From Conformal Collider to the LHC and beyond Hua Xing Zhu **Peking University**

高能理论论坛第51期 中科院高能所 2023年9月4日

The landscape of Quantum Field Theory

credit: IPMU

The landscape of QCD

Philosophy: As we approach non-perturbative dynamics, it is useful to formulate the problems of QCD in a way that quarks

Aschenauer et al., arXiv:1708.01527

Regge trajectory: hadrons and partons

The dimension of DGLAP operators govern evolution PDFs and FFs.

Understanding the both the DGLAP and BFKL branch is a central task of perturbative QCD, and might shed light on non-perturbative dynamics of QCD.

Reformulating QCD measurements using energy correlators

Energy Correlations in Electron-Positron Annihilation: Testing Quantum Chromodynamics

C. Louis Basham, Lowell S. Brown, Stephen D. Ellis, and Sherwin T. Love Department of Physics, University of Washington, Seattle, Washington 98195 (Received 21 August 1978)

An experimental measure is presented for a precise test of quantum chromodynamics. This measure involves the asymmetry in the energy-weighted opening angles of the jets of hadrons produced in the process $e^+e^- \rightarrow$ hadrons at energy W. It is special for several reasons: It is reliably calculable in asymptotically free perturbation theory; it has rapidly vanishing (order $1/W^2$) corrections due to nonperturbative confinement effects; and it is straightforward to determine experimentally.

L. Dixon, M.X. Luo, V. Shtabovenko, T.Z. Yang, HXZ, 1801.03219

I. Moult, HXZ, 1801.02627

H. Chen, M.X. Luo, I. Moult, T.Z. Yang, X.Y. Zhang, HXZ, 1912.11050

L. Dixon, I. Moult, HXZ, 1905.01310

M.X. Luo, V. Shtabovenko, T.Z. Yang, HXZ, 1903.07277

A.J. Gao, H.T. Li, I. Moult, HXZ, 1901.04497

Citations per year

Energy correlators for jets at the LHC

Energy correlators as N-point correlation function on celestial sphere

Scattering in momentum

eigenstate

Why conformal symmetry? 1. Lorentz symmetry as a conformal symmetry on the celestial sphere. 2. Classical (massless) QCD lagrangian is conformal invariant!

Lorentz transformation and conformal transformation on celestial sphere

Lorentz group = SL(2,C)/ Z_2

Boost in the z direction becomes dilation around the north pole

Scaling behavior of small angle correlation determined by conformal symmetry on the celestial sphere

The energy flow operator measures the energy deposition on a detector at direction \vec{n}

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$$
$$\mathcal{E}(\vec{n}) |p\rangle = p^0 \delta^{(2)}(\hat{p} - \hat{n}) |p\rangle$$
$$\mathcal{E}(\vec{n}) = \int_{-\infty}^\infty d(n \cdot x) \lim_{\bar{n} \cdot x \to \infty} (\bar{n} \cdot x)^2 \bar{n}^\mu \bar{n}^\nu T_{\mu\nu}(x)$$

The energy flow operator (ANEC) also found important application in black hole physics and quantum information!

Energy flow operator

General lightray operator

CFT picture receives controllable logarithmic corrections in QCD

<u>;0</u>

Hofman, Maldacena 08; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 19

$$\lim_{x \to \infty} (\bar{n} \cdot x)^{\Delta - J} \bar{n}_{\mu_1} \cdots \bar{n}_{\mu_J} O_{\Delta, J}^{\mu_1 \cdots \mu_J}(x)$$

$$\uparrow$$

local twist operator of dimension Δ and spin J

determined by bulk dimension

At twist 2 the relevant unpolarized operators are

$$\mathcal{O}_{q}^{[J]} = \frac{1}{2^{J}} \bar{\psi} \gamma^{+} (iD^{+})^{J-1} \psi$$
$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+}$$

Dixon, Moult, HXZ, 2019

11

Scaling is one of the most profound phenomena in physics

County Constations

Polchinski: There is a lot of QCD data... can they see this scaling?

Maldacena: People do not do this, I haven't figured out why they don't. I think they just haven't thought about this.

