

Machine-learning-based Particle Identification in using CEPC AHCAL Prototype

Siyuan SONG, Jiyuan CHEN Advisor: Prof. Haijun YANG

2023-09-06

饮水思源·爱国荣校¹

1. Introduction.

- 2. Monte Carlo Samples & Test Beam Samples.
- 3. PID based on BDT.
- 4. PID based on ANN.
- 5. Purity of 2022 AHCAL Test Beam.
- 6. Summary.

Introduction

Exploration for multiple PID methods in CEPC AHCAL prototype test beam high-granularity calorimeters

- Several PFA oriented high-granularity calorimeters have been developed.

Overview of world-wide development of high-granularity calorimeters

data require PID

- Contamination in test beam data collected in 2022 at CERN SPS-H8.
- Main task is purifying Pion beams.

Introduction

• Utilize High-granularity CEPC AHCAL • prototype in this PID research

CEPC AHCAL prototype parameter

- Geometry
 - 40 sampling layers.
 - 72cm \times 72cm in transversal plane.
 - 120cm in longitudinal direction.

- Absorber

- 2 cm thickness/layer steel.

- Sensitive cells

- 40mm $\times 40$ mm $\times 3$ mm scintillator tile coupled with SiPM.
- Electronics readout channels
 - 12960 (18 × 18 × 40).

• Monte Carlo Samples: Employ Geant4 11.1.1 Toolkit with the QGSP_{BERT} physics list.

Energy point	5	GeV	10) GeV	30	GeV	50) GeV	60) GeV	80) GeV	10	0 GeV	12	0 GeV
Lifergy point	#	Source														
Muon	10k	MC														
Electron	10k	MC														
Pion	10k	MC														

• Test Beam Samples: Pre-processed purer 2023 CERN SPS-H2 & PS-T9 test beam data.

Energy point	5	GeV	10) GeV	30	GeV	50) GeV	60) GeV	80) GeV	10) GeV	12	0 GeV
Energy point	#	Source														
Muon	-	-	40k	Data	-	-	-	-	-	-	-	-	40k	Data	-	-
Electron	10k	Data														
Pion	10k	Data														

Each sample set is split to a Train set and a Test set in a ration of 3:2. Each sample set would be utilized to build classifiers.

Monte Carlo Samples & Test Beam Samples

CEPC AHCAL

52

72

Monte Carlo Samples

- PID depends the shower topology.
- Shower type:
 - Muon: Non-showering track.
 - Electron:
 - Electromagnetic shower.
 - Pion: Hadronic shower.
- Shower topology of the same particle type is similar between MC and Data.

20 Zllayerl

10

Pion Simulation @100GeV

Test Beam Samples

CEPC AHCAL CERN SPS Test Beam Pion @100GeV

PID based on BDT

• Correlation Matrix of 12 input variables.

					Μ	1C sa	mple	es				
Shower density	1	-0.88	-0.65	0.0084	0.63	0.61	0.7	0.7	0.35	-0.25	0.98	0.51
Shower start	-0.88	1	0.79	0.0071	-0.69	-0.66	-0.81	-0.69	-0.36	0.32	-0.9	-0.39
Shower layer ratio	-0.65	0.79	1	0.28	-0.16	-0.28	-0.42	-0.14	-0.11	0.56	-0.6	-0.15
Shower length	0.0084	0.0071	0.28	1	0.27	-0.074	0.18	0.35	-0.19	0.67	0.02	0.49
Hits number	0.63	-0.69	-0.16	0.27	1	0.86	0.82	0.92	0.6	0.1	0.73	0.5
Shower radius	0.61	-0.66	-0.28	-0.074	0.86	1	0.71	0.73	0.83	-0.016	0.71	0.49
FD ₁	0.7	-0.81	-0.42	0.18	0.82	0.71	1	0.79	0.43	-0.09	0.76	0.42
FD ₆	0.7	-0.69	-0.14	0.35	0.92	0.73	0.79	1	0.43	0.13	0.77	0.51
Shower end	0.35	-0.36	-0.11	-0.19	0.6	0.83	0.43	0.43	1	0.13	0.46	0.48
Fired layers	-0.25	0.32	0.56	0.67	0.1	-0.016	-0.09	0.13	0.13	1	-0.21	0.46
Shower layers	0.98	-0.9	-0.6	0.02	0.73	0.71	0.76	0.77	0.46	-0.21	1	0.54
Z width	0.51	-0.39	-0.15	0.49	0.5	0.49	0.42	0.51	0.48	0.46	0.54	1
ર્સ	ower dene	nower star	it layer and st	lower end	ts number st	tower radii	15 tO~	FD°	noweren	d laver	overlaye	15 width

