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All start with D mixing
Dec. 2010, HFCPV, Sanya, charm physics

Aug. 2011, IHEP, FAT approach
Mar. 2012, prediction for direct CPV in charm decays

May 2017, 1st attempt to D mixing in FAT





Notorious puzzle
• Long-standing (2-decade) challenge---how to understand large D 

meson mixing?
• Inclusive approach: all HQE calculations                                                       

predicted x, y < 10E-5, but data x, y > 10E-3
• Exclusive approach: FAT accounted for only 1/3 of y, even after 

including VV. Nonresonant contribution? Work for y only
• Nonperturbative dynamics important, but lattice and sum rules apply 

only to matrix elements of                 operators (bag parameters)
• All approaches led to dead ends
• Came across 0402204 by Falk et al, which used dispersion relation

Bobrowski et al, 2009

Jiang, Yu, Qin, 
Li, Lu, 1705.07335



Dispersion relation---just an identity?
• Example: mixing of D meson with mass squared s

s

imaginary part

real part

large circle
contribution
suppressed branch cut

caused by 
intermediate
real states

x(s)

y(s’)



Key---how to use dispersion relation?
• Falk et al guessed y(E), then predicted x(mD) from dispersive integral

• Inconclusive, though varying m1, m2 explained order of magnitude
• Important observation: hadronic thresholds break SU(3)
• First followed their approach, but used data input for y(s)
• Only 4 neutral mesons mix, 4 points not enough for fixing y(s)
• Got idea in summer 2018, when Hiroyuki and Fanrong joined

free parameters
chiral limit

heavy-quark limit guess



Turn dispersion relation into inverse problem 
• :   known heavy-quark input
• :   unknown to be solved
• Divide both sides by measured total width

“charge distribution” at low s “potential” at high s

?
s
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Ill-posed inverse problem
• Discretize integral equation 

• initial condition  
• Inverse matrix to get              , and then 

inputunknowns
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One step back---parametrization 
• Propose

• Obeys boundary condition y(0)=0,  and distributes around scale m in 
narrow width d 

• Normalization constant N chosen such that                                                
as

• For given m, d, tune parameters to minimize

goodness  of fit

pion mass neglected

~10%, convergent

Li, Umeeda, Xu, Yu
2001.04079



Minima & solution for x(s), y(s)
• Distribution of minima for V-A operator gives large d at charm scale 
• Smooth distribution in s; negligible contribution to D mixing 



Unsatisfactory points
• Cutoff, or UV truncation scale, dependence may not avoidable
• Hard cutoff makes difficult continuity condition of solution
• Parametrization excludes solutions with more complicated form
• More oscillations should appear at one kaon, di-kaon thresholds
• Numerous minima allowed (uniqueness of solution?)

• Fit y(mD) by tuning ms, then predict x(mD), low predictive power 
• Sensitivity to ms (ill-posedness not completely removed?)
• Improvement needed, tried maximal entropy method, still not good

See 傲昇’s talk



Breakthrough 
• Parametrization + fitting applied to g-2, rho resonances (sum rules)…
• 2109.04956 marks breakthrough
• M becomes singular, as dimension large; finite for finite dimension
• Decompose solution by orthogonal polynomials?
• Turn unknown solution into unknown coefficients of polynomials
• Dimension of M greatly reduced; hope finite dimension works
• Three types of polynomials according to support (-1,1), (-infinity, 

infinity), (0,infinity)---choose the last one
• Last one contains Laguerre with weight exp(-y) and Bessel with weight 

exp(-2/y), which suppress low y (energy) region---choose Laguerre 



Strategy 
• Typical integral equation

• Suppose            decreases quickly enough, expansion into powers of 
1/x justified

• Decompose

• Orthogonality 

unknown spectral density  to be solved

Input in powers of 1/x
1st kind of Fredholm integral equation

depend on             at 

Generalized Laguerre polynomials

e.g., true for OPE
in sum rules



Inverse matrix method
• Equating coefficients of

• Solution (easily done by Mathematica)
• True solution approached by increasing N, but           diverges with N
• Neglected polynomials give                correction due to orthogonality
• Test mock data generated from

matrix unknown

input

ill-posed



key formulas
• Decomposition

• Dispersion relation

• Box contribution

• Equality of M(s) at high s
• UV regularization  

physical threshold
SU(3) breaking

quark-level threshold ~ 0

T

arbitrary scale
introduced
---it is good



Parameter y
from left to right

all curves cross at overlap area spreads

with T term without T term

T term stabilizes 
solutions of 
with respect to
variation of

tiny error from our method



Results of x, y

Data (CP conserving)

y x

destructive 
ds channel

constructive
ss channel

include errors from ms = 0.093 GeV, 
10% change induces 0.6% effect

consistency expected to be improved by including higher-order inputs



Surprise:
all curves for different                      
cross at D meson mass

Why?
D meson (charm quark) mass emerges…



Try dispersive analysis of 
another physical observable, 

heavy quark decay widths

bottom quark mass emerges!
try top quark mass

Li, 2302.01761



Framework 
• Contour integration

perturbative 
inputs from
box diagrams

due to analyticity

big circle 
contributions
cancel, because

branch cuts along
both m > 0, m < 0

quark-level thresholds
hadronic thresholds

unknowns to
be solved

3 channels
mQ



Box diagram inputs
• Box diagrams generate (V-A)(V-A), (S-P)(S-P) structures
• Focus on the former

