

Presentation on MELODY 2023 Workshop Nov. 4~6, 2023, Dongguan, China

Physical Design and Simulation Study of Searching for MuMubar on MELODY

- 1. Introduction to MuMubar
- 2. The MACS and a Novel MuMubar Spectrometer
- 3. Simulation Study of Novel MuMubar Spectrometer
- 4. Sensitivity Analysis on Searching for MuMubar with MELODY
- 5. Discussion and Summary

1.1 The cLFV prediction

$$\mathbf{v}_{1} \qquad \mathbf{v}_{1} \qquad \mathbf{v}_{1} \qquad \mathbf{v}_{2} \qquad \mathbf{v}_{3} \qquad \mathbf{v}_{3}$$

- Neutrino Oscillation indicated Neutral Lepton Flavor Violation.
- However, charged Lepton Flavor Violation (cLFV) is not observed so far.
- Searching for cLFV is an interesting topic.
 - $\mu^+ \rightarrow e^+ e^+ e^-$ • $\mu^+ \rightarrow e^+ \gamma$
 - $\mu^- N \rightarrow e^- N$
 - $\mu^+ e^- \rightarrow \mu^- e^+$

1.2 What is MuMubar?

- MuMubar is one of possible way of cLFV.
- By capturing a e^- , μ^+ would become to muonium.
- Muonium might become to Anti-muonium if muon and electron exchange charge.
- Lepton flavor doesn't conserve in this progress. 2 units of lepton flavor are violated.

1.3 How to Search for MuMubar?

- Mu and \overline{Mu} are unstable and will decay.
- Their decay products owns opposite charges.
- Searching for MuMubar is searching for the decay products with \overline{Mu} decay characteristics.

Mu Decay

 $\mu^- + e^+ \rightarrow e^- \bar{\nu}_e \nu_\mu + e^+$

1. Introduction to MuMubar

- 2. The MACS and a Novel MuMubar Spectrometer
 - 2.1 Introduction to MACS
 - 2.2 Ways to improve MACS
 - 2.3 Physical Design of Novel MuMubar Spectrometer
- 3. Simulation Study of Novel MuMubar Spectrometer
- 4. Sensitivity Analysis on Searching for MuMubar with MELODY
- 5. Discussion and Summary

2.1 MACS

- MACS, 1998, @PSI-ne5, $8 \times 10^6 \mu/s$, CM
- Decay Electron Spectrometer (DES):
 - ➢ MWPC + Scintillator + 0.1 T Mag Field
- Track Electron Spectrometer (TES):
 - ➢ MCP + Scintillator
- 0.1 T Mag Field guild track electron to TES
- $P < 8.3 \times 10^{-11}$ with 180 days observing.

2.2 Ways to improve MACS – muon source

- MACS, 1998, @PSI-ne5, $8 \times 10^6 \mu/s$, CM
- Decay Electron Spectrometer (DES):
 MWPC + Scintillator + 0.1 T Mag Field
- Track Electron Spectrometer (TES):
 - ➢ MCP + Scintillator
- 0.1 T Mag Field guild track electron to TES
- $P < 8.3 \times 10^{-11}$ with 180 days observing.

More Muon Exposure

- Longer observing time
 - \geq 180 days to 3 years
- More intensive muon source > $8 \times 10^6 \,\mu/s$ to $10^{10} \,\mu/s$

2.2 Ways to improve MACS – spectrometer

More Muon Exposure

- Longer observing time
 - \succ 180 days to 3 years
- More intensive muon source
 - > $8 \times 10^6 \,\mu/s$ to $10^{10} \,\mu/s$

- MACS, 1998, @PSI-ne5, $8 \times 10^6 \mu/s$, CM
- Decay Electron Spectrometer (DES):
 MWPC + Scintillator + 0.1 T Mag Field
- Track Electron Spectrometer (TES):
 - ➢ MCP + Scintillator
- 0.1 T Mag Field guild track electron to TES
- $P < 8.3 \times 10^{-11}$ with 180 days observing.

More Sensitive Detector

- Need a detector with:
 - Excellent timing sensitivity.
 - ➤ Small mass budget.

e

2.2 Ways to improve MACS – LGAD

- Low Gain Avalanche Diode (LGAD).
- Developed for ATLAS and CMS.