							מנם שמ	ашрі	62						1 00
1.00	Shower density	1	-0.89	-0.65	-0.0012	0.62	0.64	0.7	0.68	0.36	-0.26	0.98	0.52		1.00
- 0.75	Shower start	-0.89	1	0.77	0.0073	-0.7	-0.7	-0.81	-0.69	-0.39	0.33	-0.9	-0.42		-0.75
	Shower layer ratio	-0.65	0.77	1	0.29	-0.17	-0.32	-0.42	-0.12	-0.12	0.57	-0.59	-0.16		
-0.50	Shower length	-0.0012	0.0073	0.29	1	0.27	-0.085	0.18	0.35	-0.17	0.67	0.016	0.49		0.50
- 0.25	Hits number	0.62	-0.7	-0.17	0.27	1	0.87	0.82	0.9	0.63	0.076	0.74	0.52		0.25
	Shower radius	0.64	-0.7	-0.32	-0.085	0.87	1	0.72	0.72	0.83	-0.072	0.75	0.51		
-0.00	FD ₁ -	0.7	-0.81	-0.42	0.18	0.82	0.72	1	0.78	0.45	-0.11	0.77	0.44		- 0.00
0.05	FD ₆ -	0.68	-0.69	-0.12	0.35	0.9	0.72	0.78	1	0.45	0.12	0.77	0.52		-0.25
0.25	Shower end	0.36	-0.39	-0.12	-0.17	0.63	0.83	0.45	0.45	1	0.11	0.49	0.5		
- –0.50	Fired layers	-0.26	0.33	0.57	0.67	0.076	-0.072	-0.11	0.12	0.11	1	-0.22	0.43		-0.50
	Shower layers	0.98	-0.9	-0.59	0.016	0.74	0.75	0.77	0.77	0.49	-0.22	1	0.57		0.75
0.75	Z width	0.52	-0.42	-0.16	0.49	0.52	0.51	0.44	0.52	0.5	0.43	0.57	1		-0.75
I	કો	ower dere	nower sta	r. 'aver' ver aver'	ower end	the number st	ower radi	25 tO~	FD. G	noweren	tred layers	owerlaye	15 width		

Data camples

Apply XGBoost

Variable Ranking in Pion identification

- Shower radius,
- Shower layers,
- Hits number are important.
- (Signal: π , Background: $e \& \mu$)
- MC samples to build BDT_{MC-12}
- Data samples to build BDT_{Data-12}

Rank: Variable	Variable weight	Rank: Variable	Variable weigh
1: Shower radius	0.377	1: Shower radius	0.379
2: Shower layers	0.232	2: Shower layers	0.228
3: Hits number	0.088	3: Hits number	0.133
4: Fired layers	0.083	4: Shower density	0.058
5: Shower start	0.080	5: Fired layers	0.058
6: Shower density	0.049	6: Z width	0.042
7: Z width	0.034	7: Shower start	0.039
8: FD ₆	0.017	8: FD ₆	0.019
9: FD ₁	0.015	9: FD ₁	0.016
10: Shower layer ratio	0.014	10: Shower layer ratio	0.010
11: Shower end	0.006	11: Shower length	0.010
12: Shower length	0.006	12: Shower end	0.008
 7: Z width 8: FD₆ 9: FD₁ 10: Shower layer ratio 11: Shower end 12: Shower length 	0.049 0.034 0.017 0.015 0.014 0.006 0.006	 7: Shower start 8: FD₆ 9: FD₁ 10: Shower layer ratio 11: Shower length 12: Shower end 	0.042 0.039 0.019 0.016 0.010 0.010 0.008