EEC in CMS opendata

Scaling behavior determines by lightray OPE (modulo logarithmic running effect)

Perturbative quark/gluon splitting

QCD cascade: large angle correlation resulted from early time interaction

Komiske, Moult, Thaler, HXZ, 2022

Real measurement from CMS

First ever measurement of the time evolution of quark/gluon to hadrons fragmentation!

Projected N-point energy correlator

Sensitive to α_{s} !

H. Chen, Moult, X.Y. Zhang, HXZ, 2020 W. Chen, J. Gao, Y. Li, Z. Xu, X.Y. Zhang, HXZ, 2023

Precision α_s measurement from CMS

 $\alpha_S(m_Z) = 0.1229^{+0.0014}_{-0.0012}(\text{stat.})^{+0.0030}_{-0.0033}(\text{theo.})^{+0.0023}_{-0.0036}(\text{exp.})$

Energy correlator and gluon transverse spin

Fig. 1-6. The effect of a rotation on S^+ .

How light-ray operator insertion rotate on the celestial sphere

Spin interference from energy correlators

$$Sq_q^{(0)}(\phi) = C_F n_f T_F \left(\frac{39 - 20\cos(2\phi)}{225}\right) + C_F C_A \left(\frac{273 + 10\cos(2\phi)}{225}\right)$$
$$Sq_g^{(0)}(\phi) = C_A n_f T_F \left(\frac{126 - 20\cos(2\phi)}{225}\right) + C_A^2 \left(\frac{882 + 10\cos(2\phi)}{225}\right)$$

Interpretation in terms of gluon spin interference

RG evolution for spin interference

$$\mathcal{E}(\vec{n}_1) \ \mathcal{E}(\vec{n}_2) \sim \sum_i c_i \ \theta^{\tau_i - 4} \mathbb{O}_i(\vec{n}_2)$$

 $\mathcal{O}_q^{[J]} = \frac{1}{2^J} \bar{\psi} \gamma^+ (iD^+)^{J-1} \psi$

$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+}$$

$$\mathcal{O}^{[J]}_{\tilde{g}} = -\frac{1}{2^J} F^{\mu+}_a (iD^+)^{J-2} F^{\nu+}_a \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu} \\ \text{helicity} \pm$$

$$\frac{d}{d\ln\mu^2}\vec{\mathcal{O}}^{[J]} = -\widehat{\gamma}(J)\cdot\vec{\mathcal{O}}^{[J]}$$

First all-order analytic results with spin correlation in the scaling limit

H. Chen, Moult, HXZ, 2021

Explicitly verified by a Monte Carlo simulation incorporating spin interference Open the door for spin probes of new physics at the LHC

Karlberg, Salam, Scyboz, Verheyen, 2022

But Lorentz symmetry has a more profound implication than JUST rotation and scaling

Fig. 1-6. The effect of a rotation on S^+ . Fig. 1-7. The effect of a boost on S^+ .

Fig. 1-8. The effect of a four-screw on S^+ .

Three-point energy correlator in the weak coupling limit

 $u \rightarrow 0$

Scaling limit:

Resemble a conformal 4-pt correlation function

H. Chen, M.X. Luo, Moult, T.Z. Yang, X.Y. Zhang, HXZ, 2019

$$\begin{split} G_{\mathcal{N}=4}(z) &= \frac{1+u+v}{2uv}(1+\zeta_2) - \frac{1+v}{2uv}\log(u) - \frac{1+u}{2uv}\log(v) \\ &- (1+u+v)(\partial_u + \partial_v)\Phi(z) + \frac{(1+u^2+v^2)}{2uv}\Phi(z) + \frac{(z-\bar{z})^2(u+v+u^2+v^2+u^2v-u^2v)}{4u^2v^2} \\ &+ \frac{(u-1)(u+1)}{2uv^2}D_2^+(z) + \frac{(v-1)(v+1)}{2u^2v}D_2^+(1-z) + \frac{(u-v)(u+v)}{2uv}D_2^+\left(\frac{z}{z-1}\right), \end{split}$$

$$u = z\overline{z}$$
$$v = (1 - z)(1 - \overline{z})$$

$$\Phi(z) = \frac{2}{z - \bar{z}} \left(\operatorname{Li}_2(z) - \operatorname{Li}_2(\bar{z}) + \frac{1}{2} \left(\log(1 - z) - \log(1 - \bar{z}) \right) \log(1 - \bar{z}) \right)$$
$$D_2^+(z) = \operatorname{Li}_2(1 - |z|^2) + \frac{1}{2} \log(|1 - z|^2) \log(|z|^2)$$

