Muon Particle Physics Experiments

Yoshitaka Kuno Osaka University, Japan

November 4th, 2023 MELODY2023 Chinese Spallation Neutron Source (CSNS), Dongguan, China

Taken from https://en.wikipedia.org/wiki/Elementary_particle.

Standard Model of Elementary Particles

Taken from https://en.wikipedia.org/wiki/Elementary_particle.

The Standard Model is considered to be incomplete.

example: origin of flavour neutrino masses dark matter, baryogenesis, dark energy, strong CP and more.

Standard Model of Elementary Particles

Taken from https://en.wikipedia.org/wiki/Elementary_particle.

The Standard Model is considered to be incomplete.

example: origin of flavour neutrino masses dark matter, baryogenesis, dark energy, strong CP and more.

New physics beyond the Standard Model (BSM) is needed.

Standard Model of Elementary Particles

Taken from https://en.wikipedia.org/wiki/Elementary_particle.

The Standard Model is considered to be incomplete.

example: origin of flavour neutrino masses dark matter, baryogenesis, dark energy, strong CP and more.

New physics beyond the Standard Model (BSM) is needed.

Why Muons?

Why Muons?

Muons are many

Why Muons?

Vuons are many

Outline

- Why New physics needed in Particle Physics ? Muon's dipole moments
- Muon's charged lepton flavour violation (CLFV)
 - $\mu^+ \rightarrow e^+ \gamma$, $\mu^+ \rightarrow e^+ e^+ e^-$, $\mu^- \rightarrow e^-$ conversion
 - in the case of discoveries
- Muon's lepton number violation (LNV) and axion-like particles
 - $\mu^- \rightarrow e^+$ conversion, $\mu \rightarrow ea$
- Muonium to anti-muonium conversion Muon Collider
- Summary

Muon's Dipole Moments

Muon magnetic dipole moment (g-2)

- Charged, spin=1/2 particles have magnetic dipole moments.
- g=2 for a "pure" Dirac particle, and g>2due to quantum radiative corrections.
- Deviation of the measurement from the Standard Model prediction indicates new physics beyond the SMI.

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{S}$$
 $g = 2(1 + \frac{\alpha}{2\pi}...)$

Muon magnetic dipole moment (g-2)

- Charged, spin=1/2 particles have magnetic dipole moments.
- g=2 for a "pure" Dirac particle, and g>2due to quantum radiative corrections.
- Deviation of the measurement from the Standard Model prediction indicates new physics beyond the SMI.

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{S}$$
 $g = 2(1 + \frac{\alpha}{2\pi}...)$

See the talk by Liang Li and Kim Siang Khaw

Muon electric dipole moment (edm) Muon magnetic dipole moment (g-2)

- Charged, spin=1/2 particles have magnetic dipole moments.
- g=2 for a "pure" Dirac particle, and g>2due to quantum radiative corrections.
- Deviation of the measurement from the Standard Model prediction indicates new physics beyond the SMI.

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{S}$$
 $g = 2(1 + \frac{\alpha}{2\pi}...)$

See the talk by Liang Li and Kim Siang Khaw

- Permanent edm of an elementary particle violates T and P reversal invariance.
- The SM contribution is very small. $d_{\mu} \sim 10^{-(36-38)} e \cdot cm$
- Observation of edm indicates new physics beyond the SM.
- The current experimental limits $d_{\mu} < 1.5 \times 10^{-19} e \cdot cm$

Muon electric dipole moment (edm) Muon magnetic dipole moment (g-2)

- Charged, spin=1/2 particles have magnetic dipole moments.
- g=2 for a "pure" Dirac particle, and g>2due to quantum radiative corrections.
- Deviation of the measurement from the Standard Model prediction indicates new physics beyond the SMI.

$$\overrightarrow{\mu} = g \frac{q}{2m} \overrightarrow{S}$$
 $g = 2(1 + \frac{\alpha}{2\pi}...)$

See the talk by Liang Li and Kim Siang Khaw

- Permanent edm of an elementary particle violates T and P reversal invariance.
- The SM contribution is very small. $d_{\mu} \sim 10^{-(36-38)} e \cdot cm$
- Observation of edm indicates new physics beyond the SM.
- The current experimental limits $d_{\mu} < 1.5 \times 10^{-19} e \cdot cm$

See the talk by Kim Siang Khaw

Charged Lepton Flavor Violation with Muons

Lepton flavour quantum numbers

Lepton flavour quantum numbers

	electron flavour	muon flavour	tau flav
<i>e</i> eneration	1	0	0
μ eneration	0		0
τ eneration	0	0	1

OME	µ T e
/our	
	8

Lepton flavour quantum numbers

In the (old) Standard Model, each of lepton flavour is additively conserved separa Neutrino oscillation indicated violation of lepton flavour conservation. How about charged lepton flavour violation (CLFV) like $\mu \rightarrow e\gamma$?

	electron flavour	muon flavour	tau flav
<i>e</i> eneration	1	0	0
μ eneration	0	1	0
τ eneration	0	0	

p m m m m m m e
/our
tely.
8

Lepton flavour quantum numbers

In the (old) Standard Model, each of lepton flavour is additively conserved separa Neutrino oscillation indicated violation of lepton flavour conservation. How about charged lepton flavour violation (CLFV) like $\mu \rightarrow e\gamma$?

CLFV for BSM search

	electron flavour	muon flavour	tau flav
<i>e</i> eneration	1	0	0
μ eneration	0		0
τ eneration	0	0	

p m m m m m m e
/our
tely.
8

Standard Model Contribution to CLFV

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340
W.J. Marciano et al., Phys. Lett. B 67 (1977) 303
B.W. Lee, et al., Phys. ReV. Lett. 38 (1977) 937
B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.

