CP-VIOLATING OBSERVABLES IN FOUR-BODY B DECAYS

ZHOU RUI(周锐)

NORTH CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY (华北理工大学)

COLLABORATION WITH HSIANG-NAN LI, ZHEN-JUN XIAO, YA LI, AND DA-CHENG YAN

Based on 2103.00642, 2107.10684, 2112.10939, and 2204.01092.

第5届粒子物理天问论坛, 2023/11/11@湖南师范大学

OUTLINE

MOTIVATION

• FRAMEWORK FOR THE FOUR-BODY DECAYS

• **RESULTS AND DISCUAAIONS**

• SUMMARY AND OUTLOOK

MOTIVATION

- Charge conjugation (C), parity (P), and time reversal (T) are three fundamental discrete transformations in nature.
- CP violation (CPV) is a key requirement for generating the matter-antimatter asymmetry in the universe. [REV. MOD. PHYS.76 (2003) 1]
- In SM, CPV is attributed to an irreducible phase in the CKM quark-mixing matrix.
- CPVs in K-, B-, D-meson have been confirmed by experiments.

Phys. Rev. Lett. 13(1964); Belle, Phys. Rev. Lett. (2001) LHCb; Phys. Rev. Lett. (2019)

• First evidence (3.3σ) for CPV in $\Lambda_b \rightarrow p\pi^+\pi^-\pi^-$ decays. [LHCb, Nature Physics 13 (2017) 391]

- T-odd triple productstake the form $(\vec{p}_a \times \vec{p}_b) \cdot \vec{p}_c$ which arises from $\epsilon_{\mu\nu\rho\sigma} p_a^{\mu} p_b^{\nu} p_c^{\rho} p_d^{\sigma}$ contraction. It is also CP-odd.
- Triple-product asymmetries (TPAs) may reveal potential signals of CPV. [Valencia, 1989; Datta, London, 2003]

 $A_T \equiv \frac{\Gamma(TP > 0) - \Gamma(TP < 0)}{\Gamma(TP > 0) + \Gamma(TP < 0)}.$

- Compare this asymmetry with a corresponding quantity in the CP conjugate process to obtain the "true" CPV signal. $A_T(true) \propto \sin(\phi) \cos(\delta)$
- The construction of a scalar triple product requires a final state with at least four particles, e.g. four-body decays.
- D, B mesons and b-baryons.

Four-body B meson decays are rich in CPV phenomena in the quark sector.

- Rich resonance structures.
- Interference between different resonances might induce • lager CPV.
- Angular analysis could provide a lot of meaningful CP asymmetries.

Several Collaborations have observed B meson decays into various four-body charmless hadronic final states in certain two body invariant mass regions.

 $\checkmark B_s \rightarrow (K\pi)(K\pi), \qquad [HEP03(2018)140]$ ✓ $B_{(s)} \to (K\pi)(K\pi)$, JHEP07(2019)032 $\checkmark B^0 \to (\pi \pi)(K\pi), \qquad IHEP05(2019)026$ $\checkmark B_s \rightarrow (KK)(K\pi), \qquad JHEP11(2013)092$ $\checkmark B_s \rightarrow (KK)(KK), \qquad [HEP12(2019)155]$

Opportunities for CPV searches but also modelling challenges

- Receive both resonant and nonresonant contributions.
- Suffer substantial final-state interactions.
- More complicated strong dynamics than two-body ones.
- A factorization formalism in full phase space is not yet available.

PQCD successfully predicted CPV in the two-body B meson decays

 $B \rightarrow \pi \pi, K \pi$ [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000]

In the multi-body sector

- The leading-power regions of a Dalitz plot. [C.-H. Chen and H.-N. Li, PLB 561 (2003) 258]
- Quasi-two-body mechanism.

[NPB 899 (2015) 247,NPB 555 (1999) 231]

- Two-meson distribution amplitudes (TMDAs).
 [Sov. J. Nucl. Phys. 38 (1983) 289, PRD 91 (2015) 094024, PLB 763 (2016) 29...]
- The scenario has been successful applied to three-body decay, encourages us to extended it to the four-body ones.

FRAMEWORK

Based on the quasi-two-body mechanism, four-body processes are assumed to proceed dominantly with two intermediate resonances.

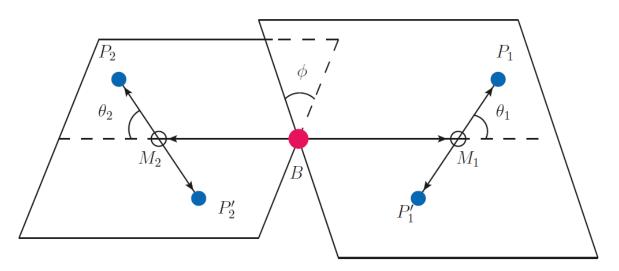


Figure 1. Helicity angles θ_1 , θ_2 and ϕ for the $B \to M_1M_2$ decay, with each intermediate resonance decaying into two pseudoscalars, $M_1 \to P_1P'_1$ and $M_2 \to P_2P'_2$.

A decay amplitude is written as $A \propto \Phi_B \otimes H \otimes \Phi_{P_1P'_1} \otimes \Phi_{P_2P'_2},$

 $\Phi_{PP'}$ absorbs the nonperturbative dynamics involved in the meson pairs.

• S-wave:
$$\Phi_S(x,\omega) = \frac{1}{\sqrt{2N_c}} [\not p \phi_S(x,\omega) + \omega \phi_S^s(x,\omega) + \omega (\not n \psi - 1) \phi_S^t(x,\omega)],$$

$$\begin{split} \phi^{0}_{(PP')_{S}}(x,\omega) &= \begin{cases} \frac{9F_{(PP')_{S}}(\omega)}{\sqrt{2N_{c}}} a_{PP'}x(1-x)(1-2x), & PP' = K\bar{K}, \\ \frac{3F_{(PP')_{S}}(\omega)}{\sqrt{2N_{c}}}x(1-x) \Big[\frac{1}{\mu_{S}} + B_{1}3(1-2x) + B_{3}\frac{5}{2}(1-2x)(7(1-2x)^{2}-3)\Big], & PP' = K\pi, \end{cases} \\ \phi^{s}_{(PP')_{S}}(x,\omega) &= \frac{F_{(PP')_{S}}(\omega)}{2\sqrt{2N_{c}}}, & \mu_{S} = \omega/(m_{S} - m_{d}) \\ \phi^{t}_{(PP')_{S}}(x,\omega) &= \frac{F_{(PP')_{S}}(\omega)}{2\sqrt{2N_{c}}}(1-2x), \end{split}$$

The parametrization of S-wave time-like form factors $F_{PP'}$: $f_0(980)$:Flatté parametrization [Phys. Lett. B63, 228 (1976)] $K_0^*(1430)$:LASS line shape [Nucl. Phys. B296, 493 (1988)]

The Gegenbauer moments are chosen to be the same as those of the corresponding scaler mesons.

• P-wave:

$$\begin{split} \Phi_P^L(x,\zeta,\omega) &= \frac{1}{\sqrt{2N_c}} \left[\omega \not\!\!\!\!/_p \phi_P(x,\omega) + \omega \phi_P^s(x,\omega) + \frac{\not\!\!\!/_p p_1' - \not\!\!\!/_p p_1}{\omega(2\zeta-1)} \phi_P^t(x,\omega) \right] (2\zeta-1), \\ \Phi_P^T(x,\zeta,\omega) &= \frac{1}{\sqrt{2N_c}} \left[\gamma_5 \not\!\!\!/_p \phi_P^T(x,\omega) + \omega \gamma_5 \not\!\!\!/_p \phi_P^a(x,\omega) + i\omega \frac{\epsilon^{\mu\nu\rho\sigma} \gamma_\mu \epsilon_{T\nu} p_\rho n_{-\sigma}}{p \cdot n_-} \phi_P^v(x,\omega) \right] \\ &\times \sqrt{\zeta(1-\zeta) + \alpha}, \end{split}$$
(2.20)

$$\begin{split} \phi_P(x,\omega) &= \frac{3F_{K\pi}^{\parallel}(\omega^2)}{\sqrt{2N_c}} x(1-x) \Big\{ 1 + a_{1K^*}^{\parallel} 3(1-2x) + a_{2K^*}^{\parallel} \frac{3}{2} (5(1-2x)^2 - 1) \Big\} \,, \\ \phi_P^s(x,\omega) &= \frac{3F_{K\pi}^{\perp}(\omega^2)}{2\sqrt{2N_c}} (1-2x) \,, \\ \phi_P^t(x,\omega) &= \frac{3F_{K\pi}^{\perp}(\omega^2)}{2\sqrt{2N_c}} (1-2x)^2 \,, \end{split}$$

The parametrization of P-wave time-like form factors $F_{PP'}^{\parallel}$: $K^*(892), \varphi(1020)$: Relativistic Breit-Wigner model.

The Gegenbauer moments have been fitted from a global analysis of threebody charmless hadronic decays in PQCD. [Ya Li et al, PHYSICAL REVIEW D 104, 096014 (2021)]

FEYNMAN DIAGRAMS

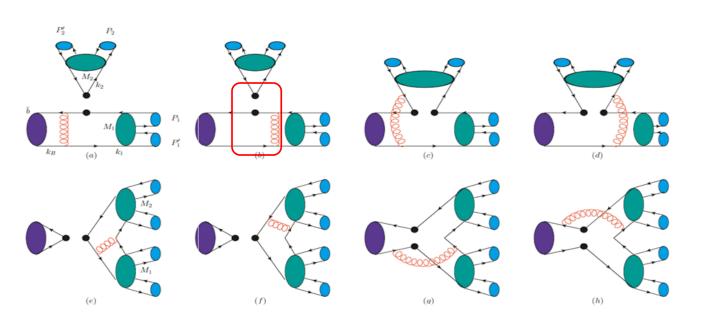


Figure 2. Leading-order diagrams for the $B \to M_1 M_2 \to P_1 P'_1 P_2 P'_2$ decays, where the symbol \bullet denotes a weak vertex, and the cyan oval represents either a scalar or vector resonance.

- The hard amplitude involves six external on shell quarks, four of which correspond to the four-fermion operators and two of which are the spectator quarks in the initial and final states.
- The hard kernels start at α_s in the PQCD approach.

Kinematics including the final state masses

 $B(p_B) \to M_1(p)M_2(q) \to P_1(p_1)P_1'(p_1')P_2(p_2)P_2'(p_2'),$

In the rest frame of the B meson in the light-cone coordinates $p_B = (M/\sqrt{2})(1, 1, \mathbf{0}_T)$

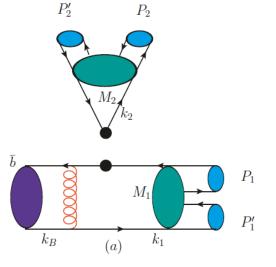
$$p = \frac{M}{\sqrt{2}}(g^+, g^-, \mathbf{0}_T), \quad q = \frac{M}{\sqrt{2}}(f^-, f^+, \mathbf{0}_T), \quad p^2 = \omega_1^2, \ q^2 = \omega_2^2,$$

$$\epsilon_p = \frac{1}{\sqrt{2\eta_1}}(g^+, -g^-, \mathbf{0}_T), \quad \epsilon_q = \frac{1}{\sqrt{2\eta_2}}(-f^-, f^+, \mathbf{0}_T), \quad \eta_{1,2} = \omega_{1,2}^2/M^2$$

The meson momentum fractions up to corrections from the meson masses

$$\frac{p_1^+}{p^+} = \zeta_1 + \frac{r_1 - r_1'}{2\eta_1}, \quad \frac{p_2^-}{q^-} = \zeta_2 + \frac{r_2 - r_2'}{2\eta_2}, \qquad r_i^{(\prime)} = m_i^{(\prime)2}/M^2$$

The momenta of four final-state mesons:


$$p_{1} = \left(\frac{M}{\sqrt{2}}\left(\zeta_{1} + \frac{r_{1} - r_{1}'}{2\eta_{1}}\right)g^{+}, \frac{M}{\sqrt{2}}\left(1 - \zeta_{1} + \frac{r_{1} - r_{1}'}{2\eta_{1}}\right)g^{-}, \mathbf{p}_{T}\right), \qquad |\mathbf{p}_{T}|^{2} = \omega_{1}^{2}[\zeta_{1}(1 - \zeta_{1}) + \alpha_{1}]$$

$$p_{1}' = \left(\frac{M}{\sqrt{2}}\left(1 - \zeta_{1} - \frac{r_{1} - r_{1}'}{2\eta_{1}}\right)g^{+}, \frac{M}{\sqrt{2}}\left(\zeta_{1} - \frac{r_{1} - r_{1}'}{2\eta_{1}}\right)g^{-}, -\mathbf{p}_{T}\right), \qquad |\mathbf{p}_{T}|^{2} = \omega_{2}^{2}[\zeta_{2}(1 - \zeta_{2}) + \alpha_{2}]$$

$$p_{2} = \left(\frac{M}{\sqrt{2}}\left(1 - \zeta_{2} + \frac{r_{2} - r_{2}'}{2\eta_{2}}\right)f^{-}, \frac{M}{\sqrt{2}}\left(\zeta_{2} + \frac{r_{2} - r_{2}'}{2\eta_{2}}\right)f^{+}, \mathbf{q}_{T}\right), \qquad \alpha_{i} = \frac{(r_{i} - r_{i}')^{2}}{4\eta_{i}^{2}} - \frac{r_{i} + r_{i}'}{2\eta_{i}}$$