QCD is more complicated and structurally the same

Power expansion in the scaling limit

Remarkably simple structure that calls for a better organization of the expansion

Two-dimensional conformal block expansion

$$\begin{aligned} G_{\delta,j}(u,v) &\equiv G_{\delta,j}(z,\bar{z}) = \frac{1}{1+\delta_{j,0}} \Big(k_{\frac{\delta-j}{2}}(z) k_{\frac{\delta+j}{2}}(\bar{z}) + k_{\frac{\delta+j}{2}}(z) k_{\frac{\delta-j}{2}}(\bar{z}) \Big) \\ k_h(x) &\equiv x^h \ _2F_1 \ (h+a,h+b,2h,x) \\ \text{Dolan, Osborn} \end{aligned}$$

Celestial expansion using conformal block

Energy correlators for jets at the EIC/EICC

ep and nucleon structure

B0 Sensors (4 layers, ev

Structure function				
measurement: PDFs(x)				

- SIDIS:
 - TMD
 - spin

	Acceptance		
neter (ZDC)	$oldsymbol{ heta}$ < 5.5 mrad (η > 6)		
ations)	0.0* < θ < 5.0 mrad (η > 6)		
ctors (OMD)	$0.0 < \theta < 5.0 \text{ mrad} (\eta > 6)$		
venly spaced)	5.5 < θ < 20.0 mrad (4.6 < η < 5.9)		

• How can we utilize the forward information and what does it probes?

The nucleon EEC

TM

What can we learn from the nucleon EEC?

X.H. Liu, HXZ, 2022

Energy weighted correlation of forward hadron with beam

$$EC(x,\theta) = \int_{-\infty}^{\infty} \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \frac{\gamma^{+}}{2} \langle P|\bar{\psi}(0)\mathcal{E}(\theta)\psi(y^{-})|P\rangle$$

Insertion of energy flow operator between lightcone separated field Naturally generalize to N energy flow operator insertion

Compare with

hear PDF:
$$f_q(x) = \int_{-\infty}^{\infty} \frac{dy^-}{2\pi} e^{ixp^+y^-} \frac{\gamma^+}{2} \langle P | \bar{\psi}(0)\psi(y^-) | P \rangle$$

HD PDF: $f_q(x) = \int_{-\infty}^{\infty} \frac{dy^-}{2\pi} e^{ixp^+y^-} \frac{\gamma^+}{2} \langle P | \bar{\psi}(0)\psi(y_{\perp},y^-) | P \rangle$

Gauge link is suppressed for brevity

Modified DGLAP evolution

Bjorken scaling and scaling violation, not in Q evolution but in angle!

X.H. Liu, HXZ, 2022 H.T. Cao, Liu, HXZ, 2023

Probing gluon saturation

H.Y. Liu, X.H. Liu, J.C. Pan, F. Yuan, HXZ, 2023

Energy correlators for jets at the CEPC/FCC-ee

BTC : Booster to Collider Ring

Sudakov logarithms in EEC

moment of TMD fragmentation function

Double logarithmic series in perturbation theory

$$\mathsf{EEC}(\chi) = \alpha_s L^2 + \alpha_s^2 L^4 + \alpha_s^3 L^6 + \cdots$$
$$L = \ln\left(\frac{1+\alpha_s}{2}\right)$$

Emergent Sudakov peak structure

Similar structure appears in many different contexts: Sudakov form factor, threshold resummation, TMD resummation, ...

Resummation in SCET

$$EEC(\chi) = HJ^2S$$

TMD soft function

Novel method for Sudakov resummation in EEC

H. Chen, X.N. Zhou, HXZ, 2023

EEC can be written as a four point Wightman correlation function

 $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} = z\bar{z} , \quad v = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} = (1-z)(1-\bar{z})$