Standard Model Contribution to CLFV

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340
W.J. Marciano et al., Phys. Lett. B 67 (1977) 303
B.W. Lee, et al., Phys. ReV. Lett. 38 (1977) 937
B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{\pi}{N} \right|^2$$

Standard Model Contribution to CLFV

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340
W.J. Marciano et al., Phys. Lett. B 67 (1977) 303
B.W. Lee, et al., Phys. ReV. Lett. 38 (1977) 937
B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{\gamma}{\Lambda} \right|^{\gamma}$$

Standard Model Contribution to CLFV

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340
W.J. Marciano et al., Phys. Lett. B 67 (1977) 303
B.W. Lee, et al., Phys. ReV. Lett. 38 (1977) 937
B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \Big| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{\gamma}{\Lambda}$$

BR~O(10-54)

Standard Model Contribution to CLFV

S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340
W.J. Marciano et al., Phys. Lett. B 67 (1977) 303
B.W. Lee, et al., Phys. ReV. Lett. 38 (1977) 937
B.W. Lee et al., Phys. Rev. D 16 (1977) 1444.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{\gamma}{N} \right|^{\gamma}$$

BR~O(10-54)

Searches for CLFV have clear signatures of new physics beyond the Standard Model without the SM backgrounds of massive neutrinos.

light colour: present dark colour: future prospect

EPPSU2019 Physics Briefing Book

light colour: present dark colour: future prospect

EPPSU2019 Physics Briefing Book

Observable

light colour: present dark colour: future prospect

EPPSU2019 Physics Briefing Book

Present CLFV physics scales

Physics scale: $\Lambda = \mathcal{O}(10^3 - 10^4)$ TeV

Observable

light colour: present dark colour: future prospect

EPPSU2019 Physics Briefing Book

Present CLFV physics scales

Physics scale: $\Lambda = \mathcal{O}(10^3 - 10^4)$ TeV

Prospect from present to future

Observable

light colour: present dark colour: future prospect

EPPSU2019 Physics Briefing Book

10⁷ **10⁶ 10⁵** precision direct reach **10⁴ 10³** EW **10²** $\ell m \leftarrow$ →C) **10¹** 10^{0}

Present CLFV physics scales

Physics scale: $\Lambda = \mathcal{O}(10^3 - 10^4)$ TeV

Prospect from present to future

x10 in physics scale SM forbidden rate \propto Λ^4 in dimension 6 operators

x10000 in experimental sensitivity

CLFV probes very high energy scale of new physics.

$\mu \rightarrow e \text{ CLFV Golden Processes and EFT}$

$\mu \rightarrow e \text{ CLFV Golden Processes and EFT}$

$$\mu^+ \rightarrow e^+ \gamma$$

 $\mu^+ \rightarrow e^+ e^+ e^-$

$$\mu^- N \rightarrow e^- N$$

$\mu \rightarrow e \text{ CLFV Golden Processes and EFT}$

dipole interaction contact interaction

$$\mu^+ \rightarrow e^+ \gamma$$

$$\mu^+ \rightarrow e^+ e^+ e^-$$

$$\mu^- N \rightarrow e^- N$$

Effective Field Theory (EFT)

$\mu \rightarrow e \text{ CLFV Golden Processes and EFT}$

dipole interaction

$$\mu^+ \rightarrow e^+ \gamma$$

$$\mu^+ \rightarrow e^+ e^+ e^-$$

$$\mu^- N \rightarrow e^- N$$

contact interaction

Effective Field Theory (EFT)

dipole operators (L/R)

$\mu \rightarrow e \text{ CLFV Golden Processes and EFT}$

Effective Field Theory (EFT)

dipole operators (L/R)

dipole operators (L/R) 2 scalar contact and 4 vector ۲ contact operators

$\mu \rightarrow e \ \text{CLFV} \ \text{Golden} \ \text{Processes} \ \text{and} \ \text{EFT}$

Effective Field Theory (EFT)

dipole operators (L/R)

- dipole operators (L/R) 2 scalar contact and 4 vector contact operators
- dipole operators (L/R)
- many contact operators
- scalar, vector (spin independent)
- pseudoscalar, axial vector, tensor (spin dependent)

from YK, Y. C RMP (200

process	present limit	future
$\overline{\tau o \mu \eta}$	$< 6.5 \times 10^{-8}$	$10^{-9} - 10^{-10}$
$ au o \mu \gamma$	$< 6.8 \times 10^{-8}$	
$ au o \mu \mu \mu$	$< 3.2 \times 10^{-8}$	
$\tau \to eee$	$< 3.6 \times 10^{-8}$	
$\overline{K_L \to e\mu}$	$< 4.7 \times 10^{-12}$	
$K^+ \to \pi^+ e^- \mu^+$	$< 1.3 \times 10^{-11}$	
$B^0 \to e\mu$	$< 7.8 \times 10^{-8}$	
$B^+ \to K^+ e \mu$	$<9.1\times10^{-8}$	
$Z^0 \to e\mu$	$< 7.5 \times 10^{-7}$	
$Z^0 \to e \tau$	$< 1.2 \times 10^{-5}$	
$Z^0 o \mu au$	$<9.8\times10^{-6}$	
$H^0 \to e\mu$	$< 3.5 \times 10^{-4}$	
$H^0 \to e\tau$	$< 3.7 \times 10^{-3}$	
$H^0 o \mu au$	$< 2.5 \times 10^{-3}$	
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	10^{-14} (MEG II)
$\mu^+ \to e^+ e^+ e^-$	$< 1.0 \times 10^{-12}$	10^{-16} (Mu3e)
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7.0 \times 10^{-13}$	10^{-17} (COMET, Mu2e)
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}$	$< 3.6 \times 10^{-11}$	10^{-17} (COMET, Mu2e)
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	