Three valence quarks momenta are parametrized as

$$k_B = (0, x_B p_B^-, \mathbf{k}_{BT})$$

 $k_1 = (x_1 p^+, 0, \mathbf{k}_{1T})$
 $k_2 = (0, x_2 q^-, \mathbf{k}_{2T})$

The differential rate for the decay

$$\frac{d^5\Gamma}{d\Omega} = \frac{k(\omega_1)k(\omega_2)k(\omega_1,\omega_2)}{16(2\pi)^6 M^2} |A|^2 \qquad \text{with } \Omega \equiv \{\theta_1,\theta_2,\phi,\omega_1,\omega_2\}$$

$$k(\omega_1, \omega_2) = \frac{\sqrt{[M^2 - (\omega_1 + \omega_2)^2][M^2 - (\omega_1 - \omega_2)^2]}}{2M}, \qquad k(\omega) = \frac{\sqrt{[\omega^2 - (m_K + m_\pi)^2][\omega^2 - (m_K - m_\pi)^2]}}{2\omega}$$

The relations between zeta and theta:

$$2\zeta_i - 1 = \sqrt{1 + 4\alpha_i} \cos\theta_i, \quad \zeta_i \in \left|\frac{1 - \sqrt{1 + 4\alpha_i}}{2}, \frac{1 + \sqrt{1 + 4\alpha_i}}{2}\right|$$

The differential rate read as

$$\frac{d^{5}\Gamma}{d\zeta_{1}d\zeta_{2}d\omega_{1}d\omega_{2}d\phi} = \frac{k(\omega_{1})k(\omega_{2})k(\omega_{1},\omega_{2})}{4(2\pi)^{6}M^{2}\sqrt{1+4\alpha_{1}}\sqrt{1+4\alpha_{2}}}|A|^{2}.$$

Six helicity amplitudes:

$$\begin{array}{ll} A_{VV} : B_{s}^{0} \to \bar{K}^{*0}(\to K^{-}\pi^{+})K^{*0}(\to K^{+}\pi^{-}), & A_{0}, A_{\parallel}, A_{\perp} \to \mathsf{CP-odd} \\ A_{VS} : B_{s}^{0} \to \bar{K}^{*0}(\to K^{-}\pi^{+})(K^{+}\pi^{-})_{0}, & A_{SV} : B_{s}^{0} \to \overline{(K^{-}\pi^{+})}_{0}K^{*0}(\to K^{+}\pi^{-}), & A_{S^{-}} = \frac{A_{SV} - A_{VS}}{\sqrt{2}}, & A_{S^{+}} = \frac{A_{VS} + A_{SV}}{\sqrt{2}}, \\ A_{SS} : B_{s}^{0} \to \overline{(K^{-}\pi^{+})}_{0}(K^{+}\pi^{-})_{0}, & A_{S^{-}} = \frac{A_{SV} - A_{VS}}{\sqrt{2}}, & A_{S^{+}} = \frac{A_{VS} + A_{SV}}{\sqrt{2}}, \end{array}$$

The full decay amplitude:

$$\begin{split} A &= \frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} A_0 + 2\sqrt{2} \sqrt{\frac{\zeta_1(1 - \zeta_1) + \alpha_1}{1 + 4\alpha_1}} \sqrt{\frac{\zeta_2(1 - \zeta_2) + \alpha_2}{1 + 4\alpha_2}} \cos(\phi) A_{\parallel} \\ &+ i2\sqrt{2} \sqrt{\frac{\zeta_1(1 - \zeta_1) + \alpha_1}{1 + 4\alpha_1}} \sqrt{\frac{\zeta_2(1 - \zeta_2) + \alpha_2}{1 + 4\alpha_2}} \sin(\phi) A_{\perp} + A_{SS} \\ &+ \frac{1}{\sqrt{2}} \left(\frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} - \frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}}\right) A_{S^-} + \frac{1}{\sqrt{2}} \left(\frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} + \frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}}\right) A_{S^+}. \end{split}$$

 $A_{h} = X_{h} \int dx_{B} dx_{1} dx_{2} b_{B} db_{B} b_{1} db_{1} b_{2} db_{2} \operatorname{Tr}[C(t) \Phi_{B}(x_{B}, b_{B}) \Phi_{K\pi}(x_{1}) \Phi_{K\pi}(x_{2}) H(x_{i}, b_{i}, t) S_{t}(x_{i}) e^{-S(t)}]$ $X_{h} = \begin{cases} \sqrt{1 + 4\alpha_{1}} \sqrt{1 + 4\alpha_{2}} & h = 0, \|, \bot \\ \sqrt{1 + 4\alpha_{1,2}} & h = VS, SV \end{cases}$

$$\Lambda_h = \begin{cases} \sqrt{1 + 4\alpha_{1,2}} & h = VS, SV \\ 1 & h = SS, \end{cases}$$

Triple product asymmetries

$$\begin{split} A_T^1 &= \frac{\Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi > 0) - \Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi < 0)}{\Gamma((2\zeta_1 - 1)(2\zeta_2 - 1)\sin\phi < 0)} \\ &= -\frac{2\sqrt{2}}{\pi \mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Im[A_{\perp}A_0^*], \\ A_T^2 &= \frac{\Gamma(\sin(2\phi) > 0) - \Gamma(\sin(2\phi) < 0)}{\Gamma(\sin(2\phi) > 0) + \Gamma(\sin(2\phi) < 0)} \\ &= -\frac{4}{\pi \mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Im[A_{\perp}A_{\parallel}^*], \\ A_T^3 &= \frac{\Gamma\left(\left(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} - \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\right)\sin\phi > 0\right) - \Gamma\left(\left(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} - \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\right)\sin\phi < 0\right) \\ &= \frac{32}{5\pi \mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Im[A_{\perp}A_{S^-}^*], \\ A_T^4 &= \frac{\Gamma(\sin\phi > 0) - \Gamma(\sin\phi < 0)}{\Gamma(\sin\phi > 0) + \Gamma(\sin\phi < 0)} \\ &= -\frac{9\pi}{4\sqrt{2\mathcal{D}}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Im[A_{\perp}A_{SS}^*], \end{split}$$

 $Im(A_{\perp}A_{h}^{*}) = |A_{\perp}||A_{h}^{*}|\sin(\Delta\phi + \Delta\delta)$ Strong phases can produce a nonzero value

To identify a true CP violation signal, one has to compare the TPAs in B and Bbar meson decays.

$$\begin{split} A_T^i(true) &\equiv \frac{\Gamma(TP>0) - \Gamma(TP<0) + \bar{\Gamma}(TP>0) - \bar{\Gamma}(TP<0)}{\Gamma(TP>0) + \Gamma(TP<0) + \bar{\Gamma}(TP>0) + \bar{\Gamma}(TP<0)} |\infty \sin(\Delta \phi) \cos(\Delta \delta), \\ A_T^i(fake) &\equiv \frac{\Gamma(TP>0) - \Gamma(TP<0) - \bar{\Gamma}(TP>0) + \bar{\Gamma}(TP<0)}{\Gamma(TP>0) + \Gamma(TP<0) + \bar{\Gamma}(TP>0) + \bar{\Gamma}(TP<0)} \infty \cos(\Delta \phi) \sin(\Delta \delta), \end{split}$$

S-wave-induced direct CP asymmetries

$$\begin{split} A_D^1 &= \frac{\Gamma\Big((2\zeta_1 - 1)(2\zeta_2 - 1)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) > 0\Big) - \Gamma\Big((2\zeta_1 - 1)(2\zeta_2 - 1)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) < 0\Big) \\ &= \frac{3\sqrt{2}}{5\mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) [3Re(A_S + A_0^*) + 5Re(A_S + A_{SS}^*)], \\ A_D^2 &= \frac{\Gamma\Big(\cos(\phi)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) > 0\Big) - \Gamma\Big(\cos(\phi)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) < 0\Big) \\ &= \frac{32}{5\pi \mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) [3Re(A_S + A_0^*) + 5Re(A_S + A_{SS}^*)], \\ A_D^2 &= \frac{\Gamma\Big(\cos(\phi)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) > 0\Big) - \Gamma\Big(\cos(\phi)\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}}\Big) < 0\Big) \\ &= \frac{32}{5\pi \mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Re[A_S + A_{\parallel}^*], \\ A_D^3 &= \frac{\Gamma\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} > 0\Big) - \Gamma\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_2}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} < 0\Big) \\ &= \frac{6\sqrt{2}}{5\mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) [Re(A_S + A_{\parallel}^*) + 5Re(A_S + A_{SS}^*)], \\ A_D^4 &= \frac{\Gamma\Big(\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} > 0\Big) - \Gamma\Big(\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_2}} + \frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} < 0\Big) \\ &= \frac{6\sqrt{2}}{5\mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) [Re(A_S + A_0^*) + 5Re(A_S + A_{SS}^*)], \\ A_D^4 &= \frac{\Gamma\Big(\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_1}} \Big)^2 - \Big(\frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} \Big)^2 > 0\Big) - \Gamma\Big(\Big(\frac{2\zeta_1 - 1}{\sqrt{1 + 4\alpha_2}} \Big)^2 - \Big(\frac{2\zeta_2 - 1}{\sqrt{1 + 4\alpha_2}} \Big)^2 < 0\Big) \\ &= -\frac{3}{\mathcal{D}} \int d\omega_1 d\omega_2 k(\omega_1) k(\omega_2) k(\omega_1, \omega_2) Re[A_S + A_{SS}^*]. \end{aligned}$$

Combining the quantities for the corresponding CP-conjugate process, we define the S-wave-induced direct CP asymmetries

 $A_{S}^{i} = A_{D}^{i} + \overline{A_{D}^{i}} \propto Sin(\Delta\phi)Sin(\Delta\delta)$

It can be measured using untagged samples, in which CP-conjugate processes need not be distinguished.

NUMERICAL RESULTS AND DISCUSSIONS

1. CP averaged four-body branching ratios

 $\omega \in [m_{K^*} - 0.15, m_{K^*} + 0.15]$ GeV JHEP05(2021)082 $B^0_{*} \rightarrow (K^+\pi^-)(K^-\pi^+)$ $B^{0}_{s} \rightarrow (K^{0}\pi^{+})(\bar{K}^{0}\pi^{-})$ Components Theoretical uncertainties: $(2.7^{+0.4+0.3+1.3}_{-0.5-0.4-0.8}) \times 10^{-6}$ $(2.1^{+0.4+0.3+1.0}_{-0.3-0.2-0.4}) \times 10^{-6}$ \mathcal{B}_0 **B** meson LCDAs $(7.7^{+0.1+1.2+3.4}_{-0.2-1.2-2.1}) \times 10^{-7}$ $(7.4^{+0.1+1.3+3.3}_{-0.1-1.2-1.9}) \times 10^{-7}$ \mathcal{B}_{\parallel} $(7.7^{+0.3+1.3+3.5}_{-0.2-1.1-2.0}){\times}10^{-7}$ $(7.3^{+0.1+1.2+3.2}_{-0.2-1.2-1.9}){\times}10^{-7}$ \mathcal{B}_{\perp} **TMDAs** ۲ $(5.1^{+0.6+3.5+1.6}_{-0.6-3.0-1.1}){\times}10^{-7}$ $(4.7^{+0.5+3.3+1.2}_{-0.4-2.5-0.8}){\times}10^{-7}$ \mathcal{B}_{SS} Hard scale $(6.8^{+1.3+1.0+3.2}_{-1.1-1.1-1.7}) \times 10^{-7}$ $(7.5^{+1.4+1.0+2.7}_{-1.5-1.1-1.7}){\times}10^{-7}$ \mathcal{B}_{S^+} $(2.7^{+0.6+0.5+1.1}_{-0.4-0.3-0.6}) \times 10^{-6}$ $(2.7^{+0.5+0.4+0.9}_{-0.2-0.3-0.5}) \times 10^{-6}$ $\mathcal{B}_{S^{-}}$ $(8.1^{+1.3+1.1+3.6}_{-1.1-1.2-2.2}) \times 10^{-6}$ $(7.5^{+1.2+1.0+2.7}_{-0.9-0.6-1.5}) \times 10^{-6}$ $\mathcal{B}_{\text{total}}$ $b \rightarrow s$ transitions ~10⁻⁶ $B^0 \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$ $B^+ \to (K^0 \pi^+) (K^- \pi^+)$ $B^0 \to (K^- \pi^+)(K^+ \pi^-)$ Components $(1.0^{+0.4+0.3+0.5}_{-0.2-0.1-0.2}) \times 10^{-7}$ $(9.3^{+3.2+3.0+0.4}_{-2.4-0.7-0.6}) \times 10^{-8}$ $(2.9^{+1.2+0.3+1.0}_{-0.6-0.2-0.6}) \times 10^{-7}$ \mathcal{B}_0 $(2.1^{+0.2+0.4+0.8}_{-0.1-0.3-0.5}) \times 10^{-8}$ $(1.4^{+0.2+1.5+0.1}_{-0.4-0.9-0.2}) \times 10^{-10}$ $(2.0^{+0.3}_{-0.1}{}^{+0.4}_{-0.3}{}^{+0.9}_{-0.5}){\times}10^{-8}$ \mathcal{B}_{\parallel} $b \rightarrow d$ transitions $\sim 10^{-7}$ $(2.0^{+0.2+0.4+0.9}_{-0.1-0.3-0.5}) \times 10^{-8}$ $(2.1^{+0.2+0.3+0.9}_{-0.2-0.4-0.5}){\times}\,10^{-8}$ $(2.1^{+0.0+0.4+0.1}_{-0.2-0.8-0.0}){\times}10^{-11}$ \mathcal{B}_{\perp} $(1.2^{+0.3}_{-0.3}{}^{+1.1}_{-0.0}){\times}10^{-8}$ $(2.2^{+0.3+1.6+0.8}_{-0.1-1.2-0.4}) \times 10^{-8}$ $(2.4^{+0.5+1.6+0.7}_{-0.3-1.1-0.5}){\times}\,10^{-8}$ \mathcal{B}_{SS} $(2.3^{+0.8+0.4+0.8}_{-0.6-0.2-0.4}) \times 10^{-8}$ $(2.5^{+0.9+1.1+1.0}_{-0.5-0.2-0.5}){\times}\,10^{-8}$ $(1.5^{+0.4+1.1+0.2}_{-0.3-0.0-0.1}) \times 10^{-8}$ \mathcal{B}_{S^+} $(6.1^{+2.5+1.2+2.9}_{-1.5-0.9-1.6}) \times 10^{-8}$ $(4.5^{+1.3+2.2+0.1}_{-0.9-1.0-0.0}) \times 10^{-8}$ $(9.0^{+3.3+1.4+3.8}_{-2.0-1.7-2.0}) \times 10^{-8}$ $\mathcal{B}_{S^{-}}$ $(2.5^{+0.8+0.3+1.1}_{-0.6-0.4-0.7}) \times 10^{-7}$ $(1.7^{+0.5+0.4+0.0}_{-0.3-0.3-0.0}){\times}10^{-7}$ $(4.7^{+1.6+0.7+1.5}_{-1.0-0.5-1.0}){\times}\,10^{-7}$ $\mathcal{B}_{\mathrm{total}}$