Depth	Signal Width	Temporal Res.	Seperation Size
50µm	2~3ns	30 ps	1.3 × 1.3 mm^2
	× Cathode Ring Avalanc Region Cathode P Avalanc Region	p-type Bulk	
	Anode Bing	P*	Reweiner

China Spallation Neutron Source

2.3 Physical Design of Novel MuMubar Spectrometer

Construction of Novel MuMubar Spectrometer (Not to scale)

- Replace the MWPC with LGAD as the Michel Electron Tracker (MET).
- ➤ The Advantages:
 - 2 order of magnitude better on temporal resolution.
 - High feasibility, no risk of strike.

1. Introduction to MuMubar

2. The MACS and a Novel MuMubar Spectrometer

- Simulation Study of Novel MuMubar Spectrometer
 3.1 Geant4 Modeling and Simulation Study
 - 3.2 Event Reconstruction
 - 3.3 Performance of the spectrometer
- 4. Sensitivity Analysis on Searching for MuMubar with MELODY

5. Discussion and Summary

3.1.1 Geant4 Modeling

• EM field: 0.1T guide Mag-field + 8 kV static Elec-field

3.1.2 Simulation Study

- Comleted:
 - ✓ Geant4 Modeling of LGAD based detectors.
 - ✓ Event generator of Mu decay and \overline{Mu} decay
 - ✓ Event generator of rare background:
 - Bhabha scattering
 - Five body decay of muon ٠
 - ✓ Simulated event sample base.

Demostration of a \overline{Mu} decay event

3.2.1 DE track reconstruction

The decay electron is reconstructed by the hits on MET barrels.

China Spallation Neutron Source

PAGE 15

Yuhang Guo

3.2.2 TE Track Reconstruction

PAGE 16

Yuhang Guo

3.3 Performance of the spectrometer

	Items	Performance
	MET volume efficiency	~76%
Michel Electron Tracker (MET)	MET positioning resolution	1 mm
	MET hit time resolution	30 ps
Track Electron Guide Tube	Positron transformation efficiency	~80%
	TED detection efficiency	~70%
Track Electron Detector (TED)	TED positioning resolution	1 mm
	TED hit time resolution	30 ps
	Michel electron energy rec resolution	1.6 keV
Electrons vertex reconstruction	Track electron vertex rec resolution in XY	1.3 mm
	Track electron vertex rec resolution in Z	1.6 mm

- 1. Introduction to MuMubar
- 2. The MACS and a Novel MuMubar Spectrometer
- 3. Simulation Study of Novel MuMubar Spectrometer
- 4. Sensitivity Analysis on Searching for MuMubar with MELODY
 - 4.1 The MELODY
 - 4.2 The Piled-up Signals
 - 4.3 The Analysis Software and Algorithm
 - 4.4 Verification to the Reconstruction
 - 4.5 Selection Criteria and Preliminary Result

5. Discussion and Summary

4.1 The MELODY

Parameters	Values
Pulse Frequency	1Hz
µ rate in single pulse	10 ⁵ ~10 ⁷ , adjustable
Full width of single pulse	150 ns

- One of the test beam to be built in CSNS-II project.
- Pulsed surface muon source, 1Hz.
 - We hope to test and tune our spectrometer on MELODY.
- Deal with the pile-up signals applying intensive µ source.

4.2 The Piled-up Signals

Time of Michel Electron Produced

- Signals of Michel electron are too intensive, and pile up on the MET.
- Have to find the **e**⁻ from the massive **e**⁺ signals.
- The gaseous detectors will be blind in this condition.
- The LGAD can provide high temporal resolution measurement, which is necessary to discriminate the massive piling up signals.
- This is an important issue in this study.

4.3.1 Steps to Resolve the Piled-up Signals

China Spallation Neutron Source

4.3.2 The Analysis Software

China Spallation Neutron Source

4.3.3 The Analysis Algorithm

Transform MC to DET data

Find the correlated hits Select the best Rec. track

4.4 Verification to the Reconstruction 10000 ME/pulse (SN.

• The selected best rec. tracks are verified by event ID (MC truth).

4.4 Verification to the Reconstruction

- (One \overline{Mu} decay + 10000 Mu Decay) × 9576 pulse.
- Totally 6945 in 7289 e^- tracks are successfully reconstructed. Eff = 95%.