2e)2e)

process	present limit	future
$\overline{ au o \mu \eta}$	$< 6.5 \times 10^{-8}$	$10^{-9} - 10^{-10}$
$ au o \mu \gamma$	$< 6.8 \times 10^{-8}$	
$ au o \mu \mu \mu$	$< 3.2 \times 10^{-8}$	
$\tau \to eee$	$< 3.6 \times 10^{-8}$	
$\overline{K_L \to e\mu}$	$< 4.7 \times 10^{-12}$	
$K^+ \to \pi^+ e^- \mu^+$	$< 1.3 \times 10^{-11}$	
$B^0 \to e\mu$	$< 7.8 \times 10^{-8}$	
$B^+ \to K^+ e \mu$	$< 9.1 \times 10^{-8}$	
$Z^0 \to e\mu$	$< 7.5 \times 10^{-7}$	
$Z^0 \to e \tau$	$< 1.2 \times 10^{-5}$	
$Z^0 o \mu \tau$	$< 9.8 \times 10^{-6}$	
$H^0 \to e\mu$	$< 3.5 \times 10^{-4}$	
$H^0 \to e \tau$	$< 3.7 \times 10^{-3}$	
$H^0 o \mu \tau$	$< 2.5 \times 10^{-3}$	
$\mu^+ o e^+ \gamma$	$< 4.2 \times 10^{-13}$	10^{-14} (MEG II)
$\mu^+ \to e^+ e^+ e^-$	$< 1.0 \times 10^{-12}$	10^{-16} (Mu3e)
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7.0 \times 10^{-13}$	10^{-17} (COMET, Mu2e)
$\mu^{-}\mathrm{Ti} \to e^{+}\mathrm{Ca}$	$< 3.6 \times 10^{-11}$	10^{-17} (COMET, Mu2e)
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	

2e)

process	present limit	future
$\overline{ au o \mu \eta}$	$< 6.5 \times 10^{-8}$	$10^{-9} - 10^{-10}$
$ au o \mu \gamma$	$< 6.8 \times 10^{-8}$	
$ au o \mu \mu \mu$	$< 3.2 \times 10^{-8}$	
$\tau \to eee$	$< 3.6 \times 10^{-8}$	
$\overline{K_L \to e\mu}$	$< 4.7 \times 10^{-12}$	
$K^+ \to \pi^+ e^- \mu^+$	$< 1.3 \times 10^{-11}$	
$B^0 \to e\mu$	$< 7.8 \times 10^{-8}$	
$B^+ \to K^+ e \mu$	$< 9.1 \times 10^{-8}$	
$Z^0 \to e\mu$	$< 7.5 \times 10^{-7}$	
$Z^0 \to e \tau$	$< 1.2 \times 10^{-5}$	
$Z^0 o \mu \tau$	$< 9.8 \times 10^{-6}$	
$H^0 \to e\mu$	$< 3.5 \times 10^{-4}$	
$H^0 \to e \tau$	$< 3.7 \times 10^{-3}$	
$H^0 o \mu \tau$	$< 2.5 \times 10^{-3}$	
$\mu^+ o e^+ \gamma$	$< 4.2 \times 10^{-13}$	10^{-14} (MEG II)
$\mu^+ \to e^+ e^+ e^-$	$< 1.0 \times 10^{-12}$	10^{-16} (Mu3e)
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7.0 \times 10^{-13}$	10^{-17} (COMET, Mu2e)
$\mu^{-}\mathrm{Ti} \to e^{+}\mathrm{Ca}$	$< 3.6 \times 10^{-11}$	10^{-17} (COMET, Mu2e)
$\mu^+e^- \rightarrow \mu^-e^+$	$< 8.3 \times 10^{-11}$	

process	present limit	future
$\overline{ au o \mu \eta}$	$< 6.5 \times 10^{-8}$	$10^{-9} - 10^{-10}$
$ au o \mu \gamma$	$< 6.8 \times 10^{-8}$	
$ au o \mu \mu \mu$	$< 3.2 \times 10^{-8}$	
$\tau \to eee$	$< 3.6 \times 10^{-8}$	
$\overline{K_L \to e\mu}$	$< 4.7 \times 10^{-12}$	
$K^+ \to \pi^+ e^- \mu^+$	$< 1.3 \times 10^{-11}$	
$B^0 \to e\mu$	$< 7.8 \times 10^{-8}$	
$B^+ \to K^+ e \mu$	$< 9.1 \times 10^{-8}$	
$Z^0 \to e\mu$	$< 7.5 \times 10^{-7}$	
$Z^0 \to e \tau$	$< 1.2 \times 10^{-5}$	
$Z^0 o \mu \tau$	$< 9.8 \times 10^{-6}$	
$H^0 \to e\mu$	$< 3.5 \times 10^{-4}$	
$H^0 \to e \tau$	$< 3.7 \times 10^{-3}$	
$H^0 o \mu \tau$	$< 2.5 \times 10^{-3}$	
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	10^{-14} (MEG II)
$\mu^+ \to e^+ e^+ e^-$	$< 1.0 \times 10^{-12}$	10^{-16} (Mu3e)
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7.0 \times 10^{-13}$	10^{-17} (COMET, Mu2
$\mu^{-}\mathrm{Ti} \to e^{+}\mathrm{Ca}$	$< 3.6 \times 10^{-11}$	10^{-17} (COMET, Mu2
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	·

$\mu^+ \rightarrow e^+ \gamma : MEG II$

$\mu^+ \rightarrow e^+ \gamma : MEG \parallel$

- Event Signature (μ^+ decay at rest)
 - mono energetic, $m_e = m_\gamma = m_\mu/2$ (=52.8 MeV)
 - angle $\theta_{e\gamma}$ =180 degrees
 - time coincidence $\Delta t_{e\gamma}$
- Backgrounds
 - physics background, $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$
 - accidental background

• e^+ in $\mu^+ \to e^+ \nu \overline{\nu}$ and γ in $\mu^+ \to e^+ \nu \overline{\nu} \gamma$

MEG experiment at PSI

• $B(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$ (90 % C.L.)