$\omega_1 \in $	$[m_{K^*} - 0.15, m_{K^*} + 0.15]$	GeV
$\omega_2 \in $	$[m_{\phi} - 0.015, m_{\phi} + 0.015]$	GeV

Phys.Rev.D 105 (2022) 053002

	× /	· · · · //	
Components	$B^0 \rightarrow (K^+K^-)(K^+\pi^-)$	$B^0_s \to (K^+K^-)(K^-\pi^+)$	$B^+ \to (K^+K^-)(K^0\pi^+)$
\mathcal{B}_0	$1.8^{+0.7+0.3}_{-0.6-0.4-0.4}\times10^{-6}$	$3.1^{+1.2+1.0+1.6}_{-0.8-0.9-1.2} \times 10^{-8}$	$1.8^{+0.9+0.4+0.7}_{-0.5-0.3-0.4} \times 10^{-6}$
\mathcal{B}_{\parallel}	$3.1^{+0.5+0.4+1.3}_{-0.4-0.8}\times10^{-7}$	$5.3^{+0.6+2.0+2.5}_{-0.3-1.4-1.3} imes 10^{-9}$	$3.4^{+0.6+0.5+1.3}_{-0.4-0.4-0.8} imes 10^{-7}$
\mathcal{B}_{\perp}	$3.3^{+0.6+0.5+1.3}_{-0.4-0.8} imes 10^{-7}$	$5.2^{+0.3+1.9+2.6}_{-0.3-1.6-1.5} \times 10^{-9}$	$3.6^{+0.6+0.4+1.3}_{-0.5-0.5-0.9} imes 10^{-7}$
\mathcal{B}_{SS}	$4.7^{+2.0+2.4+1.8}_{-1.4-1.9-1.4} \times 10^{-8}$	$1.3^{+0.7+0.6+0.5}_{-0.5-0.5-0.4} \times 10^{-9}$	$5.2^{+2.1+2.6+2.0}_{-1.5-2.1-1.6} imes 10^{-8}$
\mathcal{B}_{VS}	$4.6^{+1.2+1.0+1.7}_{-0.9-1.0-1.4} \times 10^{-7}$	$5.0^{+2.3+1.2+2.7}_{-1.8-1.1-2.1} \times 10^{-9}$	$4.8^{+1.5+1.0+1.8}_{-1.1-1.0-1.3} \times 10^{-7}$
\mathcal{B}_{SV}	$2.2^{+0.6+0.4+0.8}_{-0.5-0.4-0.6}\times10^{-7}$	$1.6^{+0.5+0.8+0.5}_{-0.4-0.6-0.4} \times 10^{-9}$	$2.5^{+0.7+0.5+0.9}_{-0.5-0.4-0.7}\times10^{-7}$
\mathcal{B}_{total}	$3.2^{+1.0+0.4+1.1}_{-0.9-0.5-0.8} \times 10^{-6}$	$4.9^{+1.6+1.4+2.4}_{-1.1-1.2-1.6} \times 10^{-8}$	$3.3^{+1.2+0.6+1.2}_{-0.8-0.5-0.8}\times10^{-6}$

$\omega \in [m_\phi - 0.03, m_\phi + 0.03] \mathrm{GeV}$

Phys.Rev.D 105 (2022) 093001

Components	$B^0_s \to (K^+K^-)(K^+K^-)$	$B^0 \to (K^+K^-)(K^+K^-)$
\mathcal{B}_0	$(1.73^{+0.62+0.13+0.77}_{-0.43-0.13-0.65}) \times 10^{-6}$	$(3.98^{+0.06+0.07+0.06}_{-0.05-0.06-0.07}) \times 10^{-9}$
\mathcal{B}_{\parallel}	$(1.40^{+0.10+0.11+0.58}_{-0.09-0.10-0.59}) \times 10^{-6}$	$(4.48^{+0.08+0.05+0.08}_{-0.12-0.04-0.05}) \times 10^{-11}$
\mathcal{B}_{\perp}	$(1.40^{+0.13+0.10+0.58}_{-0.11-0.10-0.62}) \times 10^{-6}$	$(1.01^{+0.08+0.13+0.37}_{-0.02-0.24-0.47}) \times 10^{-12}$
\mathcal{B}_{VS}	$(3.66^{+1.80+0.56+1.36}_{-1.02-0.52-0.98}) \times 10^{-8}$	$(5.50^{+0.60+1.70+1.30}_{-0.20-1.46-1.16}) \times 10^{-11}$
\mathcal{B}_{SS}	$(4.38^{+2.18+2.05+2.60}_{-1.35-1.40-2.00}) \times 10^{-9}$	$(1.17^{+0.22+0.96+0.14}_{-0.20-0.59-0.20}) \times 10^{-11}$
\mathcal{B}_{total}	$(4.57^{+0.86+0.35+1.95}_{-0.64-0.34-1.87}) \times 10^{-6}$	$(4.09^{+0.07+0.10+0.08}_{-0.06-0.08-0.08}) \times 10^{-9}$

2. S-wave fractions $f_{SS} = \frac{\mathcal{B}_{SS}}{\mathcal{B}_{total}}, \quad f_{S^{\pm}} = \frac{\mathcal{B}_{S^{\pm}}}{\mathcal{B}_{total}},$

				$\mathcal{B}_{\mathrm{total}}$	$\mathcal{B}_{\mathrm{total}}$
Modes	$f_{SS}(\%)$) f_{S^+}	(%)	$f_{S^{-}}(\%)$	$f_{\text{S-wave}}(\%)$
$B^0_s \rightarrow (K^+\pi^-)(K$	$^{-}\pi^{+})$ $6.3^{+0.1+3.5}_{-0.2-3.4}$	$^{+0.2}_{-0.4}$ 8.4 $^{+0.2}_{-0.1}$	+1.2+0.4 -0.9-0.0	$33.3^{+1.6+2.6+0}_{-1.2-2.4-0}$	$\begin{array}{c} 0.1\\ 0.2 \end{array}$ 48.0 $\begin{array}{c} +1.9+7.3+0.7\\ -1.5-6.7-0.6 \end{array}$
LHCb [27]	$6.6 \pm 2.2 \pm$	$0.7 11.4 \pm 3$	8.7±2.3	$48.5 \pm 5.1 \pm 1.9$	9
LHCb [31]	8.7±1.1±	1.1 4.8±1	.4±1.1	$55.8 \pm 2.1 \pm 1.4$	4 $69.4 \pm 1.6 \pm 1.0$
$B^0 \rightarrow (K^- \pi^+)(K^- \pi^+)(K^- \pi^+)$	$^{+}\pi^{-})$ 8.8 $^{+1.5+5.5}_{-1.1-4.9}$	$^{+0.2}_{-0.4}$ 9.2 $^{+0.4}_{-0.9}$	$^{+1.0+0.2}_{-0.7-0.2}$	$24.4^{+1.5+1.7+0}_{-1.1-2.0-0}$	$\begin{array}{cccc} 0.5 \\ 0.5 \end{array} & 42.4 \substack{+3.4 + 8.2 + 0.9 \\ -3.1 - 7.6 - 1.1 \end{array}$
LHCb [31]	$2.3 \pm 1.4 \pm$	0.4 0.8±1	$.3 \pm 0.7$	$37.7 \pm 5.2 \pm 2.4$	4 $40.8 \pm 5.0 \pm 1.7$
$B^0_s \rightarrow (K^0 \pi^+) (\bar{K}^0$	(π^{-}) $6.4^{+0.3+4.1}_{-0.2-3.4}$	$^{+0.1}_{-0.3}$ 9.9 $^{+0.1}_{-0.8}$	+0.3+0.0 -0.9-0.5	$35.1^{+0.7+1.7+0}_{-0.7-3.0-0}$	$ \begin{smallmatrix} 0.0 \\ 0.6 \end{smallmatrix} 51.4^{+1.1+6.1+0.1}_{-1.7-7.3-1.4} $
$B^0 \rightarrow (K^0 \pi^+) (\bar{K}^0$	(π^{-}) 7.1 ^{+0.0+5.1} -0.4-1.9	$^{+0.0}_{-0.1}$ $8.8^{+0.2}_{-0.1}$	+5.3+0.4 -0.0-0.4	$26.5^{+0.0+6.8+0}_{-1.0-3.3-0}$	$ \substack{ 0.0 \\ 0.4 } 42.4 \substack{+0.2+17.2+0.4 \\ -1.5-5.2-0.9 } $
$B^+ \rightarrow (K^0 \pi^+)(K$	$^{-}\pi^{+})$ 5.1 $^{+0.3+3.0}_{-0.5-2.6}$	$^{+0.0}_{-0.2}$ 5.3 $^{+0.2}_{-0.3}$	+1.9+0.5 -0.4-0.3	$19.1_{-0.2-3.4-0}^{+0.0+1.3+0}$	$^{0.9}_{0.0}$ 29.5 $^{+0.5+6.2+1.4}_{-1.0-6.4-0.5}$
Modes	fss	f_{VS}		f _{SV}	f s-wave
				- ~ .	
$B^0 \rightarrow (K^+K^-)(K^+\pi^-)$	$0.015\substack{+0.001+0.007+0.002\\-0.000-0.006-0.002}$	$0.144^{+0.013+0.022}_{-0.007-0.020}$	+0.016 -0.015	$0.069\substack{+0.006+0.014+0.002\\-0.002-0.011-0.005}$	$0.228^{+0.020+0.037+0.018}_{-0.009-0.032-0.022}$
LHCb [58]		$0.143 \pm 0.013 \pm$	0.012	$0.122 \pm 0.013 \pm 0.008$	
$B^0_s \to (K^+K^-)(K^-\pi^+)$	$0.027\substack{+0.004+0.013+0.002\\-0.004-0.011-0.002}$	$0.102^{+0.010+0.032}_{-0.018-0.030}$	+0.022 -0.029	$0.033\substack{+0.000+0.016+0.004\\-0.001-0.014-0.007}$	$0.162^{+0.014+0.057+0.027}_{-0.023-0.050-0.037}$
$B^+ \to (K^+ K^-) (K^0 \pi^+)$	$0.016\substack{+0.000+0.008+0.001\\-0.001-0.006-0.002}$	$0.146^{+0.003+0.021}_{-0.006-0.021}$	+0.014 -0.009	$0.076^{+0.003+0.014+0.001}_{-0.005-0.013-0.007}$	$0.238\substack{+0.006+0.035+0.015\\-0.012-0.035-0.018}$
Modes	$f_{VS}(\%)$		f_{SS}	s(%)	$f_{S-wave}(\%)$
$B_s^0 \to (K^+K^-)(K^+K^-)$	$0.801^{+0.205+0.0}_{-0.129-0.0}$	57+0.192 59-0.031	$0.096^{+0.025}_{-0.019}$	5+0.035+0.011 9-0.026-0.008	$0.897^{+0.230+0.092+0.203}_{-0.148-0.085-0.039}$
$B^0 \to (K^+K^-)(K^+K^-)$	$1.345^{+0.121+0.3}_{-0.030-0.3}$			3+0.222+0.028 5-0.141-0.044	$1.631^{+0.169+0.595+0.314}_{-0.075-0.479-0.307}$

A global fitting to the Gegenbauer moments of the Swave DAs in PQCD has not been carried out yet.

The S-wave contribution in the $K\pi$ pair is greater than that of KK one.

The double S-wave contributions are smaller than the single S-wave ones.