Double lightcone limit: $u \to 0, v \to 0 (z \to 0, \overline{z} \to 1)$

$$\frac{1}{4} \log u \log v + 0 \cdot \log(uv) + \dots \left[-\left[\frac{1}{4}(u+v)\log u \log v + \frac{1}{2}(u\log u+v\log v) + \cdots \right] \log^2 u \log^2 v + 0 \cdot \log u \log v \log(uv) + \dots \right] + \left[\frac{1}{8}(u+v)\log^2 u \log^2 v + \frac{3}{16}\log u \log v(u\log u+v\log v) + \frac{1}{8}\log u \log v(v\log u+u\log v) + \dots \right] + \dots \right] + \dots ,$$

$$\frac{1}{96}\log^3 u \log^3 v + 0 \cdot \log^2 u \log^2 v \log(uv) + \dots \left[-\left[\frac{1}{48}(u+v)\log^3 u \log^3 v + \frac{1}{8}\log^2 u \log^2 v \log(uv) + \dots \right] \right] + \dots \right]$$

Origin of Sudakov double logarithms

Logarithmic divergence in u->0: anomalous dimension of $\mathcal{O}_{\Delta,l}$ collinear divergence \Leftrightarrow Logarithmic divergence in v->0: sum over infinite number of $\mathcal{O}_{\Delta,l}$ soft divergence \Leftrightarrow

H. Chen, X.N. Zhou, HXZ, 2023

partial wave decomposition of 4-pt function

$$\sum_{\tau,l} a_{\tau,l} G_{\Delta,l}(x_1, x_2, x_3, x_4)$$
4-pt conformal block
$$G_{\Delta,\ell}(u, v) = \frac{z\bar{z}}{\bar{z}-z} \left[k_{\Delta-\ell-2}(z)k_{\Delta+\ell}(\bar{z}) - (z \leftrightarrow \bar{z}) \right]$$

$$k_{\beta}(x) = x^{\beta/2} \,_2 F_1(\beta/2, \beta/2, \beta;$$

Analyticity in spin plays crucial role in understanding small angle and large angle expansion!

$$i\nu = \Delta - 2$$

Resummation of EEC in N=4 SYM

$$EEC(y) = -\frac{aL_y e^{-\frac{aL_y^2}{2}}}{4y} - \frac{1}{4} \left[\sqrt{\frac{\pi}{2}} \sqrt{a} \operatorname{erf}\left(\sqrt{\frac{a}{2}}\right) \right]$$
$$y = \frac{1 + \cos \chi}{2} \qquad \operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2}$$

Results disagree with a previous calculation based on factorization ansatz in SCET !

I. Moult, G. Vita, K. Yan, 2020

H. Chen, X.N. Zhou, HXZ, 2023

	Power Corrections		Perturbative Corrections	
	twist	large spin	LL	"NLL"
LP	2	$\mathcal{O}(\ell^0)$	$a^{(0)}_{2,\ell},\gamma^{(1)}_{2,\ell}$	$a_{2,\ell}^{(1)},\gamma_{2,\ell}^{(2)}$
NLP	2	$\mathcal{O}(\ell^{-2})$	$a^{(0)}_{2,\ell},\gamma^{(1)}_{2,\ell}$	$a_{2,\ell}^{(1)},\gamma_{2,\ell}^{(2)}$
	4	$\mathcal{O}(\ell^0)$	$a_{4,\ell}^{(0)},\gamma_{4,\ell}^{(1)}$	$a_{4,\ell}^{(1)},\gamma_{4,\ell}^{(2)}$

Summary

- collider physics
- Remarkably rich QCD dynamics can be probed by EECs
 - Scaling behavior in jet evolution and real time hadronization
 - Spinning gluon effects in jet substructure
 - Celestial block expansion of multiple-point EEC
 - Scaling in DIS through angular correlation
 - Probing Gluon saturation
 - Theory: back-to-back expansion in EEC at e+e- through local OPE

Resurgence of interests in EEC and its generalization inspired by conformal

EIC/EICC

Energy Correlators at the Collider Frontier

Jul 8 – 19, 2024 MITP - Mainz Institute for Theoretical Physics, Johannes Gutenberg University Mainz Europe/Berlin timezone

Some keys areas of focus include:

- Identifying new/unique phenomenological applications
- Developing techniques for computations of energy correlators in QCD ۲
- Extending the links between EECs in conformal theories and EECs in QCD. ۲
- Finding synergy between jet physics and heavy-ion physics within the EEC framework.
- Carlo generators.

Thank you very much for your attention!

Enter your search term

https://indico.mitp.uni-mainz.de/event/358/

Q