- MEG II experiment at PSI
 - x10 times improvement

$\mu^+ \to e^+ \gamma : \mathsf{ME}_{\mathsf{e}}$

- Event Signature (μ^+ decay at rest)
 - mono energetic, $m_e = m_\gamma = m_\mu/2$ (=52.8 MeV)
 - angle $\theta_{e\gamma}$ =180 degrees
 - time coincidence $\Delta t_{e\gamma}$
- Backgrounds
 - physics background, $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$
 - accidental background

• e^+ in $\mu^+ \to e^+ \nu \overline{\nu}$ and γ in $\mu^+ \to e^+ \nu \overline{\nu} \gamma$

MEG experiment at PSI

• $B(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$ (90 % C.L.)

- MEG II experiment at PSI
 - x10 times improvement

$\mu^+ \rightarrow e^+ \gamma : \mathsf{ME}_{\mu}$

- Event Signature (μ^+ decay at rest)
 - mono energetic, $m_e = m_\gamma = m_\mu/2$ (=52.8 MeV)
 - angle $\theta_{e\gamma}$ =180 degrees
 - time coincidence $\Delta t_{e\gamma}$
- Backgrounds
 - physics background, $\mu^+ \rightarrow e^+ \nu \overline{\nu} \gamma$
 - accidental background

• e^+ in $\mu^+ \to e^+ \nu \overline{\nu}$ and γ in $\mu^+ \to e^+ \nu \overline{\nu} \gamma$

MEG experiment at PSI

• $B(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$ (90 % C.L.)

- MEG II experiment at PSI
 - x10 times improvement

Liquid xenon photon detector MEG-II (LXe) COBRA superconducting magnet U et Pixelated timing counter (pTC) Muon stopping target Cylindrical drift chamber (CDCH) Radiative decay counter (RDC)

MEG II : $B(\mu^+ \rightarrow e^+\gamma) < 6 \times 10^{-14}$

- x2 muon beam intensity
- x2 all detector resolution
- x2 efficiency

Br-2 1*10∆(-12)

Br<3.1*104-13} Br<3.1*104-13}

<--- z

........

.......

Cylindrical drift chamber

RDC detector

<— z

Cylindrical drift chamber

Timeline

• Physics runs in 2021,2022,2023 -2025,(2026) •PSI HIPA accelerator shutdown in 2027-2028

MEG II first result (10.2023): $BR < 7.5 \times 10^{-13}$

Timeline

• Physics runs in 2021,2022,2023 -2025,(2026) •PSI HIPA accelerator shutdown in 2027-2028

MEG II first result (10.2023): $BR < 7.5 \times 10^{-13}$

Timeline

- Physics runs in 2021,2022,2023 -2025,(2026)
- •PSI HIPA accelerator shutdown in 2027-2028

combined: $BR < 3.1 \times 10^{-13}$

$\mu^+ \rightarrow e^+ e^+ e^- : Mu3e$

$+ \rightarrow e^+e^+e^-$: Mu3e

- Event Signature (μ^+ decay at rest)
 - $\Sigma Ee = m\mu$ and $\Sigma Pe = 0$ (vector sum)
 - common vertex and time coincidence
- Backgrounds
 - Physics backgrounds, $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu e^+ e^-$
 - Accidental backgrounds from Michel decays + Bhabha scattering
- Current limits (from SINDRUM at PSI)
 - $B(\mu \rightarrow eee) < 1.0 \times 10^{-12} (90\% \text{ C.L.})$
- Mu3e at PSI
 - Phase-I: $\mathcal{O}(10^{-15})$ with 10⁸ µ/s (π E5)
 - inner pixel detectors, scintillating fibers
 - Phase-II: $\mathcal{O}(10^{-16})$ with 10⁹ µ/s (HiMB)

$\mu^+ \rightarrow e^+ e^+ e^-$: Mu3e

- Event Signature (μ^+ decay at rest)
 - $\Sigma Ee = m\mu$ and $\Sigma Pe = 0$ (vector sum)
 - common vertex and time coincidence
- Backgrounds
 - Physics backgrounds, $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu e^+ e^-$
 - Accidental backgrounds from Michel decays + Bhabha scattering
- Current limits (from SINDRUM at PSI)
 - $B(\mu \to eee) < 1.0 \times 10^{-12} (90\% \text{ C.L.})$
- Mu3e at PSI
 - Phase-I: $\mathcal{O}(10^{-15})$ with 10⁸ µ/s (π E5)
 - inner pixel detectors, scintillating fibers
 - Phase-II: $\mathcal{O}(10^{-16})$ with 10⁹ µ/s (HiMB)

constraint on radius: pixel size (min σ_p)

Search for LFV with Mu3e experiment NUFACT 2021.09.07

on behalf of the Mu3e Collaboration

 $m_{rec} \left[MeV/c^2 \right]$ 13

Search for LFV with Mu3e experiment NUFACT 2021.09.07

on behalf of the Mu3e Collaboration

Mu3e Phase-I Preparation Status

Mu3e Phase-I Preparation Status

detector solenoid and detector integration

silicon pixel board (50 µm)

Mu3e Phase-I Preparation Status

detector solenoid and detector integration

Ô,

silicon pixel board (50 µm)

scin. tile counter

Timeline

• First detector installation in 2023 Detector commissioning in 2024/2025 First data taking in 2025/2026

