

Liang Li Shanghai Jiao Tong University

Experimental Principle

The name of game: measure frequency

- Put (polarized) muons in a magnetic field and measure precession f.q.
- Get muon spin direction from decayed electrons
- $a_{\mu} \sim difference between precession frequency and cyclotron frequency$

 $\omega_a = \omega_s - \omega_c$

 $\omega_{a} = a_{\mu} \frac{\overline{mc}}{mc}$ g=2 $p_{\overline{\nu}_{e}} \underbrace{S_{\overline{\nu}_{e}}}_{p_{\nu_{\mu}}} \underbrace{p_{\mu}}_{\overline{S_{\mu}}} \underbrace{p_{\mu}}_{\overline{S_{\mu}}} \underbrace{p_{e}}_{\overline{S_{e}}} \underbrace{p_{e}}_{\overline{S_{e}}} \underbrace{p_{e}}_{\overline{S_{e}}} \underbrace{\omega_{s} = g \frac{e}{2}}_{\overline{2}}$

Frequency Measurements

Frequency measurements can be done in very high precision

Measure frequency ratio and extract from several measurements

 $a_{\mu} \sim \frac{\omega_a}{\langle B \rangle} = \frac{g_e}{2} \frac{\omega_a}{\varpi_p} \frac{m_{\mu}}{m_e} \frac{\mu_p}{\mu_e}$

- ω_p is proton Larmor precession frequency in water sample ($\omega_p \sim |B|$)
- ϖ_p is the weighted magnetic field folded with muon distribution
- All other values from Committee on Data for Science and Technology (CODATA), uncertainty < 25 ppb
 - E.g. muon-to-electron mass ratio by muonium hyperfine structure experiment
- Final measurements done in three steps
 - Inject muons into a ring with uniform magnetic field
 - Measure muon frequency difference ω_a
 - Measure proton precession frequency ω_p and muon distribution
 - Blind analyses: measurements and correction factors done *independently* before final answer

Detector System

Data Collection

- ✓ Apr. 2021: Run-1 Result (2018 data) Stat. 434ppb
- ✓ Aug. 2023: Run-2/3 Result (2019-20 data) Stat. 201ppb
- ✓ Circa 2025: Run-4/5/6 Result (2021-23 data) Stat. ~100ppb
- Run-2/3 ~ 4 times larger than Run-1
- Run-4/5/6 ~ 4 times larger than Run-2/3

ω_a Measurement

- Energetic e+ oscillates as µ+ spin direction aligns or antialigns with momentum direction
- Count e+ hitting calos above threshold (or weight the hits)
- Extract the oscillation frequency ω_a via fitting time spectrum More in Kim-Siang's talk

ω_p Measurement

• In-vacuum NMR trolley maps field every few days

17 petroleum jelly NMR probes

- 378 fixed probes monitor field during muon storage at 72 locations
- Cross-calibrate using a cylindrical plunging H₂O probe

Full Measurement with Corrections

Muon Distribution Measurement

- Trackers can measure beam oscillations directly
 - Beam-dynamics corrections
 - Tuning simulations
 - Optimizing experiment running conditions
- Use muon distribution to weight field maps by where the muons live

Full Measurement with Corrections

- Total correction 622 ppb, dominated by E-field & Pitch
- Corrections are small, but dominated Run-1 systematics
- How/where to improve?

Improving Systematic Uncertainties

 ω_p syst.

