

QED Contributions to $\Xi_c - \Xi_c'$ mixing

Shi Yu-Ji 施瑀基 华东理工大学

2023年11月4日

Cooperated with Zhi-Fu Deng, Jun Zeng, and Wei Wang arXiv:2309.16386

- \succ Ξ_c semi-leptonic decays from experiments and theory
- Interpretation by SU(3) breaking effect
- > $\Xi_c \Xi_c'$ mixing from SU(3) breaking
- > $\Xi_c \Xi_c'$ mixing angle in LFQM
- Conclusion

Ξ_c semi-leptonic decays Deviation between exp & th

Ξ_c semi-leptonic decays

Belle: *Phys.Rev.Lett.* 127 (2021) 12, 121803

$$\begin{split} \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) &= 1.31 \pm 0.04 \pm 0.07 \pm 0.38\%, \\ \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) &= 1.27 \pm 0.06 \pm 0.1 \pm 0.37\%, \\ \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) / \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) &= 1.03 \pm 0.05 \pm 0.01. \end{split}$$

Alice: Phys.Rev.Lett. 127 (2021) 27, 272001

$$\begin{split} \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) &= 2.5 \pm 0.8\% \\ \text{from} \; \begin{cases} \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 1.38 \pm 0.14 \pm 0.22 \\ \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 1.8 \pm 0.7\% \end{split}$$

Editors' Suggestion

Lattice:

 $\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 2.38(0.30)_{\text{stat.}}(0.32)_{\text{syst.}} \%$ $\mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) = 2.29(0.29)_{\text{stat.}}(0.31)_{\text{syst.}} \%$ $\mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = 7.18(0.90)_{\text{stat.}}(0.98)_{\text{syst.}} \%$ $\mathcal{B}(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu) = 6.91(0.87)_{\text{stat.}}(0.93)_{\text{syst.}} \%$

Chinese Physics C Vol. 46, No. 1 (2022) 011002

First lattice QCD calculation of semileptonic decays of charmed-strange baryons Ξ_c^*

Qi-An Zhang(张其安) ¹	Jun Hua(华俊) ²	Fei Huang(黄飞) ²	Renbo Li(李任博)3	Yuanyuan Li(李园园) ³
Caidian Lü(吕才典) ^{4,5}	Peng Sun(孙鹏)3*	Wei Sun(孙玮) ⁴	Wei Wang(王伟) ^{2‡}	Yibo Yang(杨一玻) ^{6,7,8§}

Ξ_c semi-leptonic decays

LCSR: Phys.Rev.D 104 (2021) 5, 054030

Semileptonic Ξ_c baryon decays in the light cone QCD sum rules

T. M. Aliev,^{1,*} S. Bilmis,^{1,2,†} and M. Savci^{1,‡}

¹Department of Physics, Middle East Technical University, Ankara, 06800, Turkey

² TUBITAK ULAKBIM, Ankara, 06510, Turkey

Decay Channel	Present Work
$\Xi_c^0 ightarrow \Xi^- e^+ u_e$	1.85 ± 0.56
$\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu$	1.79 ± 0.54
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	5.51 ± 1.65
$\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu$	5.34 ± 1.61
$\Xi_c^+ o \Lambda^0 e^+ \nu_e$	0.092 ± 0.028
$\Xi_c^+ o \Lambda^0 \mu^+ u_\mu$	0.089 ± 0.027

Eur. Phys. J. A (2012) 48: 2

Light cone QCD sum rules study of the semileptonic heavy Ξ_Q and Ξ'_Q transitions to Ξ and Σ baryons

K. Azizi^{1,a}, Y. Sarac^{2,b}, and H. Sundu^{3,c}

¹ Physics Department, Doğuş University, Acıbadem-Kadıköy, 34722 Istanbul, Turkey

² Electrical and Electronics Engineering Department, Atilim University, 06836 Ankara, Turkey