Mu3e Phase II

Mu3e Phase II

Mu3e Phase II

- Ultimate sensitivity goal of BR $< 1 \times 10^{-16}$
- muon intensity 2x10⁹/sec from HiMB
- Upgraded Mu3e detector
 - elongated pixel station for recurl tracks
 - muon target with smaller radius
 - thinner pixel detector
- scheduled after 2029

Recurl pixel layers Scintillator tiles	Inner pixel layers Target	
	Thin timing detector	
	Outer pixel layers	Ì

Mu3e Phase

Mu3e Phase II

- Ultimate sensitivity goal of $BR < 1 \times 10^{-16}$
- muon intensity 2x10⁹/sec from HiMB
- Upgraded Mu3e detector
 - elongated pixel station for recurl tracks
 - muon target with smaller radius
 - thinner pixel detector
- scheduled after 2029

Recurl pixel layers Scintillator tiles	Inner pixel layers Target	
	Thin timing detector	
	Outer pixel layers	Ì

HiMB

- High Intensity Muon Beamline (HiMB) at PSI
- Surface muon (μ ⁺) beam, ~O(10¹⁰) /s
- New target and new capturing solenoids
- Installation in 2027-2028
- Planned to be operational in 2029

Mu3e Phase

Mu3e Phase II

- Ultimate sensitivity goal of BR $< 1 \times 10^{-16}$
- muon intensity 2x10⁹/sec from HiMB
- Upgraded Mu3e detector
 - elongated pixel station for recurl tracks
 - muon target with smaller radius
 - thinner pixel detector
- scheduled after 2029

Recurl pixel layers Scintillator tiles	Inner pixel layers Target	
	Thin timing detector	
	Outer pixel layers	Ì

HiMB

- High Intensity Muon Beamline (HiMB) at PSI
- Surface muon (μ +) beam, ~O(10¹⁰) /s
- New target and new capturing solenoids
- Installation in 2027-2028
- Planned to be operational in 2029

$\mu^- \rightarrow e^-$ Conversion

$\mu^- \rightarrow e^-$ Conversion

1s state in a muonic atom

$\mu^- \rightarrow e^-$ Conversion

 $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

$\rightarrow e^{-}$ Conversion

 $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

coherent process (for transition to ground state) $\propto Z^5$

$\rightarrow e^{-}$ Conversion

$$+(A,Z) \rightarrow e^{-} + (A,Z)$$

coherent process (for transition to ground state) $\propto Z^5$

Event Signature :

- a mono-energetic electron
- (one particle measurement allows higher muon rates.)

$$E_{\mu e} \approx m_{\mu} - E_{bound \ \mu} - E_{recoil} \approx 105 \text{ MeV}$$

- Backgrounds:
- (1) physics backgrounds
- (2) beam-related backgrounds
- (3) cosmic rays, false tracking

$\rightarrow e^{-}$ Conversion

$$+(A,Z) \rightarrow e^{-} + (A,Z)$$

coherent process (for transition to ground state) $\propto Z^5$

Event Signature :

- a mono-energetic electron
- (one particle measurement allows higher muon rates.)

$$E_{\mu e} \approx m_{\mu} - E_{bound \ \mu} - E_{recoil} \approx 105 \text{ MeV}$$

- (1) physics backgrounds
- (2) beam-related backgrounds (3) cosmic rays, false tracking

Conversion rate:

$$^{-}N \rightarrow e^{-}N) \equiv \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow all)}$$

nucleus	Z	С
sulfur	16	7>
titanium	22	4.3
copper	39	1.6
gold	79	7 >
lead	82	4.6

COMET at J-PARC

COMET at J-PARC

COMET= COherent Muon to Electron Transition

COMET at J-PARC

COMET= COherent Muon to Electron Transition

proton beam power = 8 kW

proton beam, 8 GeV, 8 kW

- x10000 from SINDRUM-II
- <8x10⁻¹⁷ 90% C.L. or 5σ discovery=2x10-16
- 0.11 ± 0.03 background events (Run 1)

~20m

proton beam, 8 GeV, 8 kW

- x10000 from SINDRUM-II
- <8x10⁻¹⁷ 90% C.L. or 5σ discovery=2x10-16
- 0.11 ± 0.03 background events (Run 1)

~20m

	muon transport	electron transpo
Mu2e	s-shape curve	straight
COMET	c-shape curve	c-shape curve

Timeline

Detector commissioning from 2024
Run 1 data taking in 2026 until LBNF/PIP-II shutdown (x1000 improvements)
Run 2 data taking from 2029 after the

shutdown

Mu2e-II and AMF at Fermilab

Mu2e-II and AMF at Fermilab

Mu2e-II

•800 MeV, 100 kW from PIP-II Linac •5 years running (5.5x10¹⁹ stopped μS) •Goal: <6.4x10⁻¹⁸ at 90% CL limit ●x10 from Mu2e 0.47 background events Detector refinements for Mu2e-II proton target, tracker, calorimeter (BaF₂), cosmic ray veto Timeline ~ 2030s decade

 H^{-}

 $\sim 5mA \ 1.93 \times 10^8 \, H^-$

Mu2e-II and AMF at Fermilab

Mu2e-II

•800 MeV, 100 kW from PIP-II Linac •5 years running (5.5x1019 stopped μs) •Goal: <6.4x10⁻¹⁸ at 90% CL limit •x10 from Mu2e 0.47 background events Detector refinements for Mu2e-II proton target, tracker, calorimeter (BaF₂), cosmic ray veto •Timeline ~ 2030s decade

AMF (Advanced Muon Facility)

- >1 MW beam from PIP-II Linac
 aiming at searches for three muon CFLV processes
- muon storage ring (FFA) for $\mu \rightarrow e$ conversion (Enigma@AMF)
- •~2040

