Frictional Cooling of Muons

Yang Li, Haiyan Du, Yu Bao IHEP, CAS *MELODY 2023*

2023/11/05

Table of Contents

- Introduction of Muon Moderation
- Simulation
- Experimental Progress
- > Summary

Muon Moderation

Slow Muons

Moderation Method

PSI SµS

Solid rare-gas (Ar / Ne)

- Highly polarized μ^+ (>90%)
- Efficiency <10⁻⁴

LEM: ~6000 LE- μ^+ /s

J-PARC MLF MUSE

- Laser ionization of muonium
- High efficiency ($\sim 10^{-3}$)
- Polarization <50%
- Complex laser system

U-Line: 10^5 LE- μ^+ /s expected

A. Amato, presentation at 2nd Workshop on CSNS Muon Source Multidisciplinary Applications, Hefei, China, 2019

Physics Process

- > 4 MeV 10 keV
 - Ionization of atoms
 - Coulomb collisions with e⁻
- ▶ 10 keV 10 eV
 - Ionization
 - Charge-exchange cycles $(\mu^+ \rightleftharpoons Mu)$
 - Elastic scatterings

 \succ LE- μ^+ loss mainly due to neutralization

> Helium

- Wide band gap (24.6 eV)
- Cross section of Mu ionization > formation below keV energy

Moderator

Experimental data show that moderation efficiency increases with increasing bandgap energy of the moderator

Moderator	Moderation efficiency	<i>E</i> g [eV]
Ne	$1.4 \pm 0.2 \times 10^{-4}$	21.58
Ar	$8.6 \pm 1.2 \times 10^{-5}$	14.16
Kr	$1.7 \pm 0.2 \times 10^{-5}$	11.61
Xe	$5.7 \pm 1.1 \times 10^{-7}$	9.33
N_2	$6.3\pm1.1\times10^{-5}$	15.1
O_2	$1.4\pm0.2\times10^{-5}$	12.08
CH_4	$1.4\pm0.2\times10^{-5}$	12.51
LiF	$1.9\pm0.5\times10^{-7}$	14.1
SiO_2	$3.0\pm1.0\times10^{-7}$	~ 9
Al	$2.0\pm0.4\times10^{-7}$	0
Cu	$1.0\pm0.3\times10^{-7}$	0

E. Morenzoni, Physics and applications of low energy muons, Muon Science: Muons in Physics, Chemistry and Materials (Bristol and Philadelphia, 1999), vol. 51, eds. by S.L. Lee, S.H. Kilcoyne, R. Cywinski, pp. 343–404 (1998)

Y. Li

Y. Bao *et al.*, PRL 112, 224801 (2014) A. Antognini *et al.*, PRL 125, 164802 (2020)

μ^+ Frictional Cooling

- He gas moderator
- Apply electric field in He gas
 - Compensate for energy loss, reaching equilibrium
 - Electric discharges inside the He gas
 - Charge build-up on the gas cell wall
 - Beam extraction into vacuum

Simulation

Simulation Software

- Investigate low-energy muon processes in materials and implement them in simulation
 - Geant4-based code
 - Implemented into G4beamline
- > LE μ^+ -He interaction (cross sections scaled from proton-He cross sections)

Muon in Helium

Charge exchange

- Electronic stopping power (SP) depends only on the velocity of the projectile, but not on its mass
- Therefore, the electronic SP for muons in He is same as that for protons in He at the same velocity (velocity-scaling)

Elastic collisions

 Differential and total cross sections for elastic collisions are the same for muons and protons at the same center-of-mass energy (energyscaling)

•
$$\sigma_{\rm el}^{\mu {\rm He}}(\frac{M_{p {\rm He}}}{M_{\mu {\rm He}}}E_{\rm CM}) = \sigma_{\rm el}^{p {\rm He}}(E_{\rm CM})$$

•
$$M_{A\mathrm{He}} = \frac{M_A M_{\mathrm{He}}}{M_A + M_{\mathrm{He}}}$$

• At the same $E_{\rm CM}$, SP due to elastic collisions with target nuclei (nuclear SP) for protons in He is larger by a factor of $\frac{M_p}{M_p + M_{\rm He}} \cdot \frac{M_\mu + M_{\rm He}}{M_\mu} \approx 7.3$ than that for muons in He

Implementation

\geq 1 keV

Use standard Geant4 processes:

- G4MuIonisation
- G4MuMultipleScattering
- G4MuBremsstrahlung
- G4MuPairProduction

< 1 keV, switch to custom low-energy processes:

Elastic collisions

Elastic energy loss in the laboratory frame

•
$$dE = \frac{2m_A m_B}{(m_A + m_B)^2} (1 - \cos \theta) E_A$$

- A is projectile, θ the scattering angle in the centerof-mass frame
- ✓ Mean free path $\lambda = \frac{1}{N\sigma_{el}}$, *N* is the gas density

Charge exchange

- Electron-capture: Average inelastic energy loss 11 eV (-24.6 eV to ionize He atom, +13.6 eV in Mu formation)
- Electron-loss: Average inelastic energy loss 13.6 eV (ionization energy of Mu)
- ✓ In one charge-exchange cycle, d*E*=24.6 eV, mean free path $\lambda = \frac{1}{N\sigma_{capt}} + \frac{1}{N\sigma_{loss}}$ ✓ $\frac{dE}{Ndx} = 24.6 \text{ eV} \cdot \frac{\sigma_{capt} \sigma_{loss}}{\sigma_{capt} + \sigma_{loss}}$

Simulation Example (1)

> The evolution of μ^+ kinetic energy with time for μ^+ starting with 4 MeV energy at t = 0.