³ Department of Physics, Kocaeli University, 41380 Izmit, Turkey

QCDSR:

arXiv: <u>2103.09436</u>	$\mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 3.4 \pm 1.7\%.$	by Zhen-Xing Zhao
--------------------------	---	-------------------

$\Xi_c \to \Xi e^+ \nu_e$	$(7.26 \pm 2.54) \times 10^{-2}$
$\Xi_c o \Xi \mu^+ u_\mu$	$(7.15 \pm 2.50) \times 10^{-2}$

SU(3) analysis:

(a). Equal masses of initial an	$SU(3)_f$	$SU(3)_f$	$SU(3)_f$	Branching ratio
final baryons;	(c)	(b)	(a)	
(b). Constant helicity amplitud	3.2 ± 0.3	3.6 ± 0.4	3.6 ± 0.4	$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$
-V(A) = V(A) + 2 + - + i - i + - + - +	3.2 ± 0.3	3.6 ± 0.4	3.5 ± 0.5	$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)$
$H_{\lambda_2\lambda_W}^{\nu(A)} = a_{\lambda_2\lambda_W}^{\nu(A)}(q^2)(\mathbf{B_n})_j^i T^j(3)(\mathbf{B_c})$	10.7 ± 0.9	9.8 ± 1.1	11.9 ± 1.3	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 e^+ \nu_e)$
	10.8 ± 0.9	9.8 ± 1.1	11.6 ± 1.7	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu)$
in the heavy quark limit	2.7 ± 0.2	2.4 ± 0.3	3.0 ± 0.3	$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)$
	2.7 ± 0.2	2.4 ± 0.3	2.9 ± 0.4	$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)$

Chao-Qiang Geng, Chia-Wei Liu, Tien-Hsueh Tsai, Shu-Wei Yeh *Phys.Lett.B* 792 (2019) 214-218

SU(3) analysis with SU(3) breaking:

Xiao-Gang He, Fei Huang, Wei Wang, Zhi-Peng Xing Phys.Lett.B 823 (2021) 136765 \sim 1

Mass matrix:
$$M = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix} \sim m_s \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = m_s \times \omega.$$

			channel	
			Channer	\mathbf{e}
channol	branching	ratio(%)	$\Lambda_c^+ ightarrow \Lambda^0 e^+ u_e$	
Channer	experimental data	SU(3) symmetry	$\Lambda_c^+ o \Lambda^0 \mu^+ \nu_\mu$	
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.6 ± 0.4 [33]	3.6 ± 0.4 (input)	$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	
$\Lambda_c^+ o \Lambda^0 \mu^+ u_\mu$	3.5 ± 0.5 [33]	$3.5\pm0.5~(\mathrm{input})$	$\Xi_c^0 ightarrow \Xi^- e^+ u_e$	
$\Xi_c^+ o \Xi^0 e^+ \nu_e$	2.3 ± 1.5 [33]	12.17 ± 1.35	$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	
$\Xi_c^0 o \Xi^- e^+ \nu_e$	$1.54 \pm 0.35 \ [4, 5]$	4.10 ± 0.46	fit parameter	,
$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	1.27 ± 0.44 [4]	3.98 ± 0.57	(pole model)	_
	•		0	

No SU(3) breaking
---------	------------

ahannal	branching ratio(%)			
channel	experimental data	fit data(pole model)	fit data(constant).	
$\Lambda_c^+\to\Lambda^0 e^+\nu_e$	3.6 ± 0.4	3.61 ± 0.32	3.62 ± 0.32	
$\Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$	3.5 ± 0.5	3.48 ± 0.30	3.45 ± 0.30	
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	2.3 ± 1.5	3.89 ± 0.73	3.92 ± 0.73	
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.54 ± 0.35	1.29 ± 0.24	1.31 ± 0.24	
$\Xi_c^0 o \Xi^- \mu^+ u_\mu$	1.27 ± 0.44	1.24 ± 0.23	1.24 ± 0.23	
fit parameter	$f_1 = 1.01 \pm 0.87,$	$\delta f_1 = -0.51 \pm 0.92$	$\chi^2/d \circ f = 1.6$	
(pole model)	$f_1' = 0.60 \pm 0.49,$	$\delta f_1' = -0.23 \pm 0.41$	$\chi / u.o.j = 1.0$	
fit parameter	$f_1 = 0.86 \pm 0.92,$	$\delta f_1 = -0.25 \pm 0.88$	$\chi^2/d \circ f = 1.0$	
(constant)	$f_1' = 0.85 \pm 0.36,$	$\delta f_1' = -0.43 \pm 0.50$	χ / u.o.f = 1.9	