 $5mA \ 1.93 \times 10^8 H$

$\mu^- \rightarrow e^-$ Conversion at <O(10⁻¹⁹) with Muon Storage Ring

$\mu^- \rightarrow e^-$ Conversion at with Muon Storage RingRISM

$u^- \rightarrow e^-$ Conversion at \checkmark with Muon Storage Ringersm

 Advanta Remc long redu High Phase

• thin uon storage ring for $\mu \rightarrow e$ conversion ons in a muon beam ength in a ring to eliminate pions (pion f 10⁻²⁰ for 5 turns, 30 m circumference) on targets can be used n to narrow beam energy spread slow muons and decelerate fast muons In target for better signal acceptance

$\mu^- \rightarrow e^-$ Conversion at with Muon Storage RingRISM

 Advanta Remc long redu High Phase

• thin

uon storage ring for $\mu \rightarrow e$ conversion ons in a muon beam ength in a ring to eliminate pions (pion f 10⁻²⁰ for 5 turns, 30 m circumference) on targets can be used n to narrow beam energy spread slow muons and decelerate fast muons In target for better signal acceptance

Phase

principle of phase rotation

$\mu^- \rightarrow e^-$ Conversion at with Muon Storage RingRISM **OME1**

 Advanta Remc long redu High Phase

> • thin

uon storage ring for $\mu \rightarrow e$ conversion ons in a muon beam ength in a ring to eliminate pions (pion f 10⁻²⁰ for 5 turns, 30 m circumference) on targets can be used n to narrow beam energy spread slow muons and decelerate fast muons In target for better signal acceptance

principle of phase rotation

 Future Prospects (2040~) Enigma@AMF or PRISM@J-PARC

Fixed Field Alternating Gradient Synchrotron (FFA)

Fixed Field Alternating Gradient Synchrotron (FFA)

- Best accelerator ring for low-energy muons
 - Large beam acceptance
 - Fast beam acceleration
 - Synchrotron oscillation for phase rotation
- High field RF development
 - Finemet RF core, 150 kV/m

Fixed Field Alternating Gradient Synchrotron (FFA)

- Best accelerator ring for low-energy muons
 - Large beam acceptance
 - Fast beam acceleration
 - Synchrotron oscillation for phase rotation
- High field RF development
 - Finemet RF core, 150 kV/m

2003 - 2007 at Osaka University

PRISM-FFAG (6 sectors) in RCNP, Os

第

µ⁻N → e⁻N (7 x 10 ⁻¹³)			Mu2e			
		COMET	Phase-I			
	Sensitivity	/:	10 ⁻¹⁵			
μ ⁺ → e ⁺ e ⁺ e ⁻			М	u3e Phas	e-l	
(1 x 10 ⁻¹²)	Sensitivity	/:		10⁻¹⁴		10 ⁻¹
$\mu^+ \rightarrow e^+ \gamma$		MEG I	I			
(4.2 x 10 ⁻¹³)	Sensitivity	/:		10⁻¹⁴		
		2025				2
				Data Taking (Approved Experim		

modified from the muon CLFV white paper for the EPPSU2019 by YK

modified from the muon CLFV white paper for the EPPSU2019 by YK

modified from the muon CLFV white paper for the EPPSU2019 by YK

modified from the muon CLFV white paper for the EPPSU2019 by YK

In Case of Muon CLFV Discovery...

In Case of Muon CLFV Discovery...

CLFV is an indirect search but,

$\mu^+ \rightarrow e^+ \gamma \text{ and } \mu^+ \rightarrow e^+ e^+ e^-$

$\rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$

Angular distribution of polarized $\mu^+ \rightarrow e^+ \gamma$ Decay

SU(5) SUSY-GUT

non-unified SUSY with heavy neutrino Left-right symmetric model

SO(10) SUSY-GUT

odels by chirality of positrons. peam is 100% polarized. n decays can be used to grounds.

al., Phys. ReV. Lett. 38 (1977) 937 Okada, Phys. Rev. Lett. 77 (1996) 434 YK. A. Maki and Y. Okada, Phys.Rev.D 55 (1997) 2517

$\rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$

Angular distribution of polarized $\mu^+ \rightarrow e^+ \gamma$ Decay

non-unified SUSY with heavy neutrino Left-right symmetric model

SO(10) SUSY-GUT

odels by chirality of positrons. peam is 100% polarized. n decays can be used to grounds.

, et al., Phys. ReV. Lett. 38 (1977) 937 YK, Y. Okada, Phys. Rev. Lett. 77 (1996) 434 YK. A. Maki and Y. Okada, Phys.Rev.D 55 (1997) 2517

 Dalitz distribution of 3 body decay may be measured for model discrimination and correct rate estimation.

Model Discrimination in $\mu \rightarrow e$ conversion

Muon Target Dependence for $\mu \rightarrow e$ conversion

Model Discrimination in $\mu \rightarrow e$ conversion

Muon Target Dependence for $\mu \rightarrow e$ conversion

vector interacton (charge radius)

dipole interaction SUSY GUT, SUSY seesaw

SUST GUI, SUST Seesa

Left-Right symmetry, Type-III

seesaw, Leptoquark

scalar interaction

RPV SUSY, Leptoquark

Model Discrimination in $\mu \rightarrow e$ conversion

Muon Target Dependence for $\mu \rightarrow e$ conversion

single operator analysis

- vector interaction (with Z boson)
- vector interacton (charge radius)
- dipole interaction
- scalar interaction
- SUSY GUT, SUSY seesaw