Simulation Example (2)

- > Muon drift in He gas and uniform electric field
 - μ^+ : 0.1 eV initial energy
 - He gas: 5 mbar, 293 K

Muon energy distributions at equilibrium

- Muon energy distributions for various reduced electric field strength values
- Average equilibrium energies (peaks) consistent with stopping power curve's predictions (dashed lines)

Simulation Example (3)

> Frictional cooling of surface μ^+ to below 1 keV energy

Efficiency of beam extraction into vacuum not yet considered

Simulation Example (4)

- Proton drift in He gas and uniform electric field
 - Proton velocity distributions consistent with (Ushiroda et al. 1988)

Figure 4. The distribution of the H⁺ ion velocity in the direction of the field in 0.2 Torr of helium 10 μ s after ions left the anode. The velocity axes are normalised with respect to ΔV , and are 2.5×10^5 and 5.0×10^5 cm s⁻¹ for 28.3 (O) and 56.6 Td (\bullet), respectively.

Experimental Progress

Muon Beam Test

- CW muon source: Frictional cooling experiment at PSI (Y. Bao *et al.* 2014)
- Plan to conduct frictional cooling test at ISIS under CSNS-ISIS collaboration MoU, as MELODY to be a pulsed muon source
- Extensive discussions with ISIS muon group this year
- Tend to utilize ISIS HiFi instrument's 5T superconducting magnet (Sep. next year)
- Simulation with HiFi's magnetic field map

Complete HiFi instrument for normal user experiments

Detectors removed and new snout and new window

From J.S. Lord

Y. Li

Simulation

Use full HiFi magnet to reduce incidence of muons hitting gas cell wall

HiFi magnet

- Diameter = 1488 mm, length = 1078 mm
- Main bore diameter = 300 mm

μ^+ beam

- 28 MeV/c, $\frac{\Delta p}{p} = 8\%$ (FHWM), 10⁹ μ^+ simulated
- Beam spot $\dot{\phi}$ 10 mm (sigmaXY=-5, sigmaXpYp=-0.25)
- Beam time structure: meanT=70 ns, FHWM=70 ns
- Energy degrader: 0.78-mm-thick carbon foil

Gas cell

- Diameter = 30 mm, length = 600 mm or 400 mm
- Material: POM
- He gas: 100 mbar, 293 K
- E-field: 0.115 kV/mm

Scintillation detector

- Purpose: To detect positrons from muon-decay
- Size: 10×10×30 mm³
- Detector collimator: 40-mm-thick copper
- Number of detectors: 12

HiFi Field Map

Sketch

Top port 100mm diameter

Not to scale

Detected positron counts vs. time

Y. Li

Test at CSNS

- Accelerating grid: Copper tapes on Kapton foil with resistor chain
- Gas cell material: ElectroStatic Discharge Polyoxymethylene (ESD POM) to mitigate charge build-up on the wall
- X Accelerating grid (~2 kV/cm) inside a few tens of mbar He gas ⇒ electrical breakdown
- Accelerating grid wrapped around gas cell
- High voltage stability test
- Outgassing rate test
- Demonstration test with protons in He gas

Gas cell prototype ϕ 3 cm, 24 cm long

Up to 34 kV

- Outgassing rate:
 1.21×10⁻⁸ (133.3Pa · L · s⁻¹ · cm⁻²)
- >0.25 sccm gas flow to keep contamination <0.1%</p>

Positron Moderation

- Magnetic mirror assisted positron moderation to improve efficiency, recycling the wasted fast positrons
- Prototype set up and tested at USTC positron lab
 - $B_{\rm max} = 0.1$ T, magnetic mirror ratio = 2.5
- Potential use-case: Muonium production

Simulation

Experiment

Summary

- PSI and J-PARC provide low-energy muons using different methods.
 - PSI: Solid rare-gas moderator
 - ➢ J-PARC: Laser ionization of thermal muonium
- > At CSNS, R&D of muon frictional cooling with helium gas is currently underway.
- First test with pulsed muon beam is planned at ISIS HiFi next year; in future: at the Test Port of MELODY.
- > The use of magnetic mirror is being considered for efficient muonium production.

• Energy: 4 MeV

- Intensity: 10⁵~10⁷µ⁺/s
- Polarization: >95%
- Time Resolution: 120ns

Backup Slides

Simulation Result

> z resolution

- Dashed line: detector position
- Filled area: initial z of the detected positron ⇒ muon-decay position