1

SU(3) breaking

Mixing angle

From semi-leptonic decays

 $|\theta_c| = 0.137(5)\pi ~(\approx 24^\circ)$ from $\Xi_c^0 \to \Xi^- e^+ \nu_e$ (LFQM)

Chao-Qiang Geng, Xiang-Nan Jin, Chia-Wei Liu *Phys.Lett.B* 838 (2023) 137736

From non-leptonic decays

LHCb:
$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+\prime} \pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+})} \equiv \frac{\mathcal{B}'}{\mathcal{B}} = 1.41 \pm 0.17 \pm 0.1$$

Phys. Rev. Lett. 121, 162002 (2018) JHEP 05 (2022) 038

To fit this ratio:

 $\theta = 16.27^{\circ} \pm 2.30^{\circ} \text{ or } 85.54^{\circ} \pm 2.30^{\circ}$ (LFQM)

Hong-Wei Ke, Xue-Qian Li, *Phys.Rev.D* 105 (2022) 9, 096011

$$\Xi_c - \Xi_c'$$
 mixing in QCDSR

$$\Pi^{(\prime)}(p) = i \int d^4x e^{ip \cdot x} \langle 0|T\{J^{(\prime)}(x)\bar{J}^{(\prime)}(0)\}|0\rangle,$$

$$i \int d^4x e^{ip \cdot x} \langle 0|T\{J(x)\bar{J}^{\prime}(0)\}|0\rangle = 0$$

$$\begin{pmatrix} J \\ J' \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} J_0 \\ J_1 \end{pmatrix} \qquad i \int d^4x e^{ip \cdot x} \langle 0|T\{J(x)\bar{J}(0)\}|0\rangle = 0,$$
$$i \int d^4x e^{ip \cdot x} \langle 0|T\{J'(x)\bar{J}(0)\}|0\rangle = 0.$$

$$\begin{cases} \theta_c = (1.2 \sim 2.8)^\circ \text{ for the } Q = c \\\\ \theta_b = (0.28 \sim 0.34)^\circ \text{ for the } Q = b \text{ Heavy quark limit: } \theta \to 0 \end{cases}$$

Eur.Phys.J.C 83 (2023) 10, 961

Revisiting $\Xi_Q - \Xi'_Q$ mixing in QCD sum rules

Xiao-Yu Sun¹, Fu-Wei Zhang¹, Yu-Ji Shi^{2,a}, Zhen-Xing Zhao^{1,b}

¹ School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
 ² School of Physics, East China University of Science and Technology, Shanghai 200237, China

$$\Xi_c - \Xi_c'$$
 mixing in LQCD

$\Xi_c - \Xi'_c$ mixing From Lattice QCD

Phys.Lett.B 841 (2023) 137941

Hang Liu,¹ Liuming Liu,^{2,3} Peng Sun,^{2,3} Wei Sun,⁴ Jin-Xin Tan,¹ Wei Wang,^{1,5,*} Yi-Bo Yang,^{6,7,8,3} and Qi-An Zhang^{9,†}