Major improvements came from:

- Repaired damaged resistors: improved beam storage, C_{pa} 75ppb→13ppb
- Stronger kicker: centered muon distribution, C_e 53ppb→32ppb
- Beam effects: smaller oscillations, ω_{a_cbo} 40ppb \rightarrow 20ppb
- Quad vibrations: more measurement positions, B_q 92ppb \rightarrow 20ppb
- Pileup background: improved reconstruction/algorithm, $\omega_{a p}$ 30ppb \rightarrow 7ppb

Improving Systematic Uncertainties

Quantity	Correction	Uncertainty
	[ppb]	ppb
ω_a^m (statistical)	_	201
ω_a^m (systematic)	_	25
C_e	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\rm calib} \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu_p'(34.7^{\circ})/\mu_e$	_	11
m_{μ}/m_e	_	22
$g_e/2$	—	0
Total systematic		(70)
Total external parameters	_	\mathbf{X}
Totals	622	215

Total uncertainty: 215 ppb

[ppb]	Run-1	Run-2/3	Ratio
Stat.	434	201	2.2
Syst.	157	70	2.2

- Near-equal improvement
- Still statistically dominated

Total systematic uncertainty: 70 ppb
Surpasses the proposal goal of 100 ppb!

Blind Analysis

- Perform analysis with software & hardware blinding
 - Hardware blind comes from altering our clock frequency
 - Clock is locked and value kept secret until analysis completed
 - Non-collaborators set frequency to (40δ) MHz
- Unblinding meeting (on July 24th 2023)
 - Unanimous vote from all collaborators to unblind
 - Secret envelopes were finally opened to reveal the hidden clock frequencies and the result...

Data Consistency Check

Data Consistency Check

Run2/3 Result & New World Average

a_µ(FNAL) = 0.00 116 592 055(24) [203 ppb]

a_µ(Exp) = 0.00 116 592 059(22) [190 ppb]

Data Consistency Check

- Cross checked with BNL results as well
- Datasets taken with slightly different fields

Experiment vs. Theory Saga

- Large discrepancy between experiment results and theory calculations (WP) from 2020
- >5 sigma discovery?!
- New Physics?!
- But there are new developments ...

Hadronic Vacuum Polarization Update

- LQCD Intermediate window: BMW 2020 claimed 0.8% precision, closer to experimental value but 2.1σ with datadriven HVP
- Need full LQCD HVP calculations for all windows
 - Data-driven results from SND2k and CMD-3 since 2020 White Paper
- SND2k agrees with 2020 results
- CMD-3 deviates from all others $>3\sigma$
- New paper from Babar
 - Arxiv: 2308.05233 [SJTU contributions]
 - Possible explanation for tensions with other experiments
- MuonE: $a_{\mu_{Had}}$ from experiment!

Experiment vs. Theory Saga

Expect to solve theoretical ambiguity in the next 1-2 years

- Muon g-2 Theory Initiative latest summary
 - https://muon-gm2theory.illinois.edu/
- More results from BaBar, KLOE, SND, BESIII, Belle II to come soon
- $a_{\mu}(Exp)$ Run1-6 uncertainty:
 - <120ppb 50% reduction</p>
- a_µ(SM) 2025 uncertainty:
 - <120-150ppb? 50% reduction?

New Physics Explanation

Dominik Stöckinger, arxiv: 2104.03691

Which models can still accommodate large deviation?

SUSY: MSSM, MRSSM

- MSugra...many other generic scenarios
- Bino-dark matter+some coannihil.+mass splittings
- Wino-LSP+specific mass patterns

Two-Higgs doublet model

• Type I, II, Y, Type X(lepton-specific), flavour-aligned

Lepto-quarks, vector-like leptons

• scenarios with muon-specific couplings to μ_L and μ_R

Simple models (one or two new fields)

- Mostly excluded
- light N.P. (ALPs, Dark Photon, Light $L_{\mu} L_{\tau}$)

Sensitive Test for New Physics Model

Muon Electric Dipole Moment (EDM)

- SM prediction for muon EDM is almost 0: $d_{\mu} < 10^{-38} e \cdot cm$
- Unambiguous new physics signal
- Muon is the best option
 - Direct measurement
 - Free of nuclear / molecular effects
- Note that $d_e \sim 10^{-29} e \cdot cm$
 - Current best result $d_{\mu} \sim 10^{-18} \, e \cdot cm$
 - 10³-10⁴ improvement expected
 - Still need BSM effect >> $(m_{\mu}/m_{e})^{2}$
- **Big discovery potential**

Muon Electric Dipole Moment (EDM)