China Spallation Neutron Source

1. Bhabha Scattering

2. Five Body Decay of Muon

➤ Time of TE flight (TOF)

Distance of Closest Approach (DCA)

• Two Key criteria to suppress background :

4.5.2 Preliminary Result of Analysis

- nMWPCHit==5
- nMCPHit==1
- 1<=nCsIHit<=2
- CsIHitT<200
- CsIHitT-MCPHitT>0
- CsIHitT-MCPHitT<6
- CsIHitEk>0.4
- CsIHitEk<0.6

1V90 $N \cdot \varepsilon$

Value **Parameters Detection Efficiency** 39% 5-body bkg remained 2 Bhabha bkg remained 0 Equivalent observing 147 for 5-body bkg; 20 for Bhabha bkg; time (year) Equivalent Bkg. Level 0.014

- Sensitivity by Feldman-Cousins Approach:
 - N_{90} , 90% C.L. upper limit (0 obs).
 - N, total count of Mu decay event.
 - $-\varepsilon$, the detection efficiency.

China Spallation Neutron Source

日

CONTENT

- 1. Introduction to MuMubar
- 2. The MACS and a Novel MuMubar Spectrometer
- 3. Simulation Study of Novel MuMubar Spectrometer
- 4. Sensitivity Analysis on Searching for MuMubar with MELODY
- 5. Discussion and Summary

China Spallation Neutron Source

What sensitivity can we ge	et on MELODY?
Assumptions:	

- $1 \times 10^4 \,\mu/\text{pulse}$, 1Hz repetition.
- 3 years data taking, 2×10^7 s per year.
- Spectrometer running stably.
- 5% free muonium producing efficiency.

2.1×10⁻¹⁰ in 90% C.L. (8.3×10⁻¹¹ of MACS)

I (µ/s)	Time	Free Mu Exposure	Detection Efficiency	Background Level	Sensitivity (90% C.L.)
1×10^4	6×10^7 s	3×10^{10}	~39%	0.02	2.1×10^{-10}
1×10^{5}	$6 imes 10^7$ s	3×10^{11}	~39%	If O	2.1×10^{-11}

5.1 Discussion

- Could it perform better if a larger repetition muon source is applied?
- Assumptions:
 - $1 \times 10^4 \,\mu/\text{pulse}, 1 \,\text{kHz repetition}.$
 - 3 years data taking, 2×10^7 s per year.
 - Spectrometer running stably.
 - 5% free muonium producing efficiency.
- The intensity will reach 1E7 μ /s. Need more strict criteria to suppress the bkg level to ~0. Detection eff. will surely decrease.

I (µ/s)	Time	Free Mu Exposure	Detection Efficiency	Background Level	Sensitivity (90% C.L.)
1×10^{7}	6×10^7 s	3×10^{13}	If ~25%	If ~0	3.3×10^{-13}
1×10^{7}	6×10^7 s	3×10^{13}	If ~25%	If ~1	4.1×10^{-13}
1×10^{7}	6×10^7 s	3×10^{13}	If ~25%	If ~2	5.2×10^{-13}

5.2 Summary

SNS

Preliminary

- A preliminary design of novel MuMubar spectrometer has been proposed based on LGAD detector.
- The design has been studied by Geant4 simulation. Reconstruction Algorithms have been setup and tested:
 - Decay electron (DE) and Track electron (TE) track reconstruction.
 - Piled up Michel Electron track separation and reconstruction.
 - DE-TE installation under intensive muon source
- The detection efficiency is 39% and the background level is 0.014.
- For 3 years $(2 \times 10^7 s/y)$ observing on MELODY, the sensitivity is estimated to reach 2.1×10^{-10} (in 90% C.L.).
- This MuMubar spectrometer design ought to be potential for the future MuMubar experiment with intensive muon source.

承蒙厚爱 感谢倾听 Thanks!

Backup 1. The background

The MuMubar Searching is bothered by two types of Background:

1. Bhabha Scattering

More Intensive Muon Source

参数	COMET-I	COMET-II	Mu2e
Institute	J-PARC		FNL
Proton pulse width	100 ns	100 ns	700 ns
Proton per pulse	2.9E6	5.12E7	1.02E7
Muon generation efficiency	4.7E-4	4.7E-4	1.9E-3
Muon generation per pulse	1375 µ/pulse	24570 μ/pulse	19380 µ/pulse
Muon Intensity	1.18E9 μ/s	2.1E10µ/s	1.14E10µ/s
Time to observe	~150 day	~180 day	~690 day
Total Muon to be observe	1.5E16	1.1E18	6.7E17
CLFV Sensitivity	7E-15	2.6E-17	2.3E-17

Backup 2. Improving the MuMubar Spectrometer

中山大学/唐健团队/MACE实验

高能所/鲍煜团队

China Spallation Neutron Source

Backup 3. Novel MuMubar Spectrometer Design

(Not to scale)

预计该方案所能使用的μ子源强度比气体方案高两个数量级