LHCb, JHEP 07 (2015) 166; 07 (2019) 032; 05 (2014) 069

3. Triple product asymmetries (10^{-2})

A	$B_s^0 \rightarrow$	$B_s^0 \rightarrow$	$B^0 \rightarrow$	$B^0 \rightarrow$	$B^+ \rightarrow$
Asymmetries	$(K^+\pi^-)(K^-\pi^+)$	$(K^0\pi^+)(\bar{K}^0\pi^-)$	$(K^-\pi^+)(K^+\pi^-)$	$(K^0\pi^+)(\bar{K}^0\pi^-)$	$(K^0\pi^+)(K^+\pi^-)$
A_T^1	$11.8^{+0.8}_{-1.1}$	$9.7^{+0.5}_{-0.6}$	$10.6^{+1.3}_{-1.7}$	~ 0	$8.5^{+0.9}_{-0.3}$
\bar{A}_T^1	$-11.8^{+0.8}_{-1.1}$	$-9.9^{+0.5}_{-0.6}$	$-10.6^{+1.3}_{-1.7}$	~ 0	$-9.2^{+3.5}_{-0.2}$
$A_T^1(\text{true})$	0	$-0.1^{+0.0}_{-0.1}$	0	~ 0	$-0.2^{+0.2}_{-0.1}$
$A_T^1(\text{fake})$	$11.8^{+0.8}_{-1.1}$	$9.8^{+0.3}_{-0.5}$	$10.6^{+1.3}_{-1.7}$	~ 0	$8.7^{+1.5}_{-0.1}$
A_T^2	$0.2^{+0.1}_{-0.1}$	$0.2^{+0.1}_{-0.1}$	$0.3^{+0.1}_{-0.1}$	~ 0	$0.2^{+0.0}_{-0.1}$
\bar{A}_T^2	$-0.2^{+0.1}_{-0.1}$	$-0.2^{+0.0}_{-0.1}$	$-0.3^{+0.1}_{-0.1}$	~ 0	$0.3^{+0.2}_{-0.2}$
$A_T^2(\text{true})$	0	0	0	~ 0	$0.25_{-0.10}^{+0.10}$
$A_T^2(\text{fake})$	$0.2^{+0.1}_{-0.1}$	$0.2^{+0.1}_{-0.1}$	$0.3^{+0.1}_{-0.1}$	~ 0	$-0.05\substack{+0.00\\-0.00}$
A_T^3	$2.1^{+1.0}_{-0.6}$	$3.3^{+0.4}_{-0.7}$	$2.0^{+0.9}_{-1.0}$	~ 0	$3.6^{+0.3}_{-0.7}$
\bar{A}_T^3	$-2.1^{+1.0}_{-0.6}$	$-1.0^{+0.0}_{-0.1}$	$-2.0^{+0.9}_{-1.0}$	~ 0	$-0.8^{+0.1}_{-0.2}$
$A_T^3(\text{true})$	0	$1.2^{+0.5}_{-0.2}$	0	~ 0	$1.6^{+0.6}_{-0.1}$
$A_T^3(\text{fake})$	$2.1^{+1.0}_{-0.6}$	$2.2^{+0.7}_{-1.0}$	$2.0^{+0.9}_{-1.0}$	~ 0	$2.3^{+0.1}_{-0.5}$
A_T^4	$-4.6^{+2.0}_{-1.5}$	$-5.1^{+2.0}_{-1.4}$	$-5.1^{+2.3}_{-1.9}$	~ 0	$-2.7^{+0.5}_{-0.5}$
\bar{A}_T^4	$4.6^{+2.0}_{-1.5}$	$4.1^{+1.6}_{-1.4}$	$5.1^{+2.3}_{-1.9}$	~ 0	$1.0^{+0.5}_{-0.5}$
A_T^4 (true)	0	$-0.5^{+0.2}_{-0.2}$	0	~ 0	$-0.9^{+0.5}_{-0.5}$
A_T^4 (fake)	$-4.6^{+2.0}_{-1.5}$	$-4.6^{+1.8}_{-1.5}$	$-5.1^{+2.3}_{-1.9}$	~ 0	$-1.9^{+0.3}_{-0.9}$

Asymmetry	Data
A_T^1 (true)	$0.003 \pm 0.041 \pm 0.009$
A_T^2 (true)	$0.009 \pm 0.041 \pm 0.009$
A_T^3 (true)	$0.019 \pm 0.041 \pm 0.008$
A_T^4 (true)	$-0.040 \pm 0.041 \pm 0.008$

LHCb,JHEP07(2015)166

The LHCb measurements show no manifest deviation from zero.

- In the modes with the neutral intermediate states, the true TPAs vanish without the weak phase difference.
- The tiny transverse polarization component in the pure annihilation mode leads to the vanishing TPAs.
- The smallness of A_T^2 is attributed to the suppression from the strong phase difference between the perpendicular and parallel polarization amplitudes.
- The predicted nonvanishing fake TPAs can be tested if flavor tagged measurements are available in the future.

• Th	e true TPAs of the	\mathbf{P}^0 mode	Asymmetrie	s $B^0 \rightarrow$	$(K^+K^-)(K^+\pi^-)$) $B_s^0 \to (K^+ K^-)(K^- \pi^+)$	$B^+ \rightarrow (K^+ K^-) (K^0 \pi^+)$
• IN	e nue iras or me	D mode	$\overline{A_T^1}$		-13.8 ^{+4.8}	-24.0 ^{+6.6}	-14.1 ^{+5.0}
is	measured to be co	nsistent	\bar{A}_T^1		$13.8^{+4.8}_{-4.3}$	$24.0^{+6.6}_{-3.8}$	$+13.8^{+5.6}_{-3.9}$
_			A_T^1 (true)		0.0	0.0	$-0.15_{-0.30}^{+0.05}$
Wi	ith zero, showing no	C	$A_T^1(\text{fake})$		$-13.8^{+4.8}_{-4.3}$	$-24.0^{+6.6}_{-3.8}$	$-14.0^{+5.3}_{-3.9}$
ev	vidence for CPV.		A_T^2 \bar{A}_T^2		$-0.3^{+0.1}_{-0.1}$	$-0.1^{+0.0}_{-0.0}$ $0.1^{+0.0}_{-0.0}$	$-0.3^{+0.1}_{-0.1}$
			A_T^2 A_T^2 (true)		$0.3^{+0.1}_{-0.1}$ 0.0	0.1 _0.0	$0.2^{+0.1}_{-0.0}$ $-0.05^{+0.00}_{-0.05}$
• A	significant fake as	ymmetry	A_T^2 (fake)		$-0.3^{+0.1}_{-0.1}$	$-0.1^{+0.0}_{-0.0}$	$-0.3^{+0.1}_{-0.1}$
A_7^1	$T_T^{L}(fake)$ is observe	ed in all	A_T^3 \bar{A}_T^3		$-5.4^{+1.0}_{-0.6}$ $5.4^{+1.0}_{-0.6}$	$-6.4^{+2.1}_{-2.2}$ $6.4^{+2.1}_{-2.2}$	$-5.6^{+1.0}_{-0.6}$ $5.5^{+1.0}_{-0.6}$
th	ree measurements.		A_T^3 (true)		0.0	0.0	$-0.05^{+0.00}_{-0.00}$
			A_T^3 (fake)		$-5.4^{+1.0}_{-0.6}$	$-6.4^{+2.1}_{-2.2}$	$-5.6^{+1.0}_{-0.6}$
• Ih	e only available		A_T^4 $ar{A}_T^4$		$1.6^{+3.0}_{-3.0}$	$-8.1^{+3.2}_{-3.3}$	$1.6^{+3.2}_{-2.7}$
m	easurements for the	~ ~	A_T^{\dagger} A_T^4 (true)		$-1.6^{+3.0}_{-3.0}$ 0.0	$8.1^{+3.2}_{-3.3}$ 0.0	$^{-1.8^{+3.1}_{-2.8}}_{-0.10^{+0.05}_{-0.00}}$
			A_T^4 (fake)		$1.6^{+3.0}_{-3.0}$	$-8.1^{+3.2}_{-3.3}$	$1.7^{+3.2}_{-2.8}$
W	ave induced TPAs c	are from	A_T^5		$-4.3^{+1.1}_{-0.8}$	$-6.7^{+1.8}_{-1.9}$	$-4.2^{+1.1}_{-0.8}$
			$A_T^5 \ ar{A}_T^5$		$4.3^{+1.1}_{-0.8}$	$6.7^{+1.8}_{-1.9}$	$4.3^{+1.2}_{-0.8}$
LU	ICb.		A_T^5 (true)		0.0	0.0	$0.05^{+0.00}_{-0.05}$
			A_T^5 (fake)		$-4.3^{+1.1}_{-0.8}$	-6.7 ^{+1.8}	$-4.3^{+1.2}_{-0.8}$
Asymmetries	BABAR	Belle		LHCb		Asymmetries	BABAR
A_T^1 (true)	$-0.046 \pm 0.031 \pm 0.017$	$-0.029 \pm 0.025 \pm 0.025 \pm 0.021$		$-0.007 \pm 0.012 \pm 0.002$			0.025 + 0.055 + 0.010
A_T^2 (true) A_T^3 (true)	$-0.003 \pm 0.056 \pm 0.036$	$0.021 \pm 0.040 \pm 0$.000	$+0.004 \pm 0.014 \pm 0.002$ $+0.004 \pm 0.006 \pm 0.001$)	A_T^1 (true)	$-0.025 \pm 0.056 \pm 0.019$
A_T^4 (true)				$+0.001 \pm 0.000 \pm 0.001$ $+0.002 \pm 0.006 \pm 0.001$		A_T^2 (true)	$0.028 \pm 0.084 \pm 0.026$
A_T^1 (fake)	$-0.203 \pm 0.031 \pm 0.019$	$-0.211 \pm 0.025 \pm 0.000$		$-0.105 \pm 0.012 \pm 0.006$		A_T^1 (fake)	$-0.114 \pm 0.056 \pm 0.011$
A_T^2 (fake)	$0.016 \pm 0.058 \pm 0.038$	$-0.041 \pm 0.040 \pm 0$.013	$-0.017 \pm 0.014 \pm 0.003$			$-0.061 \pm 0.084 \pm 0.023$
A_T^3 (fake) A_T^4 (fake)				$\begin{array}{c} -0.063 \pm 0.006 \pm 0.005 \\ -0.019 \pm 0.006 \pm 0.007 \end{array}$		A_T^2 (fake)	-0.001 ± 0.007 ± 0.025

- The only available amplitude analysis of B^+ was performed by the BABAR, but the S-wave component have not been determined.
- The full angular analysis of the B_s mode has not been done because of the limited signal events.

4. S-wave-induced direct CP asymmetries (10^{-2})

Asymmetries	$B_s^0 \rightarrow (K^+, -) (K^-, +)$	$B_s^0 \rightarrow (K_s^0 + \sqrt{K_s^0}) = 0$	$B^0 \rightarrow (K^- +)(K^+ -)$	$B^0 \rightarrow (K^0 +)(\bar{K}^0 -)$	$B^+ \rightarrow (K^0 \to (K^+ \to))$	Asymmetry	Data
A_D^1	$\frac{(K^+\pi^-)(K^-\pi^+)}{6.1^{+0.6}_{-1.5}}$	$\frac{(K^0\pi^+)(\bar{K}^0\pi^-)}{-1.0^{+1.0}_{-1.6}}$	$\frac{(K^-\pi^+)(K^+\pi^-)}{9.6^{+1.6}_{-3.3}}$	$\frac{(K^0\pi^+)(\bar{K}^0\pi^-)}{5.4^{+3.0}_{-5.4}}$	$\frac{(K^0\pi^+)(K^+\pi^-)}{6.5^{+2.6}_{-3.3}}$	A_S^1	$-0.061 \pm 0.041 \pm 0.012$
\bar{A}_D^1	$-6.1^{+0.6}_{-1.5}$	$-15.1^{+1.5}_{-1.3}$	$-9.6^{+1.6}_{-3.3}$	$-7.0^{+10.3}_{-6.7}$	$-4.2^{+2.7}_{-5.1}$	2	$0.081 \pm 0.041 \pm 0.008$
$\frac{\mathcal{A}_S^1}{A_D^2}$	$0 \\ -1.9^{+1.2}_{-1.5}$	$-16.1^{+3.0}_{-2.6}$ $-2.5^{+1.0}_{-1.1}$	$0 \\ -0.7^{+1.3}_{-1.0}$	$-1.6^{+12.7}_{-12.9}$ ~ 0	$\frac{2.3^{+4.7}_{-6.6}}{-1.3^{+0.3}_{-0.5}}$	A_S^2	
$egin{array}{c} A_D \ ar{A}_D^2 \end{array}$	$-1.9^{+1.5}_{-1.5}$ $1.9^{+1.2}_{-1.5}$	$-2.5^{+1.1}_{-1.1}$ $3.8^{+0.9}_{-0.8}$	$-0.7_{-1.0}$ $0.7_{-1.0}^{+1.3}$	~ 0 ~ 0	$-1.3_{-0.5}$ $-0.8_{-1.0}^{+1.2}$	A_S^3	$-0.079 \pm 0.041 \pm 0.023$
\mathcal{A}_{S}^{2}	0	$1.3^{+0.5}_{-0.3}$	0	~0	$-2.1^{+0.9}_{-0.8}$	A_S^4	$-0.081 \pm 0.041 \pm 0.010$
$\begin{array}{c} A_D^3 \\ \bar{A}_D^3 \end{array}$	$3.4^{+0.9}_{-2.0}$ $-3.4^{+0.9}_{-2.0}$	$\begin{array}{c} 0.8^{+0.2}_{-0.2} \\ -8.8^{+2.4}_{-2.3} \end{array}$	$1.6^{+1.7}_{-1.3}$ $-1.6^{+1.7}_{-1.3}$	$6.6^{+4.9}_{-3.8}$ $-4.6^{+4.1}_{-9.3}$	$4.8^{+2.1}_{-1.9} \\ -6.5^{+4.0}_{-2.5}$		
$\left[\begin{array}{c} A_D \\ \mathcal{A}_S^3 \end{array} \right]$	$0^{-3.4}$	$-8.0^{+2.3}_{-2.6}$	$-1.0_{-1.3}$	$2.0^{+7.2}_{-11.9}$	$-1.7^{+5.9}_{-4.8}$		07(2015)166
A_D^4	$5.9^{+1.6}_{-1.0}$	$5.8^{+1.4}_{-1.3}$	$4.3^{+2.6}_{-2.2}$	$-3.1^{+2.7}_{-1.7}$	$3.2^{+2.2}_{-0.6}$		neasurements
\bar{A}_D^4	$-5.9^{+1.6}_{-1.0}$	$-9.4^{+1.7}_{-1.5}$	$-4.3^{+2.6}_{-2.2}$	$-12.0^{+6.5}_{-7.2}$	$1.5^{+2.0}_{-6.6}$	show no ma	nifest deviation
\mathcal{A}_{S}^{4}	0	$-3.6^{+1.0}_{-0.8}$	0	$-15.1^{+7.1}_{-3.9}$	$4.7^{+2.5}_{-1.2}$	from zero.	