intermediate quark masses

W boson mass



Initial conditions
• Move RHS to LHS,

• Threshold behaviors around

extended to infinity

initial condition

governed by 1st term
in curly brackets



Integrands 
• Motivated by threshold behaviors, select integrands

• Definitions of                     are self-evident

suppress low-m residues like                                      relative to  

odd power of m due to odd function                in m

alleviate divergent 
behaviors in numerators

additional branch cut
Does not contribute



Solutions 
• General form

• Insensitivity to       achieved by

arbitrary scale from scaling integration variable 

fit to initial conditions 
to fix       ,        ,

vanish to get roots of 

minimal to maximize stability window in 



Parameter fixing
• Initial conditions around

• Boundary conditions                    set coefficients 

clear why considering complicated
integrands: to have simple power of 



Roots 
• Solutions of unknowns

bb

sb

db

1st peak of bb, 2nd peak of sb,
3rd peak of db overlap around
mQ ~ 180 GeV

3 derivatives first
vanish simultaneously at 

higher roots, larger 
2nd derivative

uncertainties from
and different ways of fixing 



Conjecture  
• Dispersive analyses of heavy quark decay widths, neutral meson 

mixing, etc. indicated that scalar sector of SM may not be free
• Higgs mass, fermion masses, mixing angles constrained
• Bold conjecture: SM contains only three fundamental (gauge) 

parameters, and other parameters, governing interplay among 
various generations of fermions, are fixed by SM dynamics itself

• To maintain simplicity and beauty, natural extension of SM is to 
introduce sequential fourth generation of fermions, since associated 
parameters in scalar sector are not free

• Stay tuned…



Back-up slides



Merits of SM4 and experimental exclusion
• condensates of 4th generation quarks and leptons as responsible 

mechanism of dynamical electroweak symmetry breaking 
• 1st-order phase transition for electroweak baryogenesis realized 
• provide source of CP violation for baryon asymmetry of the Universe 
• But SM4 ruled out by data of Higgs production via gluon fusion and 

decay into photon pairs
• Will show b’ mass 2.7 TeV and t’ mass 200 TeV, so heavy that bound 

states formed in Yukawa potential
• These bound states could bypass experimental constraints



b’ mass
• Similar box diagrams with ut, ct channels (t does not hadronize)

• Threshold behaviors

• Integrands 

governed by 2nd term in curly brackets 



Parameter fixing and roots
• Initial conditions around

• Same forms of solutions and coefficients
• Fits to initial conditions give 

2nd peak of ct,
3rd peak of ut
overlap at
mQ ~ 2.7 TeV



t’ mass
• Similar box diagrams with db’, sb’, bb’ channels
• Same analysis
• sb’, bb’ curves close in shape



bound states
• As 4th generation quark mass meets criterion                                                

bound states formed
• Binding energy for                                                               at fixed point of 

RG evolution in SM4 estimated to be -4.9 GeV
• With b’ mass 2.7 TeV,          bound states formed definitely
• Should analyze gluon fusion involving internal b’ in effective theory
• Gluon fusion into S via effective operator              , coupling
• Scalar S propagates according to BW factor
• S transforms into H with magnitude
• Total amplitude 

Hung, Xiong 2011



Heavy quarkonia in Yukawa potential
• Yukawa potential

• Only 5 bound states exist

being Bohr radius

pseudoscalar or vector

Thomas collapse? loosely bound

b’ mass higher than fixed point

Napsuciale, 
Rodriguez
2021

Thomas, 1935

P-wave scalars 



Contribution to Higgs production
• Width approximated by (call for relativistic calculation)

• Imagine fictitious Higgs with               , matched to fundamental theory

• Extrapolate to               , relative to top-loop contribution in SM 

>

Georgi et al. 1978; Spira et al. 1995

1st derivative of radial wave function at origin

Lansberg, Pham 2009

down by 



Contribution to Higgs production
• Contribution of

• Relativistic calculation---solving Dirac (not Schrodinger) equation
• Crude approximation, spectrum degenerate in l 
• Ground state mass 3.23 TeV, n=2 mass 4.45 TeV, n=3 mass < 5.4 TeV
• n=3 state indeed loosely bound
• n=2 state contributes at 10E-3 level, assuming width insensitive to 

bound state masses
• Conclusion: new scalar contribution to Higgs production negligible

Ikhdair, 2012



Search modes
• Impossible to detect t’ in near future
• Gluon fusion into         ground state of mass 3.2 TeV not efficient 

owing to small gluon PDFs
• Weak boson fusion                                        more promising
• For single b’ production, consider associated                                         

production                   , power enhanced by                                          
one fewer  virtual weak boson, but down by                                              
gluon PDFs. Similar to vector-like quark search

• Another single b’ production                      down                                             
by diminishing 4X4 CKM matrix element

g

d

u

W

t

t

b’



Conclusion 
• Dispersion relations physical observables must obey impose 

stringent constraints on dynamics at various scales
• Analyticity dictates scalar sector that couples generations
• Tested formalism by finding common solution for top mass 

from 3 channels, highly nontrivial and convincing 
• Predicted b’ mass 2.7 TeV and t’ mass 200 TeV
• Bound states formed with huge Yukawa couplings, their 

contributions to Higgs production via gluon fusion tiny
• Worthwhile to contibue search of b’ quarks and ground state 

of mass 3.2 TeV



Polynomial expansion
• Introduce dimensionless variables,                           ,

• Start with case of N vanishing coefficients, N large

• Imply expansion in generalized Laguerre polynomials because of 
orthogonality 

→ 0 at large v, because 
power series in          using 

arbitrary scale

contained in 

fixed by initial condition in principle, needs not be infinite

weight



Solution 
• Large j approximation, subject to correction of

• Solution 

• Scaling variable , large N limit 

solution in terms of 
single Bessel function

≈ 1

arbitrary degree and scale appear in ratio 
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