Left-Right symmetry, Type-III

seesaw, Leptoquark

RPV SUSY, Leptoquark

Model Discrimination in $\mu \rightarrow e$ conversion

Muon Target Dependence for $\mu \rightarrow e$ conversion

single operator analysis

R. Kitano, M. Koike and Y. Okada, Phys. Rev. D 66, 096002 (2002) V. Cirigliano, R. Kitano et al., Phys. Rev. D80, 013002 (2009) J. Heeck, R. Szafron, Y. Uesaka, Nucl. Phys. B980 (2022) 115833 W.C. Haxton, E. Rule, L. McElvain, et al., Phys. Rev. C 107, 3 (2023) E. Rule, W.C. Haxton, K. McElvain, Phys. Rev. Lett. 130 131901 (2023) M. Hoferichter, J.Menendez and F. Noel, Phys. Rev. Lett. 130, 131902 (2023)

2nd Target selection with different information

S. Davidson, YK, M. Yamanaka, Phys. Lett. B790 (2019) 380-388 J. Heeck, R. Szafron, and Y. Uesaka, Nucl. Phys. B 980 (2022) 115833

2nd Target selection with different information

S. Davidson, YK, M. Yamanaka, Phys. Lett. B790 (2019) 380-388 J. Heeck, R. Szafron, and Y. Uesaka, Nucl. Phys. B 980 (2022) 115833

Spin Dependent $\mu \rightarrow e$ conversion

- Spin independent (SI) µ-e Conversion: coherent Spin dependent (SD) µ-e Conversion: incoherent
- •Extract SD, by comparing zero-spin and nonzero spin targets
 - •Effect may not be large by $1/N^2$
 - V. Cirigliano, S. Davidson, YK, Phys. Lett. B 771 (2017) 242 S. Davidson, YK, A. Saporta, Eur. Phys. J. C78 (2018) 109

2nd Target selection with different information

S. Davidson, YK, M. Yamanaka, Phys. Lett. B790 (2019) 380-388 J. Heeck, R. Szafron, and Y. Uesaka, Nucl. Phys. B 980 (2022) 115833

Spin Dependent $\mu \rightarrow e$ conversion

- Spin independent (SI) µ-e Conversion: coherent Spin dependent (SD) µ-e Conversion: incoherent
- •Extract SD, by comparing zero-spin and nonzero spin targets
 - •Effect may not be large by $1/N^2$
 - V. Cirigliano, S. Davidson, YK, Phys. Lett. B 771 (2017) 242 S. Davidson, YK, A. Saporta, Eur. Phys. J. C78 (2018) 109

Spin polarized $\mu \rightarrow e$ conversion

- Angular distribution with respect to the spin polarization determines the chirality of an electron.
 - YK and Y. Okada, RMP 73 (2001) 151

Muon's Lepton Number Violation and Axion-like Particles

$\mu^- \rightarrow e^+ \text{conversion}$

$\mu^- \rightarrow e^+ \text{conversion}$

$\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z - 2)$

- Lepton number violation (LNV) and CLFV
- short distance TeV LNV Physics
- Event Signature
 - mono energetic positron (to the ground state)

• $E_{e^+} = m_{\mu} - B_{\mu} - E_{rec} - M(A, Z - 2) + M(A, Z)$

- Backgrounds
 - Radiative muon capture (RMC) followed by photon conversion
- Current limits (from SINDRUM at PSI)

μ^- + Ti $\rightarrow e^+$ + Ca(gs)	1.7×10^{-12}
μ^- + Ti $\rightarrow e^+$ + Ca(ex)	3.6×10^{-11}

J. Kaulard et al. (SINDRUM-II), Phys. Lett. B422 (1998) 334.

$\mu^- \rightarrow e^+ \text{conversion}$

$\mu^- + N(A, Z) \rightarrow e^+ + N(A, Z - 2)$

- Lepton number violation (LNV) and CLFV
- short distance TeV LNV Physics
- Event Signature
 - mono energetic positron (to the ground state)

• $E_{e^+} = m_{\mu} - B_{\mu} - E_{rec} - M(A, Z - 2) + M(A, Z)$

- Backgrounds
 - Radiative muon capture (RMC) followed by photon conversion
- Current limits (from SINDRUM at PSI)

μ^- + Ti $\rightarrow e^+$ + Ca(gs)	1.7×10^{-12}
μ^- + Ti $\rightarrow e^+$ + Ca(ex)	3.6×10^{-11}

J. Kaulard et al. (SINDRUM-II), Phys. Lett. B422 (1998) 334.

• requirement of candidate target N(A, Z)

 $E_{\mu^-e^+} > E_{RMC}^{end} \longrightarrow M(A, Z-1) > M(A, Z-2)$

B. Yeo, YK, M. Lee and K. Zuber, Phys. Rev. D96 (2017) 075027

- Mu2e and COMET are trying to measure at the same time of $\mu^- \to e^-$ conversion
 - x10000 improvement can be expected
 - RMC background spectrum, better to measured.

34

a is a light, invisible, neutral particle (ALP) with LFV coupling to leptons.

$$\Rightarrow e^{+}a$$
 a is a light, invisible, neutral particular of the formula of the f

μ

article otons.

 $\ell_j)$ $+|C_{ij}^A|^2$

$$\mu^+ \rightarrow e^+ a$$

a is a light, invisible, neutral particle (ALP) with LFV coupling to leptons.

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu} a^{2f_a}}{2f_a} \left(C_{ij}^V \ \bar{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \bar{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right)$$
$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^3}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2} \right)^2 \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$

	upper limits	$F_{e\mu}$ (GeV)	
TRIUMF	$BR(\mu^+ \rightarrow e^+ \alpha_{RH}) < 2.6 \times 10^{-6}$	$> 5,5 \times 10^9$	988
online	$BR(\mu^+ \to e^+ a) < 5.8 \times 10^{-5}$	$> 1.2 \times 10^9$	2015
Los Alamos	$BR(\mu^+ \to e^+ a\gamma) < 1.1 \times 10^{-9}$	$> 9.8 \times 10^8$	1988
MEG-II forward	$\mathrm{BR}(\mu^+ \to e^+ a_{\mathrm{RH}}) < 10^{-7}$	rep≥o 3.00bi (Nanka	i) ?
Mu3e-online	$BR(\mu^+ \to e^+ a) < 10^{-8}$	$> 10^{10}$?
MEG-II	$BR(\mu^+ \to e^+ a \gamma) < 10^{-10}$	$> 10^{10}$?

