

Feasibility study and preliminary test of a coded aperture based muonic Xray element imaging method

Ziwen PAN(潘子文), Zebin LIN (林泽斌), Bangjiao YE (叶邦角)

State Key Laboratory of Particle Detection and Electronics, USTC

6th Nov. 2023

Workshop on Muon Science Technology and Industry (MELODY 2023)

Introduction to muonic X-rays

Simulation on coded aperture imaging

Preliminary tests with gamma rays

Summary and outlook

I. Introduction to muonic X-rays

1.1 Physical nature of muons

PROPERTY

1.2 Generation of negative muon beams

1.3 Processes of muonic X-ray emission

Muon Induced X-ray Emission (MIXE)

MELODY2023

PROCESSES

1.4 Advantages of MIXE method

•High energy, high penetrating capability (~200 times of electrons, induced X-rays with an energy in 10s keV – 10MeV)

Energy dependency on atomic number (multiple atoms/elements distinguishable at one time)
Better sensitivity to low-Z materials (high X-ray energy that can be responded by detectors)
Adjustable muon beam momentum (depth analysis of elemental distributions)

•Non-destructive measurement (no radiation risk to materials)

ADVANTAGES

1.5 Multi-field applications

Cultural heritage

Li-ion battery

Biomaterials Healthy Bone Osteoporotic Bone

Isotope analysis

333 333

Handbook of Cultural Heritage Analysis, Chapter 3

APPLICATIONS

1.6 Instruments at muon facilities

INSTRUMENTS

II. Simulation on coded aperture imaging

Courtesy Painter Piet Mondrain in 1919

METHODS

METHODS

I. Chiu et al., Sci. Rep. 12 (2022) 5261

METHODS

Pinhole imaging + CT

I. Chiu et al., Sci. Rep. 12 (2022) 5261

METHODS

2.2 Coded aperture (multi-pinhole) imaging

2.3 Modelling in Geant4

2.3 Modelling in Geant4

2.3 Modelling in Geant4

Z. Lin, Z. Pan* et al., NIMA 1034 (2022) 166783

MELODY2023

18

2.4 Results and comparison

Imaging technique	Distance[Sample, Det]	Aperture size	Thickness	Q	3	FoM
Coded aperture	80 mm	0.75 mm	1.0	0.670	1.25×10 ⁻³	0.100
Single pinhole	80 mm	0.75 mm	20.0	0.649	2.06×10 ⁻⁵	0.060
	80 mm	1.50 mm	20.0	0.381	2.67×10 ⁻⁵	0.036

Z. Lin, Z. Pan* et al., NIMA 1034 (2022) 166783

RESULTS

3.1 Experimental configuration

SETUP

3.1 Experimental configuration

- As three SiPM pixels dropped out, only a 7×7 detector array can be used!
- The order of a MURA mask should be a prime number! It matches the detector we have.
- The detector was placed and measured at four neighboring locations to mimic a 14×14 array.

Bank-7 MUBA mask

Gamma-ray hit position reconstruction

ETECTION SYSTEM

> A double-threshold was used to discriminate and count 0.511-MeV gamma photons.

MELODY2023

CALIBRA

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.6

-0.4

-0.2

Х

25

MELODY2023

> A double-threshold was used to discriminate 0.511-MeV gamma photons.

CALIBRATION

26

12

12

14

14

Reconstructed images varying source-detector distance

3.3 Double-source measurement

3.3 Double-source measurement

Reconstructed images varying source-detector distance

IV. Summary and outlook

4.1 Summary

Experimen

- ➤ The feasibility of using the coded aperture imaging method in the field of MIXE imaging was confirmed in Geant4 simulations and alternative experiments
- Due to the usage of a coded mask, its thickness will limit the detectable energy of muonic X-rays. Thus, the observable atomic number is limited.
- The pixel size limits the position resolution of a imaging detection system

4.2 Prospects on instrument developments

OUTLOOK