MC samples

Data samples

MC training approach

- At 99% pion signal efficiency, Bkg. Rejection is 29.6 ($N_{Bkg.}/N_{Bkg.}^{sel.}$)

Data training approach

- At 99% pion signal efficiency, Bkg. Rejection is 143.0 ($N_{Bkg.}/N_{Bkg.}^{sel.}$)

Dependence of BDT performance on input variables

- Remove Shower End, Shower Layers, Fired Layers, and Z Width to build BDT₈.
- Further remove FD_1 and FD_6 to build BDT_6 .

Feature engineering matters in BDT - Increasing variable number can improve BDT

Cell-based Artificial Neural Networks (ANN) make full use of

high-dimensional input ($18 \times 18 \times 40$).

- Compile layers to extract features.
- Output is the probability of each particle type candidate.

• Architecture: take the advantage of the Residual Block

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

PID based on ANN

- $\bullet ANN_{MC}$ is trained on MC samples.
 - At 99% pion efficiency, background rejection is 103.9, pion purity is 98.0%

- At 99% pion efficiency, background rejection is 187.8, pion purity is 98.9%

Comparison between ANN and BDT

• We observe better performance of ANN in terms of Background rejection and Pion purity.

		Pion efficiency									
	90%		95	5%	99%						
	MC	Data	MC	Data	MC	Data					
BDT bkg. rejection	1701.2	1448.5	617.4	691.6	29.6	143.0					
ANN bkg. rejection	2015.7	3811.2	1040.3	1408.5	103.9	187.8					
Improvement	↑ 18.49%	↑ 163.12%	↑ 68.51%	↑ 103.65%	↑ 251.14%	↑ 31.37%					
BDT pion purity	0.998	0.998	0.996	0.996	0.923	0.983					
ANN pion purity	0.999	0.999	0.998	0.998	0.980	0.989					
Improvement	↑0.05%	↑ 0.13%	$\uparrow\uparrow$ 0.21%	↑ 0.22%	↑ 6.20%	↑ 0.61%					

Pion efficiency $(N_S^{sel.}/N_S)$

• ANN outperforms BDT in our cases.

- Automatic feature extraction: This allows ANN to make full use of all input information, and potentially uncover hidden patterns in the data that may be missed by BDT, which relies on limited reconstructed features.
- Effective in handling large and high-dimensional inputs: ANN is wellequipped to handle high-dimensional data and capture complex patterns within it.
- **Non-linearity:** ANN can model complex non-linear relationships in data more effectively than BDT.

2022 SPS-H8 beam composition

Apply the ANN classifier to SPS-H8 beam collected in 2022.

- 1. BDT and ANN based PID methods are all developed.
- 2. The preliminary purity of CEPC AHCAL test beam data on the type of incident particles is given.
- 3. This research promises the application prospect of cell-based ANN classifier in high-granularity calorimeters.

MC & Data comparison

Shower density

- The average number of the neighbouring hits located in the 3×3 cell around one of the hits including the hit itself.
- Data come from 2023's Data, MC samples come from: *run20230515_AHCAL_Shaping150ns_Window4us*
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- They generally fit.

Shower layer start

- The first layer of 3 consecutive layers with at least 5 hits. If no shower, it would be set as 42.
- Data come from 2023's Data, MC samples come from: *run20230515_AHCAL_Shaping150ns_Window4us*
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- They generally fit.

Hits number

- The same 0.5 Mip hit energy threshold is pre-applied on both.
- They generally fit.

MC & Data comparison

Shower radius

- The average rms of the hits distance to the longitudinal axis of AHCAL (cross the center).
- Data come from 2023's Data, MC samples come from: run20230515_AHCAL_Shaping150ns_Window4us
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- Deviation of peak value is observed.

