{O}\left(p^{3}\right): m_{N} & =m \underbrace{-4 c_{1} M^{2}}_{\text {from } \mathcal{L}_{\pi N}^{(2)}}+\underbrace{\overbrace{\frac{3 g_{A}^{2} M^{2} m}{32 \pi^{2} F^{2}}}-\frac{3 g_{A}^{2} M^{3}}{32 \pi F^{2}}}_{\text {from one-loop }}
\end{aligned}
$$

- Solutions:

Heavy baryon CHPT Jenkins, Manohar (1991); Bernard, Kaiser, Kambor, Meißner (1992)
ne8 Infrared regularization
明 Extended on-mass-shell scheme

Heavy baryon CHPT (1)

- $m_{N} \gg M_{\pi} \Rightarrow$ in low-momentum region, treat nucleons as heavy
- Analogous to heavy quark effective theory, decompose baryon momentum according to (nearly on-shell)

$$
p_{\mu}=\underbrace{m_{N} v_{\mu}}_{\text {large }}+\underbrace{k_{\mu}}_{\text {residual }}, \quad v^{2}=1, \quad v \cdot k \ll m_{N}
$$

- Decompose the nucleon field into large $\left(N_{v}\right)$ and small $\left(n_{v}\right)$ components

$$
\begin{gathered}
N(x)=e^{-i m v \cdot x}\left[N_{v}(x)+n_{v}(x)\right] \\
\text { with } N_{v}=e^{i m v \cdot x} \frac{1}{2}(1+\not x) N(x), \quad n_{v}=e^{i m v \cdot x} \frac{1}{2}(1-\not x) N(x)
\end{gathered}
$$

- Using the EOM for $n_{v}(x) \propto \frac{1}{m} N_{v}(x)$, we can eliminate n_{v}.
$\mathcal{L}_{\pi N}^{(1)}$ becomes:

$$
\begin{aligned}
\mathcal{L}_{\pi N}^{(1)} & =\bar{N}\left(i \gamma_{\mu} \mathcal{D}^{\mu}-m+\frac{g_{A}}{2} \gamma_{\mu} \gamma_{5} u^{\mu}\right) N \\
& =\bar{N}_{v}\left(i v \cdot \mathcal{D}+g_{A} S \cdot u\right) N_{v}+\mathcal{O}\left(m_{N}^{-1}\right)
\end{aligned}
$$

$S_{\mu}=\frac{i}{2} \gamma_{5} \sigma_{\mu \nu} v^{\nu}:$ Pauli-Lubanski spin vector

Heavy baryon CHPT (2)

- Nucleon mass gone from $\mathcal{L}_{\pi N}^{(1)}$, nucleon propagator becomes

$$
\frac{i}{v \cdot k+i \epsilon}
$$

the mass scale m was eliminated!

- $1 / m_{N}$ corrections can be constructed systematically on Lagrangian level

Thus, heavy baryon CHPT is a two-fold expansion in $\left(\frac{p}{\Lambda_{\chi}}\right)^{n},\left(\frac{p}{m_{N}}\right)^{n}$ (but treated as one)

- Power counting works as in the meson sector: each loop only contributes at one momentum power

Infrared (IR) regularization

$$
\begin{aligned}
a & =k^{2}-M^{2}+i \epsilon, \quad b=(P-k)^{2}-m^{2}+i \epsilon \\
H & =\frac{1}{i} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{a b}=\int_{0}^{1} d z \frac{1}{i} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{[(1-z) a+z b]^{2}}
\end{aligned}
$$

- The integral can be separated into two parts:

$$
H=I+R, \quad I=\int_{0}^{\infty} d z \ldots, \quad R=-\int_{1}^{\infty} d z \ldots
$$

IR singular part I : generated by momenta of order of the pion mass obeys power counting contains the chiral physics like chiral logs etc
IR regular part R : generated by momenta of order of the nucleon mass violates power counting polynomial in pion mass and external momenta \Rightarrow can be absorbed into redefinition of LECs

- Practical recipe: replace any one-loop integral by the IR singular part

Extended on-mass-shell regularization

- Idea: Perform additional subtractions beyond the $\overline{\mathrm{MS}}$ scheme so that renormalized diagrams satisfy the power counting
- Method: Expand loop integrand in small quantities, and subtract those power counting violating terms
- Similar to the IR regularization: power counting violating terms are analytic in M_{π} and external momenta \Rightarrow can be absorbed in a renormalization of the counterterms