• The fractions f_{S^+} are less than 10%, most values of A_D are only a few percent.

- The observed two largest S-wave-induced direct CP asymmetries are over 15% in magnitude, which could be searched in the future.
- The S-wave-induced direct CPVs in the considered decays still acquire less theoretical and experimental attention, we will wait for the confrontation with future data.

5. Direct CP asymmetries (10^{-2}) $\mathcal{A}_{h}^{\text{dir}} = \frac{\bar{\mathcal{B}}_{h} - \mathcal{B}_{h}}{\bar{\mathcal{B}}_{h} + \mathcal{B}_{h}},$

- There are no direct CPVs in neutral resonance modes.
- However, the charged modes receive an additional tree contribution and the direct CPVs arises from the interference between the tree and penguin amplitudes.

	$\mathcal{A}_h^{ ext{dir}}$	$B_s^0 \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$B^0 \to (K^0 \pi^+) (\bar{K}^0 \pi^-)$	$B^+ \to (K^0 \pi^+)(K^+ \pi^-)$	
	h = 0	$29.9^{+4.3}_{-2.8}$	$-29.4^{+41.8}_{-12.0}$	$-10.7^{+11.3}_{-10.1}$	
	$h = \parallel$	$-18.1\substack{+4.6\\-4.4}$	$-3.3^{+2.3}_{-3.0}$	$-10.0^{+1.7}_{-1.4}$	
	$h=\perp$	$-18.1\substack{+4.5 \\ -4.0}$	$6.5^{+8.3}_{-9.2}$	$-2.2^{+1.9}_{-1.4}$	
	h = SS	$1.6^{+12.6}_{-2.4}$	$24.4_{-8.1}^{+13.4}$	$-61.8^{+9.2}_{-15.4}$	
	h = SV $h = VS$	$-30.1^{+2.8}_{-8.4}$	$-55.4^{+21.1}_{-29.6}$	$-4.6^{+15.9}_{-5.4}$	
	h = VS	$0.3^{+0.1}_{-0.6}$	$11.0^{+2.2}_{-1.4}$	$-44.3^{+7.8}_{-13.1}$	
	=				
$B^+ \to (K^+ K^-)$	$(K^0\pi^+)$ $\frac{\lambda}{2}$	$\mathcal{A}^{CP}_{\parallel}$	$\mathcal{A}^{CP}_{\perp} \qquad \qquad \mathcal{A}^{CP}_{SS}$	\mathcal{A}_{VS}^{CP} \mathcal{A}_{SV}^{CP}	$\mathcal{A}_{ ext{total}}^{CP}$
		$4.1_{-4.6}^{+6.1}$ $5.8_{-3.8}^{+2.1}$	$4.9^{+3.8}_{-4.4} \qquad 4.5^{+2.0}_{-2.5}$	$3.8^{+2.2}_{-4.2}$ $3.2^{+0.1}_{-4.4}$	$-0.3^{+3.2}_{-2.5}$

The direct CP asymmetries for various helicity states turn out to be small.

- The tree contribution only appears in the annihilation diagrams, which are power suppressed with respect to the emission ones.
- The CKM element of tree diagram is smaller than that of penguin.

SUMMARY AND OUTLOOK

- The PQCD factorization formalism based on the quasi-two-body decay mechanism for four-body B meson decays has been well established and have many potential applications.
- > The S-wave contributions were found to be substantial especially in the $K\pi$ modes, which should be considered in the angular analysis.
- Various CP asymmetries are presented. In particular, by including the S-wave components, we have estimated the S-wave induced TPAs and direct CPV for the first time.
- The true TPAs in most of the considered channels are tiny, of order 10⁻² or even lower. The fake ones could be larger, but they do not reflect CPV.
- > The angular analysis may be improved by expanding the mass region, which provide more meaningful asymmetries in the future.

Thanks for your attention!

Spare slides

$$F_s(\omega) = \frac{\omega}{k(\omega)} \cdot \frac{1}{\cot \delta_B - i} + e^{2i\delta_B} \frac{m_0^2 \Gamma_0 / k(m_0)}{m_0^2 - \omega^2 - im_0^2 \frac{\Gamma_0}{\omega} \frac{k(\omega)}{k(m_0)}},$$

$$\cot \delta_B = \frac{1}{ak(\omega)} + \frac{1}{2}bk(\omega),$$

$$F_{K\pi}^{\parallel}(\omega) = \frac{m_{K^*}^2}{m_{K^*}^2 - \omega^2 - im_{K^*}\Gamma(\omega)},$$

$$F_{(K\bar{K})_{S}}(\omega) = \frac{m_{f_{0}(980)}^{2}}{m_{f_{0}(980)}^{2} - \omega^{2} - im_{f_{0}(980)}(g_{\pi\pi}\rho_{\pi\pi} + g_{KK}\rho_{KK}F_{KK}^{2})}$$

P-wave
$$K\pi$$
 DAs

The factor 2zeta – 1 corresponds exactly to the structure for a time-like vector form factor

$$(p_1 - p_1')_{\mu} - \frac{m_1^2 - m_1'^2}{p^2} p_{\mu} = (2\zeta_1 - 1)\omega_1 \epsilon_{p\mu},$$

The relativistic Breit-Wigner (RBW) function

$$F_{K\pi}^{\parallel}(\omega^2) = \frac{m_{K^*}^2}{m_{K^*}^2 - \omega^2 - im_{K^*}\Gamma(\omega^2)}, \quad \Longrightarrow \quad F_{K\pi}^{\parallel}(\omega^2) \to e^{i\beta(m_{K^*}^2 - \omega^2)}F_{K\pi}^{\parallel}(\omega^2)$$

$B_{(s)} \to (\pi \pi)(K\pi)$ Eur. Phys. J. C (2021) 81:806

Modes	PQCD	Experiment ^a
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+ \text{ BW}$	$17.5^{+8.1+12.0+6.3}_{-5.3-8.1-5.5}$	
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+ \text{Bugg}$	$19.2^{+8.9+12.1+7.0}_{-5.9-8.2-6.2}$	
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^- BW$	$18.5^{+8.5+12.2+6.6}_{-5.6-8.3-5.9}$	
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^- \text{Bugg}$	$20.3^{+9.4+12.3+7.4}_{-6.2-6.5-9.8}$	
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}_0^* (1430)^0 \to) K^- \pi^+ \text{ BW}$	$0.4^{+0.1+0.6+0.1}_{-0.1-0.3-0.1}$	
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}_0^*(1430)^0 \to) K^- \pi^+ \text{Bugg}$	$0.4 \substack{+0.1+0.6+0.1\\-0.1-0.3-0.1}$	
$B^+ \to (f_0(980) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+$	$1.6^{+0.4+0.6+0.8}_{-0.3-0.5-0.5}$	
$B^0 \to (f_0(980) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^-$	$1.5^{+0.4+0.6+0.8}_{-0.3-0.5-0.5}$	1.2 ± 0.4
$B_s^0 \to (f_0(980) \to) \pi^+ \pi^- (\bar{K}_0^*(1430)^0 \to) K^- \pi^+$	$0.07^{+0.03+0.03+0.05}_{-0.03-0.03-0.03}$	
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+ BW$	$1.1^{+0.2+1.5+0.4}_{-0.2-0.2-0.2}$	
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+ \text{ Bugg}$	$1.1^{+0.2+1.6+0.4}_{-0.2-0.2-0.2}$	
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^- \text{ BW}$	$1.0^{+0.2+1.4+0.4}_{-0.2-0.2-0.2}$	
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^- \text{ Bugg}$	$1.0^{+0.2+1.2+0.4}_{-0.2-0.2-0.2}$	
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+ {}^{\rm BW}$	$0.17_{-0.04-0.10-0.06}^{+0.04+0.22+0.04}$	
$B_s^0 \rightarrow (f_0(500) \rightarrow) \pi^+ \pi^- (\bar{K}^{*0} \rightarrow) K^- \pi^+ \text{ Bugg}$	$0.17^{+0.04+0.22+0.04}_{-0.04-0.08-0.04}$	
$B^+ \to (f_0(980) \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+$	$3.1_{-0.7-0.7-0.9}^{+0.9+0.7+0.7}$	2.8 ± 0.5
$B^0 \to (f_0(980) \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^-$	$2.9^{+0.9+0.5+1.2}_{-0.7-0.6-0.8}$	$2.6^{+1.4}_{-1.2}$
$B_s^0 \to (f_0(980) \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+$	$0.02^{+0.01+0.01+0.01}_{-0.01-0.01-0.01}$	
$B^+ \to (\rho^+ \to) \pi^+ \pi^0 (K_0^* (1430)^0 \to) K^+ \pi^-$	$14.1^{+6.1+4.9+5.5}_{-3.9-4.3-3.4}$	
$B^+ \to (\rho^0 \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+$	$5.1^{+2.2+2.1+2.3}_{-1.5-1.8-1.3}$	
$B^0 \to (\rho^0 \to) \pi^+ \pi^- (K_0^* (1430)^0 \to) K^+ \pi^-$	$7.9^{+3.3+2.3+2.9}_{-2.3-2.2-1.7}$	18 ± 4
$B^0 \to (\rho^- \to) \pi^- \pi^0 (K_0^*(1430)^+ \to) K^0 \pi^+$	$11.8^{+5.1+4.2+4.7}_{-3.4-3.7-2.9}$	19 ± 8
$B_s^0 \to (\rho^+ \to) \pi^+ \pi^0 (K_0^* (1430)^- \to) \bar{K}^0 \pi^-$	$14.1^{+4.3+4.4+1.0}_{-3.2-3.9-1.0}$	
$B_s^0 \to (\rho^0 \to) \pi^+ \pi^- (\bar{K}_0^* (1430)^0 \to) K^- \pi^+$	$0.4^{+0.1+0.2+0.1}_{-0.1-0.2-0.1}$	

	. ,		
Components	$B^0 \rightarrow (K^+K^-)(K^+\pi^-)$	$B^0_s \to (K^+K^-)(K^-\pi^+)$	$B^+ \to (K^+K^-)(K^0\pi^+)$
\mathcal{B}_0	$1.8^{+0.7+0.3}_{-0.6-0.4-0.4}\times10^{-6}$	$3.1^{+1.2+1.0+1.6}_{-0.8-0.9-1.2} \times 10^{-8}$	$1.8^{+0.9+0.4+0.7}_{-0.5-0.3-0.4}\times10^{-6}$
\mathcal{B}_{\parallel}	$3.1^{+0.5+0.4+1.3}_{-0.4-0.4} \times 10^{-7}$	$5.3^{+0.6+2.0+2.5}_{-0.3-1.4-1.3} \times 10^{-9}$	$3.4^{+0.6+0.5+1.3}_{-0.4-0.8} \times 10^{-7}$
\mathcal{B}_{\perp}	$3.3^{+0.6+0.5+1.3}_{-0.4-0.4-0.8} \times 10^{-7}$	$5.2^{+0.3+1.9+2.6}_{-0.3-1.6-1.5} \times 10^{-9}$	$3.6^{+0.6+0.4+1.3}_{-0.5-0.5-0.9} \times 10^{-7}$
\mathcal{B}_{SS}	$4.7^{+2.0+2.4+1.8}_{-1.4-1.9-1.4} \times 10^{-8}$	$1.3^{+0.7+0.6+0.5}_{-0.5-0.5-0.4} \times 10^{-9}$	$5.2^{+2.1+2.6+2.0}_{-1.5-2.1-1.6} \times 10^{-8}$
\mathcal{B}_{VS}	$4.6^{+1.2+1.0+1.7}_{-0.9-1.0-1.4} \times 10^{-7}$	$5.0^{+2.3+1.2+2.7}_{-1.8-1.1-2.1} \times 10^{-9}$	$4.8^{+1.5+1.0+1.8}_{-1.1-1.0-1.3} \times 10^{-7}$
\mathcal{B}_{SV}	$2.2^{+0.6+0.4+0.8}_{-0.5-0.4-0.6}\times10^{-7}$	$1.6^{+0.5+0.8+0.5}_{-0.4-0.6-0.4} \times 10^{-9}$	$2.5^{+0.7+0.5+0.9}_{-0.5-0.4-0.7}\times10^{-7}$
\mathcal{B}_{total}	$3.2^{+1.0+0.4+1.1}_{-0.9-0.5-0.8} \times 10^{-6}$	$4.9^{+1.6+1.4+2.4}_{-1.1-1.2-1.6} \times 10^{-8}$	$3.3^{+1.2+0.6+1.2}_{-0.8-0.5-0.8}\times10^{-6}$

$B^0_{(s)} \to \phi \phi \to (K^+K^-)(K^+K^-)$ arXiv:2204.01092

TABLE III: PQCD predictions for the branching ratios of various components and their sum in the $B_{(s)}^0 \to (K^+K^-)(K^+K^-)$ decays. The theoretical uncertainties are attributed to the variations of the shape parameter $\omega_{B_{(s)}}$ in the $B_{(s)}$ meson DA, of the Gegenbauer moments in various twist DAs of KK pair, and of the hard scale t and the QCD scale Λ_{QCD} .

