Geometry of The Silicon Tracker FU Chengdong, Л Quan and LI Gang

CEPC Physics and Detector Plenary Meeting Sep 6, 2023

Contents

Introduction
Silicon tracker options
Full simulation software
Track preformance
Discussion & conclusion

Introduction

Physics process	Measurands		Requirement on tracker	
$ZH, Z \rightarrow e^+e^-(\mu^+\mu^-), H \rightarrow \mu^+\mu^-$	$m_{H^{*}} \sigma(ZH), BR(H \rightarrow \mu^{+}\mu^{-})$		$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(GeV) \sin^{3/2}\theta}$	
Fast estimation and some preliminary full		-	11120	
simulation on the silicon tracker at barrel has		_900	8960	
been performed, but the endcap part of the			Barrel iron voke	
silicon tracker has not been stud	ied clearly.			
As the mechanics design progress the endcap silicon tracker should	ses and TDR, d be in good		Barrel HCAL Superconducting solenoid	1080
status				

8520

- Different with barrel, the endcap has more possible change
- First step, to estimate the performance of the first version in the mechanics design and understand the dominant influence on the endcap tracker
 - Benefit from complete silicon tracking

Tracker Options

- Silicon tracker
 - Vertex detector
 - Silicon internal tracker (SIT)
 - Silicon outer tracker (SOT/SET)
 - Endcap tracker (EIT/EOT)

Drift chamber

(last FTD layer covers $\cos\theta=0.99$)

Vertex Detector

Options

•CDR, CDR-like, MOST2

CDR-like vertex

• all six sensor layers covering to $|\cos\theta|=0.99$

- •More simple endcap tracker
 - ✓ Easy to keep same layer number at different θ

SIT&SOT

4+1

• Consider secondary particle produced after VXD

Sensor length: 92mm

Sensor number per ladder

• LongSIT: 10, 26, 42, 58, 64

• ShortSIT: 10, 16, 22, 28, 64

Ladder number per layer

• LongSIT: 11, 23, 35, 47, 123

• ShortSIT: 11, 23, 35, 47, 123

■Ladder thickness→0.65% of X0

Silicon: 170μm

• Carbon: 1mm

EIT & EOT

4+1

- LongSIT: short last one
- •LongSIT+: long last one
- •ShortSIT: long last one
- Petal number per layer: 16
- ■Narrow pitch for rø in each petal
- Ladder thickness
 - •Silicon: 200μm
 - •CFRP: 1mm

Material Budget

Full Simulation in CEPCSW

CEPCSW is a Gaudi-based framework

• Core software, application, external libraries

EDM4hep for event data model

DD4hep for detector description

• Compact xml files for LongSIT, ShortSIT, LongSIT+ respectively

Generator:

- GtGunTool for single muon particle as resolution estimation
- GtGunTool+ for multi particles per event as efficiency estimation

Digitization

Gaussian smearing on SimTrackerHit at measurement dimension (u,v)

- pixel: 2D (u,v)
- strip: 1D (u,0) or (0, v)
- Fixed spatial resolution
 - VXD
 - $\checkmark \sigma_{rphi,z}\!\!=\!\!2.8\mu m,\,6\mu m,\,4\mu m,\,4\mu m,\,4\mu m,\,4\mu m$ \bullet SIT
 - $\checkmark \sigma_{rphi} = 7.2 \mu m, \sigma_z = 86 \mu m$ • SOT/SET
 - $\checkmark \sigma_{\rm rphi} = 7.2 \mu {\rm m}, \sigma_{\rm z} = 86 \mu {\rm m}$
 - Endcap tracker
 - $\checkmark \sigma_{rphi} = 7.2 \mu m, \sigma_z = 86 \mu m$

Parameterized spatial resolution

• Riccardo del Burgo's parametrization model

✓ $\sigma_{u,v} = p_0 + p_1 x + p_2 e^{-p_9 x} \cos(p_3 x + p_4) + p_5 e^{-\frac{(x-p_6)^2}{2p_7^2}} + p_8 \sqrt{x}$ ● parameters are relative to pitch size (for CMS PhaseII) ✓ VXD: 25µm×25µm

✓ others: 50µm×200µm

Tracking Option

Use KalTest as Kalman filter tool, same as CDR

DC not included in tracking

Association

MCRecoTrackParticleAssociation

- Track
- MCParticle
- weight: number of tracker hit linked between MCParticle and Track (NL), for a particle, found track (minimum requirement: NLmaximum≥4)

cosθ

Resolution of p_T

14

Resolution of d0

Fixed

Parametrization

Resolution of Z_0 , ϕ & tan λ

16

Comparison

Almost same hit number for LongSIT+ and ShortSIT, different from material effect and point positions

Close material for LongSIT and LongSIT+, different from measurement points

Discussion & Conclusion

Three silicon tracker options are implemented into CEPCSW, and full simulation is performed to estimate their performance

The preliminary results show

- With same vertex detector, small effect on d0, z0, ϕ , tan λ from different endcap tracker, only effect on ω (or p_T) is observably changed
- Lower material is helpful to improve resolution
- 4+1 layers better than 4 layers at small angle
 - $\checkmark\,$ Larger radius of last hit

which is dominant? To implement more options as comparison

- $\checkmark\,$ more measurement point
- All options are in same track resolution level as barrel
 - ✓ LongSIT is worse than ShortSIT at high transverse momentum, but close and event better at low transverse momentum
- All options have >99% efficiency for most direction, >85% close to detector edge

Based on presumptive module, in future, the parameters of real modules are needed as input