Ratio of shower layers over total hit layers

- The ratio between the number of layers in which the Root Mean Square (RMS) of the hits' position in the x-y plane exceeds 4 cm in both x and y directions and the total number of layers with at least one fired cell.
- Data come from 2023's Data, MC samples come from: run20230515_AHCAL_Shaping150ns_Window4us
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- They generally fit.

MC & Data comparison

Shower length

- This is the distance between the start of the shower and the layer where the maximum RMS of hit transverse coordinates with respect to the z-axis occurs.
- Data come from 2023's Data, MC samples come from: *run20230515_AHCAL_Shaping150ns_Window4us*
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- They generally fit.

Total energy deposit.

- Data come from 2023's Data, MC samples come from: run20230515_AHCAL_Shaping150ns_Window4us
- The same 0.5 Mip hit energy threshold is pre-applied on both.
- Obvious discrepancy appeared, especially on electron events.

2022 SPS-H8 beam composition

- The Pion samples are classified by using ANN trained on MC data set and are compared with MC.
- Not large disagreement observed.

- The Pion samples are classified by using ANN trained on TB data set and are compared with MC.
- Not large disagreement observed.

Two Data sets are prepared due to discrepancy between MC and Data

Backgrounds :Signal =2:1

Separation power achieved. e.g. Pions get higher probability classified as pions.

Backgrounds :Signal =2:1

ANN Output

- Separation power is confirmed.
 - Pion efficiency and background rejection rate can be both over 98%

Comparison with ANN PID method

/

0.90	0.92	0.94	0.96	0.98	0.99
0.996	0.995	0.994	0.991	0.982	0.964
0.999	0.998	0.998	0.996	0.991	0.978
\uparrow 0.3%	\uparrow 0.3%	\uparrow 0.4%	$\uparrow \mathbf{0.5\%}$	\uparrow 0.9%	$\uparrow 1.5\%$
0.99	0.989	0.986	0.981	0.963	0.929
0.997	0.996	0.995	0.991	0.982	0.956
\uparrow 0.7%	↑ 0.7 %	\uparrow 0.9%	\uparrow 1.0%	$\uparrow \mathbf{2.0\%}$	$\uparrow \mathbf{2.9\%}$
	0.90 0.996 0.999 ↑ 0.3% 0.99 0.997 ↑ 0.7%	0.90 0.92 0.996 0.995 0.999 0.998 ↑ 0.3% ↑ 0.3% 0.99 0.989 0.997 0.996 ↑ 0.7% ↑ 0.7 %	0.90 0.92 0.94 0.996 0.995 0.994 0.999 0.998 0.998 ↑ 0.3% ↑ 0.3% ↑ 0.4% 0.99 0.989 0.986 0.997 0.996 0.995 ↑ 0.7% ↑ 0.7% ↑ 0.9%	0.90 0.92 0.94 0.96 0.996 0.995 0.994 0.991 0.999 0.998 0.998 0.996 ↑ 0.3% ↑ 0.4% ↑ 0.5% 0.99 0.989 0.986 0.981 0.997 0.996 0.995 0.991 ↑ 0.7% ↑ 0.7% ↑ 0.9% ↑ 1.0%	0.90 0.92 0.94 0.96 0.98 0.996 0.995 0.994 0.991 0.982 0.999 0.998 0.998 0.996 0.991 \uparrow 0.3% \uparrow 0.3% \uparrow 0.4% \uparrow 0.5% \uparrow 0.9% 0.99 0.989 0.986 0.981 0.963 0.997 0.996 0.995 0.991 0.982 \uparrow 0.7% \uparrow 0.7% \uparrow 0.9% \uparrow 1.0% \uparrow 2.0%

TABLE V. The background rejection rate and the pion purity of the BDT_{TB} and the ANN_{TB} . The results highlight the improvement of the ANN_{TB} compared to the BDT_{TB} .

Separation power achieved. e.g. Pions get higher probability classified as pions.