Large N_{c}

- $\mathrm{SU}\left(N_{c}\right): N_{c}$ quark colors, $N_{c}^{2}-1$ gluons; N_{c} regarded as a parameter of QCD proposed by 't Hooft NPB72(1974)461
extension to baryons by Witten NPB160(1979)57 [strongly recommended reading]
- Large N_{c} limit keeping $\Lambda_{\text {QCD }}$ independent of N_{c} requires $g_{s}^{2} N_{c} \equiv \lambda=\mathcal{O}\left(N_{c}^{0}\right)$:

$$
\alpha_{s}(\mu)=\frac{4 \pi}{\left(\frac{11 N_{c}}{3}-\frac{2 N_{f}}{3}\right) \log \frac{\mu^{2}}{\Lambda_{\mathrm{QcD}}^{2}}}
$$

- At leading order, we can approximate $N_{c}^{2}-1$ by N_{c}^{2} or $\operatorname{SU}\left(N_{c}\right)$ by $\mathrm{U}\left(N_{c}\right)$; double-line representation of gluons:

Large $N_{c}(2)$

- Planar diagrams: can be mapped on a plane.

Each order contains infinite diagrams, e.g., gluon self-energies

(a) quark loop $\mathcal{O}\left(N_{c}^{-1}\right)$

(b) gluon loop $\mathcal{O}\left(N_{c}^{0}\right)$

(c) $\mathcal{O}\left(N_{c}^{-1}\right)$

(d) $\mathcal{O}\left(N_{c}^{0}\right)$

The next-to-leading diagrams (a) and (b) contain a quark loop, topologically a hole, suppressed by $\mathcal{O}\left(N_{c}^{-1}\right)$

- Nonplanar diagrams: suppressed. E.g., consider the 2-point correlation function: $\left\langle j_{\bar{k} l}(x) j_{\bar{k} l}^{\dagger}(y)\right\rangle$ with $j_{\bar{k} l}=\bar{q}_{a, k} q_{l}^{a}$, where a : color index, k, l : flavor indices

(a) $\mathcal{O}\left(N_{c}\right)$

(b) $\mathcal{O}\left(N_{c}\right)$

(c) $\mathcal{O}\left(N_{c}\right)$

(d) $\mathcal{O}\left(N_{c}^{-1}\right)$
characterized by a topological invariant: number of handles
- General formula of the large N_{c} behavior for a diagram: $N_{c}^{2-B-2 H}$, where B : number of holes; H : number of handles

Mesons in large N_{c}

- The leading diagrams of the 2-point correlation function for a meson contain only 2 quark lines: sum of infinite ordinary mesons, $M_{n}=\mathcal{O}\left(N_{c}^{0}\right)$, $F_{n}=\mathcal{O}\left(\sqrt{N_{c}}\right)$

$$
\int d^{4} x e^{i p \cdot x}\left\langle j(x) j^{\dagger}(0)\right\rangle=\sum_{n} \frac{i F_{n}^{2}}{p^{2}-M_{n}^{2}+i \epsilon}=\mathcal{O}\left(N_{c}\right), \quad F_{n} \equiv\langle 0| j|n\rangle
$$

- Leading three-meson coupling scales as $\mathcal{O}\left(N_{c}^{-1 / 2}\right)$, meson decay width scales as $\mathcal{O}\left(N_{c}^{-1}\right)$: consider a 3-point correlation function

- Leading meson-meson scattering amplitude scales as $\mathcal{O}\left(N_{c}^{-1}\right)$

- OZI (Okubo-Zweig-lizuka) rule: drawing only quark lines, any diagrams that can be separated into color-singlet clusters are suppressed

$$
\langle\bar{u}(y) u(y) \bar{u}(x) u(x)\rangle=-\left\langle S_{u}(y, x) S_{u}(x, y)\right\rangle+\left\langle S_{u}(y, y)\right\rangle\left\langle S_{u}(x, x)\right\rangle
$$

- For three light quark flavors, mesons generally form nonets of $\mathrm{U}(3)$, rather than octets and singlets separately of $\operatorname{SU}(3)$; e.g., $\omega: \bar{u} u+\bar{d} d ; \phi: \bar{s} s$
- Meson decays:
ϕ decays into $K \bar{K}$, amplitude for the decay to $\pi \pi$ is relatively suppressed by N_{c}^{-1} (and by isospin breaking);
widths of $\bar{c} c$ below open-charm thresholds are small since decays into light hadrons violate the OZI rule
- Meson-meson scattering:
the scattering of mesons with different quark flavors violates the OZI rule;
e.g., $D_{s}^{+} \pi^{+} \rightarrow D_{s}^{+} \pi^{+}$