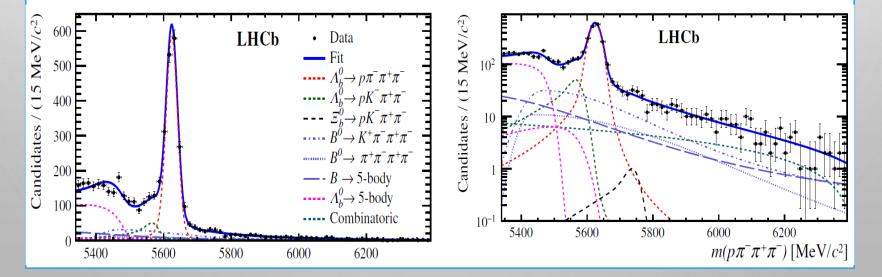
Components	$B_s^0 \to (K^+K^-)(K^+K^-)$	$B^0 \to (K^+K^-)(K^+K^-)$
\mathcal{B}_0	$(1.73^{+0.62+0.13+0.77}_{-0.43-0.13-0.65}) \times 10^{-6}$	$(3.98^{+0.06+0.07+0.06}_{-0.05-0.06-0.07}) \times 10^{-9}$
\mathcal{B}_{\parallel}	$(1.40^{+0.10+0.11+0.58}_{-0.09-0.10-0.59}) \times 10^{-6}$	$(4.48^{+0.08+0.05+0.08}_{-0.12-0.04-0.05}) \times 10^{-11}$
\mathcal{B}_{\perp}	$(1.40^{+0.13+0.10+0.58}_{-0.11-0.10-0.62}) \times 10^{-6}$	$(1.01^{+0.08+0.13+0.37}_{-0.02-0.24-0.47}) \times 10^{-12}$
\mathcal{B}_{VS}	$(3.66^{+1.80+0.56+1.36}_{-1.02-0.52-0.98}) \times 10^{-8}$	$(5.50^{+0.60+1.70+1.30}_{-0.20-1.46-1.16}) \times 10^{-11}$
\mathcal{B}_{SS}	$(4.38^{+2.18+2.05+2.60}_{-1.35-1.40-2.00}) \times 10^{-9}$	$(1.17^{+0.22+0.96+0.14}_{-0.20-0.59-0.20}) \times 10^{-11}$
\mathcal{B}_{total}	$(4.57^{+0.86+0.35+1.95}_{-0.64-0.34-1.87}) \times 10^{-6}$	$(4.09^{+0.07+0.10+0.08}_{-0.06-0.08-0.08}) \times 10^{-9}$

Modes	$B(10^{-6})$	$f_0(\%)$	$f_{\parallel}(\%)$	$f_{\perp}(\%)$
$B^+ \rightarrow \rho^+ K^{*0}$	$11.6^{+1.5+2.2+4.8}_{-1.2-2.3-3.5}$	73.5+2.5+8.9+2.4	$13.4^{+1.2+4.7+1.1}_{-1.3-4.6-1.2}$	$13.1^{+1.1+4.7+2.2}_{-1.2-4.3-1.2}$
PQCD (former)	9.9 ^{+4.7} -4.1	70 ± 5		13.7 ^{+2.1}
QCDF	9.2 ^{+3.8} -5.5	48^{+52}_{-40}		-1.9
SCET	8.93 ± 3.18	45 ± 18		24.9 ± 11.1
FAT	10.4 ± 2.6	46.0 ± 12.9		27.2 ± 7.0
Expt. ^a	9.2 ± 1.5	48 ± 8		
$B^+ \rightarrow \rho^0 K^{*+}$	$7.5^{+1.3+1.3+2.7}_{-0.9-1.2-2.2}$	$78.4^{+2.3+6.6+2.5}_{-2.1-7.1-3.4}$	$13.3^{+1.0+3.9+2.3}_{-1.2-3.9-1.9}$	$8.3^{+1.1+3.3+1.2}_{-1.1-2.9-0.8}$
PQCD (former)	$6.1^{+2.8}_{-2.4}$	75^{+4}_{-5}		$11.9^{+2.3}_{-2.0}$
QCDF	5.5+1.4	67^{+31}_{-48}		2.0
SCET	4.64 ± 1.37	42 ± 14		26.6 ± 9.9
FAT	5.83 ± 1.20	40.7 ± 10.6		29.8 ± 5.9
Expt. a	4.6 ± 1.1	78 ± 12		
$B^0 \rightarrow \rho^0 K^{*0}$	$4.4_{-0.3-0.8-1.3}^{+0.4+0.9+1.9}$	$63.3^{+1.3+10.3+1.3}_{-1.2-9.9-1.5}$	$13.9^{+1.1+4.5+0.7}_{-1.1-4.4-1.0}$	$22.8^{+0.1+5.5+2.4}_{-0.2-5.9-2.0}$
PQCD (former)	$3.3^{+1.7}_{-1.4}$	65 ⁺⁴		$16.9^{+2.7}_{-1.8}$
QCDF	$4.6^{+3.6}_{-3.5}$	39^{+60}_{-31}		1.0
SCET	5.87 ± 1.87	61 ± 13		17.6 ± 7.9
FAT	5.09 ± 1.23	48.7 ± 12.3		25.8 ± 6.7
Expt. ^a	3.9 ± 1.3	40 ± 14		
$B^0 \rightarrow \rho^- K^{*+}$	$10.5^{+1.2+2.2+4.3}_{-0.9-1.6-3.1}$	$72.9^{+2.2+8.7+2.1}_{-2.1-8.8-3.0}$	$13.6^{+1.1+4.4+1.1}_{-1.2-4.5-1.0}$	$13.5^{+1.0+4.3+1.9}_{-1.1-4.3-1.1}$
PQCD (former)	$8.4^{+3.8}_{-3.5}$	68 ± 5		15.6 ± 2.5
QCDF	$8.9^{+4.9}_{-5.6}$	53+45		
SCET	10.6 ± 3.2	55 ± 14		20.3 ± 8.6
FAT	10.5 ± 2.3	38.9 ± 11.3		30.8 ± 6.3
Expt. ^a	10.3 ± 2.6	38 ± 13		
$B_s^0 \rightarrow \rho^+ K^{*-}$	$34.2^{+12.2+3.4+2.4}_{-8.5-3.3-2.2}$	$91.2_{-0.2-1.3-0.4}^{+0.1+1.0+0.3}$	$6.8^{+0.1+1.0+0.3}_{-0.0-0.7-0.1}$	$2.0^{+0.1+0.4+0.1}_{-0.1-0.4-0.1}$
PQCD (former)	$24.0^{+11.0}_{-9.1}$	95 ± 1		$2.31^{+0.22}_{-0.21}$
QCDF	$21.6^{+1.6}_{-3.2}$	92^{+1}_{-4}		
SCET	28.1 ± 4.2	99.1 ± 0.3		0.4 ± 0.18
FAT	38.6 ± 8.3	94.4 ± 1.2		2.74 ± 0.64
$B_s^0 \rightarrow \rho^0 \bar{K}^{*0}$	$1.3^{+0.4+0.1+0.3}_{-0.4-0.3-0.4}$	$53.4_{-0.4-6.5-5.2}^{+0.7+6.9+5.4}$	$25.2^{+0.0+3.3+2.3}_{-0.2-3.4-2.8}$	$21.4^{+0.4+3.3+2.9}_{-0.5-3.5-2.8}$
PQCD (former)	$0.40^{+0.22}_{-0.17}$	57 ⁺⁹ -13		$22.5_{-4.7}^{+7.3}$
QCDF	$1.3^{+2.6}_{-0.7}$	90 ⁺⁵ ₋₂₄		
SCET	1.04 ± 0.30	87 ± 5		5.81 ± 2.84
FAT	1.18 ± 0.46	79.8 ± 8.0		10.2 ± 4.1
Expt. ^a	< 767			

	Modes	TPAs-1						
		\mathcal{A}_T^1	$\bar{\mathcal{A}}_T^1$	$\mathcal{A}^1_{ ext{T-true}}$	$\mathcal{A}_{ ext{T-fake}}^1$	$\mathcal{A}_{\text{T-True}}^{(1)\text{ave}}$	$\mathcal{A}_{\text{T-fake}}^{(1)\text{ave}}$	
	$B^+ \to (\rho^+ \to) \pi^+ \pi^0 (K^{*0} \to) K^+ \pi^-$	$24.94^{+2.05}_{-3.27}$	$-25.65^{+3.81}_{-2.72}$	$-0.36^{+0.28}_{-0.54}$	$25.29^{+2.37}_{-3.33}$	$-0.07^{+0.29}_{-0.56}$	$25.29^{+2.36}_{-3.34}$	
	$B^+ \to (\rho^0 \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+$	$14.51_{-4.06}^{+3.55}$	$-24.52^{+3.37}_{-2.35}$	$-5.00^{+1.44}_{-1.33}$	$19.52^{+2.64}_{-3.47}$	$-2.79^{+1.20}_{-1.22}$	$18.95^{+2.87}_{-3.67}$	
	$B^0 \rightarrow (\rho^0 \rightarrow) \pi^+ \pi^- (K^{*0} \rightarrow) K^+ \pi^-$	$23.55^{+3.59}_{-4.74}$	$-29.96^{+2.49}_{-2.44}$	$-3.20^{+1.55}_{-2.19}$	$26.76^{+2.62}_{-3.12}$	$-3.14^{+1.58}_{-2.04}$	$26.75^{+2.66}_{-3.20}$	
	$B^0 \to (\rho^- \to) \pi^- \pi^0 (K^{*+} \to) K^0 \pi^+$	$19.50^{+2.41}_{-3.09}$	$-28.19^{+2.35}_{-2.02}$	$-4.34^{+1.02}_{-1.20}$	$23.84^{+1.94}_{-2.51}$	$-1.56^{+1.33}_{-1.70}$	$23.34^{+2.00}_{-2.73}$	
	$B_s^0 \to (\rho^+ \to) \pi^+ \pi^0 (K^{*-} \to) \bar{K}^0 \pi^-$	$-3.79^{+1.61}_{-1.53}$	$3.72^{+0.76}_{-0.73}$	$-0.04^{+0.86}_{-0.88}$	$-3.75^{+0.91}_{-0.85}$	$0.30^{+0.85}_{-0.93}$	$-3.75^{+0.87}_{-0.81}$	
	$B_s^0 \to (\rho^0 \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+$	$-30.96^{+1.31}_{-0.42}$	$29.56^{+2.57}_{-4.69}$	$-0.70^{+1.68}_{-2.10}$	$-30.26^{+2.67}_{-0.94}$	$-8.97^{+3.06}_{-1.89}$	$-30.45^{+2.31}_{-0.51}$	
	Modes	TPAs-2	-3	.1	.1	(7)392	Chave	-
		A_T^2	$\bar{\mathcal{A}}_T^2$	$\mathcal{A}^2_{ ext{T-true}}$	$\mathcal{A}^2_{ ext{T-fake}}$	$\mathcal{A}_{ ext{T-True}}^{(2) ext{ave}}$	$\mathcal{A}_{ ext{T-fake}}^{(2) ext{ave}}$	-
	$B^+ \to (\rho^+ \to) \pi^+ \pi^0 (K^{*0} \to) K^+ \pi^-$	$-1.44^{+1.08}_{-1.07}$	$1.54^{+1.10}_{-1.04}$	$0.05\substack{+0.12\\-0.04}$	$-1.49^{+1.06}_{-1.08}$	$0.04^{+0.11}_{-0.07}$	$-1.49^{+1.06}_{-1.08}$	
	$B^+ \to (\rho^0 \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+$	$-1.18^{+1.32}_{-1.39}$	$-9.81^{+2.51}_{-2.56}$	$-5.49^{+1.63}_{-1.72}$	$4.31^{+1.14}_{-1.17}$	$-5.00^{+1.53}_{-1.61}$	$3.69^{+1.08}_{-1.16}$	
	$B^0 \to (\rho^0 \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^-$	$-1.73^{+1.51}_{-1.27}$	16.27+3.73	$7.27^{+2.07}_{-2.06}$	$-9.00^{+2.12}_{-1.93}$	$7.25^{+2.07}_{-2.18}$	$-8.98^{+2.21}_{-1.98}$	
	$B^0 \to (\rho^- \to) \pi^- \pi^0 (K^{*+} \to) K^0 \pi^+$	$-0.93^{+0.65}_{-1.03}$	$1.55^{+1.05}_{-1.02}$	$0.31^{+0.25}_{-0.21}$	$-1.24^{+0.83}_{-0.83}$	$0.16^{+0.21}_{-0.11}$	$-1.20^{+0.80}_{-0.82}$	
	$B_s^0 \to (\rho^+ \to) \pi^+ \pi^0 (K^{*-} \to) \bar{K}^0 \pi^-$	$-0.58^{+0.28}_{-0.28}$	$0.64^{+0.13}_{-0.16}$	$0.04^{+0.10}_{-0.16}$	$-0.61^{+0.18}_{-0.16}$	$0.08^{+0.12}_{-0.13}$	$-0.61^{+0.17}_{-0.16}$	
	$B_s^0 \to (\rho^0 \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+$	$-3.43^{+0.49}_{-0.39}$	$1.80_{-0.72}^{+0.45}$	$-0.81^{+0.25}_{-0.37}$	$-2.61^{+0.50}_{-0.35}$	$-1.53^{+0.39}_{-0.28}$	$-2.84^{+0.46}_{-0.29}$	
					Baad Shing (see 13)			
ahann	al				TF	PAs-1		
chann		-	$\mathcal{A}_{\mathrm{T}}^{1}$		$ar{\mathcal{A}}_{\mathrm{T}}^{1}$	\mathcal{A}	1 T-true	$\mathcal{A}_{ ext{T-fake}}^1$
$B_s^0 \rightarrow$	$\phi \phi \phi \to (K^+ K^-) (K^+$	$^{+}K^{-})$	30.38^{+1}_{-2}	1.16 2.39 -	-30.38^{+2}_{-1}	.39 .16	0	$30.38^{+1.16}_{-2.39}$
$B^0 \rightarrow$	$\phi \phi \to (K^+ K^-) (K^+$	$^{+}K^{-})$	0.67^{+0}_{-0}	.21 .14	$-0.67^{+0.}_{-0.}$	14 21	0	$0.67^{+0.21}_{-0.14}$
channel TPAs-2								
Chaim			$\mathcal{A}_{ ext{T}}^2$		$ar{\mathcal{A}}_{ ext{T}}^2$	\mathcal{A}	2 T-true	$\mathcal{A}^2_{ ext{T-fake}}$
$B_s^0 \rightarrow$	$\phi \phi \phi \to (K^+ K^-) (K^+$	$^{+}K^{-})$	0.15^{+0}_{-0}	.03 .10	$-0.15^{+0.0}_{-0.0}$		0	$0.15_{-0.10}^{+0.03}$
P^0	$\phi \phi \phi \to (K^+ K^-) (K^+$	(K^{-})	-0.11^{+}_{-}	0.02	$0.11_{-0.0}^{+0.0}$	4	0	$-0.11^{+0.02}_{-0.04}$