Backgrounds :Signal =2:1

- Apply Extreme Gradient Boosting
- Reconstruct 12 input variables
 - Shower density
 - Shower start
 - Shower length
 - Hits number
 - Shower radius
 - Fractal dimension
 - FD_1 , FD_6
 - Fired layers
 - Shower layers
 - Shower layer ratio
 - Z width

MC Sa	mpies	<u>L</u>
Rank: Variable	Variable weight	Rank: Variab
1: Shower radius	0.377	1: Shower rad
2: Shower layers	0.232	2: Shower lay
3: Hits number	0.088	3: Hits number
4: Fired layers	0.083	4: Shower der
5: Shower start	0.080	5: Fired layer
6: Shower density	0.049	6: Z width
7: Z width	0.034	7: Shower sta
8: FD ₆	0.017	8: FD ₆
9: FD ₁	0.015	9: FD ₁
10: Shower layer ratio	0.014	10: Shower la
11: Shower end	0.006	11: Shower le
12: Shower length	0.006	12: Shower en

MC complex

Data samples

Rank: Variable	Variable weight
1: Shower radius	0.379
2: Shower layers	0.228
3: Hits number	0.133
4: Shower density	0.058
5: Fired layers	0.058
6: Z width	0.042
7: Shower start	0.039
8: FD ₆	0.019
9: FD ₁	0.016
10: Shower layer ratio	0.010
11: Shower length	0.010
12: Shower end	0.008

Data pre-selection

• The sensitivity of the Cherenkov detector in the low energy range (<30 GeV) could allow the collection of electron and pion samples.

• Cherenkov cut. 5GeV pion and 5 GeV electron TB data.

For data collected in 2023, SPS and PS

Data pre-selection

- Collect pion samples in 20pion run files.
- Cut approach is guided by MC.

FD cut

MC

For data collected in 2023, SPS and PS

Data pre-selection

- Collect e samples in e run files.
- Cut approach is guided by MC.

FD cut

MC

For data collected in 2023, SPS and PS

Evaluated on TB test set.

- Signals would get higher scores (closer to 1).
 - E.g. a pion would get higher ANN Pion score.
- An additional threshold ANN threshold cut would help to reject backgrounds.

Output of ANN (data training approach).

Evaluated on MC test set.

- Signals would get higher scores (closer to 1).
 - E.g. a pion would get higher ANN Pion score.
- An additional threshold ANN threshold cut would help to reject backgrounds.

Output of ANN (data training approach).

Evaluated on MC test set

Pion signal VS Backgrounds

Tested on Mixed MC Test Set.

- 120k Pi + 120k mu + 120k positron

ANN Score Cut	Pi Purity $(N_S^{sel}/(N_B^{sel}+N_S^{sel}))$	Pi Efficiency (N_S^{sel}/N_S)	Background (N_B/N_B^{sel}) Rejection Rate
0.1	0.98	0.96	117
0.3	0.99	0.95	200
0.7	0.994	0.93	376
0.9	0.996	0.91	618

Evaluated on MC test set

Electron signal VS Backgrounds

Tested on Mixed MC Test Set.

- 120k Pi + 120k mu + 120k positron

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ANN probability cut

585 245

0.0

0.1 0.2

ANN Score Cut	E Purity $(N_S^{sel}/(N_B^{sel}+N_S^{sel}))$	E Efficiency (N_S^{sel}/N_S)	Background (N_B/N_B^{se}) Rejection Rate
0.1	0.95	0.999	40
0.3	0.96	0.999	52
0.7	0.97	0.998	72
0.9	0.98	0.996	97

Evaluated on MC test set

Muon signal VS Backgrounds

Tested on Mixed MC Test Set.

- 120k Pi + 120k mu + 120k positron

ANN probability cut

ANN Score Cut	Mu Purity $(N_S^{sel}/(N_B^{sel}+N_S^{sel}))$	Mu Efficiency (N_S^{sel}/N_S)	Background (N_B/N_B^{sel}) Rejection Rate
0.1	0.97	0.99	59
0.3	0.97	0.99	69
0.7	0.98	0.99	80
0.9	0.98	0.98	86