$\Xi_c - \Xi_c'$ mixing from SU(3) breaking

The Lagrangian can be decomposed into SU(3) conserving and breaking terms:

$$\begin{split} \mathcal{L}_{\text{QCD}+\text{QED}} &= \mathcal{L}_0 + \Delta \mathcal{L} \\ \mathcal{L}_0 &= \sum_q \bar{\psi}_q (i \not\!\!\!D - m_u) \psi_q + e \sum_q e_s \bar{\psi}_q \mathcal{A} \psi_q \\ &+ e e_c \bar{\psi}_c \mathcal{A} \psi_c, \end{split}$$

$$The same mass and charge for u, d, s, \\ &\text{SU(3) conserving} \\ \Delta \mathcal{L} &= \bar{\psi}_s (m_u - m_s) \psi_s + e (e_u - e_s) \bar{\psi}_u \mathcal{A} \psi_u$$

The mass and charge differences are attributed to the SU(3) breaking terms

Hamiltonian:
$$H = H_0 + \Delta H_1$$

The SU(3) conserving Hamiltonian is diagonalized by $\Xi_c^{\overline{3}}$ and Ξ_c^{6} :

$$H_0|\Xi_c^{\bar{3}}\rangle = m_{\Xi_c^{\bar{3}}}|\Xi_c^{\bar{3}}\rangle, \ \ H_0|\Xi_c^6\rangle = m_{\Xi_c^6}|\Xi_c^6\rangle$$

The full Hamiltonian is diagonalized by Ξ_c and Ξ_c' :

$$H|\Xi_c\rangle = m_{\Xi_c}|\Xi_c\rangle, \ \ H|\Xi_c'\rangle = m_{\Xi_c'}|\Xi_c'\rangle$$

Transformation between doublets: $|S\rangle = (|\Xi_c^{\overline{3}}\rangle, |\Xi_c^6\rangle)^T$, $|P\rangle = (|\Xi_c\rangle, |\Xi_c^\prime\rangle)^T$

$$|P\rangle = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} |S\rangle = U|S\rangle.$$

In the basis of $|S\rangle = (|\Xi_c^{\overline{3}}\rangle, |\Xi_c^6\rangle)^T$: $\mathbf{H} = \begin{pmatrix} \langle \Xi_{c}^{\bar{3}}(S_{z}') | H | \Xi_{c}^{\bar{3}}(S_{z}) \rangle & \langle \Xi_{c}^{6}(S_{z}') | H | \Xi_{c}^{3}(S_{z}) \rangle \\ \langle \Xi_{c}^{\bar{3}}(S_{z}') | H | \Xi_{c}^{6}(S_{z}) \rangle & \langle \Xi_{c}^{6}(S_{z}') | H | \Xi_{c}^{6}(S_{z}) \rangle \end{pmatrix}$ $|S\rangle = U^T |P\rangle$ $=2(2\pi)^3\delta^{(3)}(\vec{0})\delta_{S_zS'_z}$ $\times \begin{pmatrix} m_{\Xi_c}^2 \cos^2\theta + m_{\Xi_c'}^2 \sin^2\theta & (m_{\Xi_c}^2 - m_{\Xi_c'}^2) \cos\theta \sin\theta \\ (m_{\Xi_c}^2 - m_{\Xi_c'}^2) \cos\theta \sin\theta & m_{\Xi_c}^2 \sin^2\theta + m_{\Xi_c'}^2 \cos^2\theta \end{pmatrix}$ $\langle \Xi_c^6(S'_z) | H | \Xi_c^3(S_z) \rangle$ $= (2\pi)^3 \delta^{(3)}(\vec{0}) \delta_{S_z S'_z} (m_{\Xi_z}^2 - m_{\Xi'}^2) \sin 2\theta.$