 ℓ_j

$$\mu^+ \rightarrow e^+ a$$

a is a light, invisible, neutral particle (ALP) with LEV coupling to leptons.

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu} a^{2f_a}}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \right)$$
$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^3}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2} \right)^2 \quad F_{ij} \equiv \frac{2f}{\sqrt{|C_{ij}^V|^2}}$$

	upper limits	$F_{e\mu}$ (
TRIUMF	$BR(\mu^+ \rightarrow e^+ \alpha_{RH}) < 2.6 \times 10^{-6}$	> 5,5
online	$BR(\mu^+ \to e^+ a) < 5.8 \times 10^{-5}$	> 1.2
Los Alamos	$BR(\mu^+ \to e^+ a \gamma) < 1.1 \times 10^{-9}$	> 9.8
MEG-II forward	$\mathrm{BR}(\mu^+ \to e^+ a_{\mathrm{RH}}) < 10^{-7}$	$r e \ge 3.0$
Mu3e-online	$\mathrm{BR}(\mu^+ \to e^+ a) < 10^{-8}$	> 10
MEG-II	$\mathrm{BR}(\mu^+ \to e^+ a \gamma) < 10^{-10}$	> 10

?

Y. Uesaka, Phys. Rev. D102, 095007 (2020) Tianyu Xing et al., Chin. Phys. C47, 013108 (2023)

Muonium

 $\mu^+ e^- (Mu) \rightarrow \mu^- e^+ (\overline{Mu})$

 $\Delta L_{\mu} = 2, \ \Delta L_{e} = 2$

$$\mu^+e^-$$
 (Mu) $\rightarrow \mu^-e^+$ (Mu)

$$\Delta L_{\mu} = 2, \ \Delta L_e = 2$$

models: doubly-charged Higgs etc.

$$\mu^+e^-$$
 (Mu) $\rightarrow \mu^-e^+$ (Mu)

$$\Delta L_{\mu} = 2, \ \Delta L_{e} = 2$$

- models: doubly-charged Higgs etc.
- Oscillation probability

$$P_{Mu\overline{Mu}} = \sin^2(\frac{t \times \Delta}{2}) \exp\left[-\frac{t}{\tau_{\mu}}\right]$$
$$\Delta = 2 < \overline{Mu} \ H_{Mu\overline{Mu}} \ Mu >$$

Oscillation maximum at $t = 2\tau_{\mu}$

$$\mu^+e^-$$
 (Mu) $\rightarrow \mu^-e^+$ (Mu)

$$\Delta L_{\mu} = 2, \ \Delta L_{e} = 2$$

- models: doubly-charged Higgs etc.
- Oscillation probability

$$P_{Mu\overline{Mu}} = \sin^2(\frac{t \times \Delta}{2}) \exp\left[-\frac{t}{\tau_{\mu}}\right]$$
$$\Delta = 2 < \overline{Mu} \ H_{Mu\overline{Mu}} \ Mu >$$

Oscillation maximum at $t = 2\tau_{\mu}$

• Experimental methods

- Production of Mu in vacuum
 - reduce residual EM fields
- Detection of \overline{Mu} decay
- Current limit (from PSI, 1999)
- $P_{Mu\overline{Mu}} \le 8.3 \times 10^{-11} (90\% \text{ C.L.})$

$$\mu^+e^-$$
 (Mu) $\rightarrow \mu^-e^+$ (Mu)

$$\Delta L_{\mu} = 2, \ \Delta L_{e} = 2$$

- models: doubly-charged Higgs etc.
- Oscillation probability

$$P_{Mu\overline{Mu}} = \sin^2(\frac{t \times \Delta}{2}) \exp\left[-\frac{t}{\tau_{\mu}}\right]$$
$$\Delta = 2 < \overline{Mu} \ H_{Mu\overline{Mu}} \ Mu >$$

Oscillation maximum at $t = 2\tau_{\mu}$

• Experimental methods

- Production of Mu in vacuum
 - reduce residual EM fields
- Detection of Mu decay
- Current limit (from PSI, 1999)
- $P_{Mu\overline{Mu}} \le 8.3 \times 10^{-11} (90\% \text{ C.L.})$

New proposals

CSNS in China: X(10-100) sensitivity

See the talk by Yuhang Guo

MAP (US)

and the second

MAP (US)

Drives the beam quality similar to MAP design still challenging design with challenging components

IP Accelerator **Muon** Collider μ^{-} µ Injector Ring >10TeV CoM ~10km circumference *********** *IP 2* 4 GeV Target, π Decay μ Cooling Low Energy Proton & µ Bunching Channel µ Acceleration Channel Source

MAP (US)

MAP (US)

Some More with Muons

Some More with Muons

 Normal muon decay • precise measurements of Michel parameters CLFV

• $\mu \to e\gamma\gamma$

• $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom

- $\mu N \rightarrow \tau N DIS$ scattering
- Muonium
 - Muonium hyperfine splitting
 - Muonium 1s-2s spectroscopy

Some of muon particle physics topics which were not covered are :

any missing !

- Muon particle physics could provide a unique discovery potential for physics beyond the Standard Model (BSM).
- Development of a highly intense muon source is an important key success factor for muon particle physics programs.

- Muon particle physics could provide a unique discovery potential for physics beyond the Standard Model (BSM).
- Development of a highly intense muon source is an important key success factor for muon particle physics programs.

Thank you for your attention!

Backup Slides

43