CPT and Lorentz Invariance Violation

Standard Model Extension (SME) Allows for CPT/LV

Muon anomalous frequency would be changed by CPT/LV terms

$$L' = -a_{\kappa}\bar{\psi}\gamma^{\kappa}\psi - b_{\kappa}\bar{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\bar{\psi}\sigma^{\kappa\lambda}\psi \qquad \delta\omega_{a}^{\mu^{\pm}} \approx 2\check{b}_{Z}^{\mu^{\pm}}\cos\chi + 2(\check{b}_{X}^{\mu^{\pm}}\cos\Omega t + \check{b}_{Y}^{\mu^{\pm}}\sin\Omega t)\sin\chi + \frac{1}{2}ic_{\kappa\lambda}\bar{\psi}\gamma^{\kappa}\vec{D}^{\lambda}\psi + \frac{1}{2}id_{\kappa\lambda}\bar{\psi}\gamma_{5}\gamma^{\kappa}\vec{D}^{\lambda}\psi, \qquad \check{b}_{J}^{\mu^{\pm}} \equiv \pm \frac{b_{J}}{\gamma} + m_{\mu}d_{J0} + \frac{1}{2}\varepsilon_{JKL}H_{KL} \qquad (J = X, Y, Z)$$

- Sidereal oscillation in $\mathcal{R} = \omega_a / \widetilde{\omega}_n'$
 - ω_a is proportional to magnetic field
- Two kinds of CPT/LV signals
 - Difference between average R_{μ^+} and R_{μ^-}
 - Sidereal modulations in R_{μ^+} and R_{μ^-}
- Previous BNL result put sharp bound on CPT
 - CPT/LV coefficients < ~10⁻²⁴ GeV
 - Dimensionless FOM < ~10⁻²³
- Improvement from FNL g-2 coming soon

 \hat{Y}

Nonrotating Celestial Equatorial Frame $(\widehat{X}, \widehat{Y}, \widehat{Z})$

Conclusion and Outlook

✓ Most precise Muon g-2 experiment result so far: 0.20ppm

- ✓ Final release expected in 2025
 - ✓ Expect significant improvements from both experiment and theory side
 - ✓ >5σ discovery potential
- ✓ New physics potential in many aspects
 - ✓ Test BSM models, Muon EDM, CPT/LV and Dark Matter search
- ✓ J-PARC Muon g-2/EDM experiment expected to take data in ca. 2028
- ✓ More exciting results from muon physics underway, stay tuned!

Backup

Muon g-2 Collaboration

US Universities

- **Boston**
- Cornell
- UIUC
- James Madison
- Kentuckv
- Massachusetts
- Michigan
- **Michigan State**
- Mississippi
- **North Central College**
- Northern Illinois
- Regis
- Virginia
- Washington

US National Labs

- Argonne
- Brookhaven
- Fermilab

181 collaborators 33 Institutions 7 countries

China

Shanghai Jiao Tong

Dresden

Italy

- Frascati
- Molise
- Pisa
- **Roma Tor Vergata**
- Trieste
- Udine

Korea

CAPP/ISB KAIST

Russia

- Budker/Novosibirsk
- **JINR Dubna**

United Kingdom $\mathbb{N}\mathbb{Z}$

- Lancaster/Cockcroft
- Liverpool
- Manchester
- **University College** London

Muon g-2 Collaboration

7 countries, 33 institutions, 181 collaborators

Muon g-2 Collaboration Meeting @ Elba May 2019

What about W Mass?

A. Keshavarzi:

The new CDF M_W measurement makes the situation worse:

- It pushes $\Delta \alpha_{had}^{(5)}(M_Z^2)$ even further away from FNAL g-2 and lattice HVP.
- From EW fit predictions, it results in 4.9 σ discrepancy for $\Delta \alpha_{had}^{(5)}(M_Z^2)$, 9.5 σ discrepancy for M_H .
- There is no scenario that accommodate Muon g-2 discrepancy and CDF CDF M_W .