Modes	PQCD
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+ {}^{\mathrm{BW}}$	$4.1_{-0.7-2.6-0.4}^{+0.8+1.9+0.6}$
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+ \text{ Bugg}$	$4.1^{+0.9+1.7+0.5}_{-0.7-2.9-0.4}$
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^- BW$	$3.4^{+0.6+2.1+0.9}_{-0.5-3.2-0.2}$
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^- \text{Bugg}$	$3.4^{+0.6+2.0+0.6}_{-0.5-3.2-0.2}$
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}_0^* (1430)^0 \to) K^- \pi^+ BW$	$-77.0^{+7.9+22.1+13.9}_{-6.8-4.1-5.3}$
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}_0^*(1430)^0 \to) K^- \pi^+ \text{Bugg}$	$-76.9^{+8.5+20.8+13.7}_{-6.8-4.3-5.3}$
$B^+ \to (f_0(980) \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+$	$-0.3^{+0.8+1.2+1.1}_{-0.0-1.2-2.7}$
$B^0 \to (f_0(980) \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^-$	$-0.3^{+0.3+1.1+3.3}_{-0.0-0.9-2.3}$
$B_s^0 \to (f_0(980) \to) \pi^+ \pi^- (\bar{K}_0^*(1430)^0 \to) K^- \pi^+$	$2.8^{+0.8+0.7+1.9}_{-0.6-1.5-1.6}$
$B^+ \to (f_0(500) \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+ BW$	$-31.4^{+3.5+19.3+4.7}_{-4.5-4.7-7.6}$
$B^+ \rightarrow (f_0(500) \rightarrow) \pi^+ \pi^- (K^{*+} \rightarrow) K^0 \pi^+ \text{Bugg}$	$-34.4^{+3.5+19.6+3.1}_{-4.5-5.4-7.2}$
$B^0 \rightarrow (f_0(500) \rightarrow) \pi^+ \pi^- (K^{*0} \rightarrow) K^+ \pi^- {}^{\mathrm{BW}}$	$17.9^{+0.5+0.6+2.4}_{-1.4-17.3-6.4}$
$B^0 \to (f_0(500) \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^- \text{Bugg}$	$18.3^{+0.1+0.6+1.7}_{-0.3-18.0-6.3}$
$B_s^0 \to (f_0(500) \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+ {}^{\rm BW}$	$41.3^{+1.0+2.9+6.3}_{-1.2-41.4-7.5}$
$B_s^0 \rightarrow (f_0(500) \rightarrow) \pi^+ \pi^- (\bar{K}^{*0} \rightarrow) K^- \pi^+ \text{Bugg}$	$39.1^{+1.1+4.2+7.5}_{-0.5-39.6-7.2}$
$B^+ \to (f_0(980) \to) \pi^+ \pi^- (K^{*+} \to) K^0 \pi^+$	$0.2^{+0.3+0.7+0.5}_{-0.4-0.9-0.4}$
$B^0 \to (f_0(980) \to) \pi^+ \pi^- (K^{*0} \to) K^+ \pi^-$	$-0.2^{+0.0+0.9+1.4}_{-0.0-0.6-0.4}$
$B_s^0 \to (f_0(980) \to) \pi^+ \pi^- (\bar{K}^{*0} \to) K^- \pi^+$	$1.3^{+0.2+0.8+0.1}_{-0.4-0.1-1.8}$
$B^+ \to (\rho^+ \to) \pi^+ \pi^0 (K_0^* (1430)^0 \to) K^+ \pi^-$	$2.5^{+1.0+1.2+1.2}_{-0.4-1.2-1.2}$
$B^+ \to (\rho^0 \to) \pi^+ \pi^- (K_0^*(1430)^+ \to) K^0 \pi^+$	$-3.6^{+0.0+1.6+0.0}_{-1.4-7.3-4.8}$
$B^0 \to (\rho^0 \to) \pi^+ \pi^- (K_0^*(1430)^0 \to) K^+ \pi^-$	$6.8^{+1.5+4.7+0.0}_{-1.3-3.9-1.6}$
$B^0 \to (\rho^- \to) \pi^- \pi^0 (K_0^*(1430)^+ \to) K^0 \pi^+$	$2.4^{+0.1+1.0+0.0}_{-1.4-3.8-3.4}$
$B_s^0 \to (\rho^+ \to) \pi^+ \pi^0 (K_0^*(1430)^- \to) \bar{K}^0 \pi^-$	$7.8^{+1.1+0.7+1.6}_{-1.0-1.0-1.3}$
$B_s^0 \to (\rho^0 \to) \pi^+ \pi^- (\bar{K}_0^* (1430)^0 \to) K^- \pi^+$	$56.3^{+4.0+10.4+12.1}_{-3.1-9.7-5.6}$

The QCDF evaluation gives a low longitudinal polarization fraction by including weak annihilation corrections with the best-fit endpoint parameters. But an obvious tension between the data and the prediction for the branching ratio B(Bs ! K_x0003_) is invoked accordingly.


TABLE IV. Same as Table II but for the $B_{(s)} \rightarrow P(\phi \rightarrow)KK$ decays with $P = \pi$, K.

Modes		Results	Data
$B^+ \rightarrow K^+(\phi \rightarrow) KK$	$\mathcal{B}(10^{-6})$	$8.46^{+3.57+0.41+2.65}_{-2.70-0.45-1.95}$	$8.8^{+0.7}_{-0.6}$
	$\mathcal{A}_{CP}(\%)$	$1.4^{+0.8+0.1+0.0}_{-0.3-1.7-0.8}$	2.4 ± 2.8
$B^0 \rightarrow K^0(\phi \rightarrow) KK$	$\mathcal{B}(10^{-6})$	$7.82_{-2.50-0.19-1.71}^{+3.18+0.40+2.40}$	$7.3 \pm 0.7^{\dagger}$
	$\mathcal{A}_{CP}(\%)$	0	1 ± 14
$B^0_s \rightarrow \bar{K}^0(\phi \rightarrow) KK$	$\mathcal{B}(10^{-8})$	$3.52^{+1.30+1.50+2.30}_{-0.64-0.02-1.27}$	
	$\mathcal{A}_{CP}(\%)$	0	
$B^+ \rightarrow \pi^+(\phi \rightarrow) KK$	$\mathcal{B}(10^{-8})$	$1.15\substack{+0.46+0.02+0.34\\-0.33-0.20-0.28}$	3.2 ± 1.5
	$\mathcal{A}_{CP}(\%)$	0	10 ± 50
$B^0 \rightarrow \pi^0(\phi \rightarrow) KK$	$\mathcal{B}(10^{-9})$	$5.32^{+2.21+0.14+1.61}_{-1.53-0.91-1.27}$	< 15
	$\mathcal{A}_{CP}(\%)$	0	
$B_s^0 \rightarrow \pi^0(\phi \rightarrow) KK$	$\mathcal{B}(10^{-7})$	$1.06\substack{+0.41+0.15+0.07\\-0.34-0.20-0.14}$	
	$\mathcal{A}_{CP}(\%)$	$27.3^{+1.1+3.2+3.5}_{-1.0-1.4-5.8}$	

MOTIVATION

• And also in bayonic sector [JHEP02(2018)098]

Decay mode	Signal yield	S/B	$\pm 3\sigma$ range (MeV/ $c^2)$
$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	$1809\pm~48$	$4.9\ \pm 0.3$	[5573.9, 5674.6]
$\Lambda^0_b \to p K^- \pi^+ \pi^-$	$5193\pm~76$	$7.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4 \hspace{0.2cm}$	[5574.4, 5674.2]
$\Lambda^0_b \to p K^- K^+ \pi^-$	444 ± 30	0.71 ± 0.06	[5577.4, 5671.1]
$\Lambda^0_b \to p K^- K^+ K^-$	$1706\pm~46$	$8.1 \hspace{.1in} \pm \hspace{.1in} 0.7$	[5579.0, 5674.6]
$\Xi_b^0 \to p K^- \pi^+ \pi^-$	183 ± 22	0.59 ± 0.09	[5747.9, 5846.2]
$\Xi_b^0 \to p K^- \pi^+ K^-$	$199\pm~21$	0.81 ± 0.10	[5747.4, 5846.2]
$\varXi^0_b \to p K^- K^+ K^-$	$27\pm~14$	0.14 ± 0.08	[5752.7, 5840.8]
$\Lambda^0_b \to (\Lambda^+_c \to p K^- \pi^+) \pi^-$	16518 ± 133		[5573.7, 5674.8]

ZOU et al.

PHYSICAL REVIEW D 91, 054033 (2015)

TABLE V. Direct *CP* asymmetries (%) in the $B \rightarrow VV$ decays and comparison with the predictions from QCDF [4]. Experimental data are from the Particle Data Group [40]. For $B^0 \rightarrow K^{*0(+)}\rho^{0(-)}$, the data is from Ref. [49].

TABLE VI. Updated percentage of the transverse polarizations $f_{\perp}(\%)$, relative phases $\phi_{\parallel}(\text{rad})$, $\phi_{\perp}(\text{rad})$, $\Delta\phi_{\parallel}(10^{-2} \text{ rad})$, $\Delta\phi_{\perp}(10^{-2} \text{ rad})$, and the *CP* asymmetry parameters $A_{CP}^0(\%)$ and $A_{CP}^{\perp}(\%)$ in $B \rightarrow VV$ decays calculated in the PQCD approach.