Extracting
$$\Xi_c - \Xi_c'$$
 mixing angle
On the another hand: $H = H_0 + \Delta H$.
 $(\Xi_c^6|H_0|\Xi_c^3) = 0$
 H_0 conserves SU(3) symmetry
 $(\Xi_c^6(S'_2)|H|\Xi_c^3(S_z))$
 $= (2\pi)^3\delta^{(3)}(\vec{0})\langle \Xi_c^6(S'_2)|\Delta \mathcal{H}(0)|\Xi_c^3(S_z)\rangle$ An unkown
matrix element
 $\langle \Xi_c^6(S'_2)|H|\Xi_c^3(S_z)\rangle$
 $= (2\pi)^3\delta^{(3)}(\vec{0})\delta_{S_zS'_z}(m_{\Xi_c}^2 - m_{\Xi'_c}^2)\sin 2\theta$. Mixing angle
Extracting θ \implies $\sin 2\theta = \frac{1}{2}\sum_{S_z}\frac{\langle \Xi_c^6(S_z)|\Delta \mathcal{H}(0)|\Xi_c^3(S_z)\rangle|}{m_{\Xi_c}^2 - m_{\Xi'_c}^2}$

$$\Delta \mathcal{H}_m = (m_s - m_u)\bar{s}s$$

Calculate a three-point correlation function on lattice:

Hang Liu, Wei Wang, Qi-An Zhang, arXiv:2309.05432

QCD contribution to $\Xi_c - \Xi_c'$

18

The three-quark picture of LFQM

Three-quark picture in LFQM

Spin: $\Psi_{\bar{3}} = A\bar{u}_{\lambda_3}(p_3) \left(\vec{P} + M_0 \right) (-\gamma_5) C\bar{u}_{\lambda_2}^T(p_2) \bar{u}_{\lambda_1}(p_1) u \left(\bar{P} \right) \Phi(x_i, k_{i\perp})$

$$\begin{split} \Phi(x_i, k_{i\perp}) &= \sqrt{\frac{e_1 e_2 e_3}{x_1 x_2 x_3 M_0}} \phi(\vec{k}_1, \beta_1) \phi(\frac{\vec{k}_2 - \vec{k}_3}{2}, \beta_{23}), \\ \phi(\vec{k}, \beta) &= 4 \left(\frac{\pi}{\beta^2}\right)^{\frac{3}{4}} e^{\frac{-k_\perp^2 - k_z^2}{2\beta^2}}, \end{split}$$

Zhen-Xing Zhao, Fu-Wei Zhang, Xiao-Hui Hu, Yu-Ji Shi Phys.Rev.D 107 (2023) 11, 116025

Momentum:

LFQM Calculation

The charm quark spin is changed by photon, a $1/m_c$ effect.

$$ar{h}_v i(v \cdot D) h_v - rac{1}{2m_Q} ar{h}_v
ot\!\!D^\perp \sum_{n=0}^N \left(rac{-i(v \cdot D)}{2m_Q}
ight)^n
ot\!\!D^\perp h_v$$
Spin conserved
Spin changed

$$m_Q \uparrow \longrightarrow \theta_{QED} \downarrow$$

LFQM Calculation

Mixing Angle

- > To match the measured semi-leptonic decay BF, the required $\Xi_c \Xi_c'$ mixing angle is around $10^\circ 30^\circ$
- > QCD contributes only $\sim 1^{\circ}$
- ➢ QED contribution is much smaller: 0.04°
- > It seems that the $\Xi_c \Xi_c'$ mixing effect is too small to affect the Ξ_c decays

Any other mechanisms to explain the gap between exp. & th. ?

$K_1(1270) - K_1(1400)$ mixing

$$\begin{pmatrix} |K_1(1270)\rangle \\ |K_1(1400)\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{K_1} & \sin\theta_{K_1} \\ -\sin\theta_{K_1} & \cos\theta_{K_1} \end{pmatrix} \begin{pmatrix} |K_{1B}\rangle \\ |K_{1A}\rangle \end{pmatrix}$$
$$\theta_{K_1} = 22^\circ \pm 7^\circ \text{ or } \theta_{K_1} = 68^\circ \pm 7^\circ$$

Yu-Ji Shi, Jun Zeng, Zhi-Fu Deng, arXiv:2310.20429

Thank you for your attention !