1		• •	01 1 1	01 1 1		-	
Decay modes	f_{\perp}	ϕ_{\parallel}	ϕ_{\perp}	A^0_{CP}	A_{CP}^{\perp}	$\Delta \phi_{\parallel}$	$\Delta \phi_{\perp}$
$B^0 \to \rho^0 \rho^0$	$45.9^{+1.1}_{-8.2}$	$2.68^{+1.90}_{-1.09}$	$2.81^{+0.95}_{-1.95}$	$88.9^{+9.0}_{-120.7}$	$-11.6^{+16.2}_{-2.9}$	$-98.9^{+251.9}_{-69.6}$	-105_{-41}^{+266}
$B^0 o ho^+ ho^-$	$2.42_{-0.19}^{+0.21}$	$3.12\substack{+0.06\\-0.06}$	$3.16\substack{+0.06\\-0.05}$	$-2.05_{-0.55}^{+0.53}$	$39.0^{+7.6}_{-8.4}$	$10.2^{+3.0}_{-3.1}$	$9.58^{+2.93}_{-3.19}$
$B^0 \to \rho^0 \omega$	$16.7^{+5.0}_{-3.6}$	$3.13_{-0.19}^{+0.17}$	$3.13_{-0.19}^{+0.17}$	$26.6^{+19.8}_{-12.2}$	$-60.0^{+11.8}_{-12.1}$	$-87.8^{+13.7}_{-15.3}$	$-98.4^{+12.9}_{-15.1}$
$B^0 \to \omega \omega$	$18.2^{+6.1}_{-5.3}$	$3.20_{-0.20}^{+0.25}$	$3.21_{-0.22}^{+0.24}$	$-5.70^{+11.8}_{-16.2}$	$17.0^{+19.1}_{-22.1}$	$105^{+13.2}_{-10.4}$	$108^{+13.8}_{-11.1}$
$B^0 \to K^{*0} \rho^0$	$16.9^{+2.7}_{-1.8}$	$4.67\substack{+0.02 \\ -3.06}$	$4.66\substack{+0.01 \\ -3.06}$	$3.64^{+1.20}_{-1.07}$	$-7.71^{+1.97}_{-1.86}$	$-0.12^{+1.72}_{-1.79}$	$0.22^{+1.85}_{-1.65}$
$B^0 \to K^{*+} \rho^-$	$15.6^{+2.5}_{-2.5}$	$3.31_{-0.21}^{+0.23}$	$3.30^{+0.22}_{-0.21}$	$23.8^{+4.7}_{-5.1}$	$-50.9^{+4.9}_{-3.9}$	$128_{-4.4}^{+4.1}$	$127^{+43}_{-4.3}$
$B^0 \to K^{*0} \omega$	$18.3^{+2.6}_{-2.3}$	$2.18^{+0.21}_{-0.20}$	$2.14_{-0.19}^{+0.21}$	$1.46_{-1.62}^{+1.44}$	$-8.92^{+5.01}_{-4.01}$	$-2.28^{+1.79}_{-1.89}$	$-12.0^{+3.5}_{-4.9}$
$B^0 \to K^{*0} \bar{K}^{*0}$	$19.7_{-3.6}^{+4.0}$	$2.26_{-0.16}^{+0.20}$	$2.31_{-0.15}^{+0.19}$	~0.0	~0.0	~0.0	~0.0
$B^0 \to K^{*+} K^{*-}$	~0.0	$3.34_{-0.06}^{+0.08}$	$3.37^{+2.60}_{-0.09}$	$0.02^{+0.02}_{-0.01}$	$-75.3^{+21.1}_{-10.5}$	$56.4^{+10.9}_{-9.7}$	$-129^{+258}_{-2.0}$
n0 0 <i>1</i>	a a <±1.08	0.0.022	2 ==+0.24	0.0	0.0	0.0	0.0

Decay modes	This work	QCDF	Expt.
$B^0 \to \rho^0 \rho^0$	$70.7^{+2.9+0.8+3.8}_{-5.2-5.4-6.0}$	30^{+17+14}_{-16-26}	
$B^0 \to \rho^+ \rho^-$	$0.83\substack{+0.50+0.66+0.00\\-0.59-0.31-0.00}$	-4^{+0+3}_{-0-3}	
$B^0 \to \rho^0 \omega$	$59.4^{+11.9}_{-8.3}{}^{+5.0}_{-5.5}{}^{+6.3}_{-6.3}$	3^{+2+51}_{-6-76}	
$B^0 \to \omega \omega$	$-73.7^{+6.7+2.6+3.3}_{-6.2-6.0-0.9}$	$-30\substack{+15+16\\-14-18}$	
$B^0 \to K^{*0} \rho^0$	$-8.9^{+0.6+2.8+1.1}_{-0.6-2.8-1.0}$	-15^{+4+16}_{-8-14}	$-6\pm9\pm2$
$B^0 \to K^{*+} \rho^-$	$24.5^{+1.2+2.9+0.0}_{-1.5-3.4-0.6}$	32^{+1+2}_{-3-14}	$21\pm15\pm2$
$B^0 \to K^{*0} \omega$	$5.6^{+0.3+1.2+0.8}_{-0.3-1.3-0.9}$	23^{+9+5}_{-5-18}	45 ± 25
$B^0 \rightarrow K^{*0} \overline{K}^{*0}$	0.0	-14^{+1+6}_{-1-2}	
$B^0 \to K^{*+} K^{*-}$	$29.8^{+2.0+6.4+4.6}_{-5.7-9.5-4.7}$	0	

ZOU et al.

PHYSICAL REVIEW D 91, 054033 (2015)

TABLE IV. Updated percentage of the longitudinal polarizations f_L of $B \rightarrow VV$ decays calculated in the PQCD approach compared with the updated theoretical predictions in the QCD factorization (QCDF) approach [4] and the previous predictions in the PQCD approach [7]. Experimental data are from the Particle Data Group [40].

Decay modes	This work	QCDF	PQCD(former)	Expt.
$B^0 \to \rho^0 \rho^0$	$0.12\substack{+0.04+0.15+0.00\\-0.02-0.01-0.00}$	$0.92^{+0.03+0.06}_{-0.04-0.37}$	0.60	0.75 ± 0.14^{a}
$B^0 \rightarrow \rho^+ \rho^-$	$0.95\substack{+0.01+0.01+0.00\\-0.01-0.01-0.00}$	$0.92^{+0.01+0.01}_{-0.02-0.02}$	0.94	0.977 ± 0.026
$B^0 \to \rho^0 \omega$	$0.67\substack{+0.04+0.03+0.06\\-0.06-0.04-0.06}$	$0.52_{-0.25-0.36}^{-0.11+0.50}$	0.87	
$B^0 \to \omega \omega$	$0.66\substack{+0.07+0.04+0.06\\-0.10-0.02-0.04}$	$0.94^{+0.01+0.04}_{-0.01-0.20}$	0.82	
$B^0 \to K^{*0} \rho^0$	$0.65\substack{+0.03+0.03+0.00\\-0.03-0.04-0.00}$	$0.39^{+0.00+0.60}_{-0.00-0.31}$	0.74	0.57 ± 0.10
$B^0 \to K^{*+} \rho^-$	$0.68\substack{+0.04+0.03+0.02\\-0.03-0.03-0.02}$	$0.53^{+0.02+0.45}_{-0.03-0.32}$	0.78	
$B^0 \to K^{*0} \omega$	$0.65^{+0.05+0.02+0.00}_{-0.05-0.02-0.00}$	$0.58^{+0.07+0.43}_{-0.10-0.14}$	0.82	0.69 ± 0.13
$B^0 \to K^{*0} \bar{K}^{*0}$	$0.58^{+0.07+0.02+0.02}_{-0.08-0.02-0.01}$	$0.52^{+0.04+0.48}_{-0.07-0.48}$	0.78	0.80 ± 0.13
$B^0 \rightarrow K^{*+} K^{*-}$	~1.0	~1.0	0.99	

MOTIVATION

 And also in bar 	yonic sector	[JHEP02(2018)098,LHCb]			
Some charmless four	Decay mode	Signal yield	S/B	$\pm 3\sigma$ range (MeV/ $c^2)$	
	$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	1809 ± 48	$4.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.3 \hspace{0.2cm}$	[5573.9, 5674.6]	
body decays are	$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	$5193\pm~76$	$7.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$	[5574.4, 5674.2]	
observed	$\Lambda_b^0 \to p K^- K^+ \pi^-$	444 ± 30	0.71 ± 0.06	[5577.4, 5671.1]	
	$\Lambda^0_b \to p K^- K^+ K^-$	$1706\pm~46$	$8.1 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	[5579.0, 5674.6]	
	$\Xi_b^0 \to p K^- \pi^+ \pi^-$	183 ± 22	0.59 ± 0.09	[5747.9, 5846.2]	
	$\Xi_b^0 \to p K^- \pi^+ K^-$	$199\pm~21$	0.81 ± 0.10	[5747.4, 5846.2]	
No significant CPV	$\Xi_b^0 \to p K^- K^+ K^-$	$27\pm~14$	0.14 ± 0.08	[5752.7, 5840.8]	
effect is observed	$\Lambda_b^0 \to (\Lambda_c^+ \to pK^-\pi^+)\pi$	-16518 ± 133		[5573.7, 5674.8]	
	S	earch for CP viol	ation using t	riple product	
Eur. Phys. J. C (2019) 79:745 https://doi.org/10.1140/epjc/s10052-019-7218-1		symmetries in Λ_b^0 nd $\Xi_c^0 \to n K^- K^-$		-, $\Lambda_b^0 ightarrow pK^-K^+K^-$	

Regular Article - Experimental Physics

and $arepsilon_b^0
ightarrow p K^- K^- \pi^+$ decays

Measurements of *CP* asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays

HCľ

JHEP08(2018)039

The LHCb collaboration

LHCb Collaboration*

		TPAs – 1					
Channel	$\mathcal{A}_{\mathrm{T}}^{1}$	$ar{\mathcal{A}}^1_{\mathrm{T}}$	$\mathcal{A}_{ ext{T-true}}^1$	$\mathcal{A}_{ ext{T-fake}}^1$			
$\overline{B^0_s \to \phi \phi \to (K^+ K^-) (K^+ K^-)}$	$30.38^{+1.16}_{-2.39}$	$-30.38^{+2.39}_{-1.16}$	0	$30.38^{+1.16}_{-2.39}$			
$B^0 \to \phi \phi \to (K^+ K^-) (K^+ K^-)$	$0.67^{+0.21}_{-0.14}$	$-0.67^{+0.14}_{-0.21}$	0	$0.67\substack{+0.21 \\ -0.14}$			
		TPAs – 2					
Channel	$\mathcal{A}_{\mathrm{T}}^2$	$ar{\mathcal{A}}_{\mathrm{T}}^2$	$\mathcal{A}^2_{ ext{T-true}}$	$\mathcal{A}^2_{ ext{T-fake}}$			
$B^0_s \to \phi \phi \to (K^+K^-)(K^+K^-)$	$0.15_{-0.10}^{+0.03}$	$-0.15_{-0.03}^{+0.10}$	0	$0.15\substack{+0.03\\-0.10}$			
$B^0 \to \phi \phi \to (K^+ K^-) (K^+ K^-)$	$-0.11_{-0.04}^{+0.02}$	$0.11\substack{+0.04\\-0.02}$	0	$-0.11\substack{+0.02\\-0.04}$			

TABLE VII. PQCD predictions for the TPAs (%) of the four-body $B^0_{(s)} \rightarrow (K^+K^-)(K^+K^-)$ decays. The sources of theoretical errors are the same as in Table III but added in quadrature.

Comparing with the BR of the scalar-scalar and scalar-vector modes derived in the two-body PQCD framework, our numbers are generally smaller.

- A global fitting to the Gegenbauer moments of the S-wave DAs in PQCD has not been carried out yet.
- The narrow-width approximation should be corrected by including finitewidth effects for the broad scalar intermediate states. [H. Y. Cheng et al. Phys. Rev. D 103, 036017 (2021), Phys. Lett. B 813, 136058 (2021).]

3. Two-body branching ratios and polarization fractions

In the narrow-width limit:

 $\mathcal{B}(B \to K^*(\to K\pi)\bar{K}^*(\to K\pi)) \approx \mathcal{B}(B \to K^*\bar{K}^*) \times \mathcal{B}(K^* \to K\pi) \times \mathcal{B}(\bar{K}^* \to K\pi)$

Naive SM (V-A) helicity counting rules: $f_L \sim 1 - O(m_V^2/m_B^2)$, $f_{\parallel} \sim f_{\perp} \sim O(m_V^2/m_B^2)$

Modes	$\mathcal{B}(10^{-6})$	$f_0(\%)$	$f_{\parallel}(\%)$	$f_{\perp}(\%)$
$B^0_s \rightarrow K^{*+} K^{*-}$	$8.0^{+0.8+1.2+3.2}_{-0.6-0.8-1.6}$	$58.8^{+2.9+3.0+1.0}_{-3.4-1.3-0.0}$	$20.7^{+1.8+0.7+0.0}_{-1.6-0.7-0.5}$	$20.5^{+1.6+0.5+0.0}_{-1.3-1.4-0.5}$
PQCD-I [32]	$5.4^{+3.3}_{-2.3}$	$42.0^{+14.2}_{-11.2}$		$27.7^{+5.2}_{-7.0}$
PQCD-II [33]	$6.7^{+3.7}_{-1.9}$	$43.8_{-4.9}^{+6.6}$	$30.1^{+2.4}_{-3.4}$	$26.1^{+2.4}_{-3.2}$
PQCD-NLO [34]	$6.5^{+2.8}_{-2.1}$	$48.1_{-8.9}^{+9.7}$		$23.9^{+4.4}_{-5.2}$
QCDF-I [35]	$7.6^{+2.5}_{-2.1}$	52^{+20}_{-21}		
QCDF-II [36]	$9.1^{+10.5}_{-6.3}$	67^{+31}_{-26}		
SCET [37]	11.0 ± 3.3	55 ± 14		20.3 ± 8.6
FAT [38]	15.9 ± 3.5	30.9 ± 10.4		34.9 ± 5.8
$B^0 \rightarrow K^{*+} K^{*-}$	$0.21^{+0.06+0.06+0.01}_{-0.05-0.03-0.01}$	~ 100	~ 0.0	~ 0.0
PQCD-I [32]	0.21 ± 0.10	~ 100	~ 0.0	~ 0.0
PQCD-II [119]	$0.064^{+0.005}_{-0.010}$	99	0.5	0.4
QCDF-I [120, 121]	0.1 ± 0.1	~ 100	~ 0.0	~ 0.0
FAT [38]	1.43 ± 0.96			
Data [5, 6]	< 2.0			
$B^+ \rightarrow K^{*+} \bar{K}^{*0}$	$0.74_{-0.14-0.08-0.16}^{+0.24+0.06+0.22}$	$87.6^{+2.3+0.8+0.1}_{-2.3-1.3-0.9}$	$6.0^{+1.2+0.7+0.5}_{-1.0-0.3-0.0}$	$6.4^{+1.0+0.4+0.3}_{-1.4-0.6-0.2}$
PQCD-I [32]	$0.56^{+0.26}_{-0.22}$	74^{+4}_{-5}		$12.9^{+1.7}_{-2.4}$
PQCD-II [119]	$0.48^{+0.12}_{-0.08}$	81.5	9.0	9.5
QCDF-I [120, 121]	0.6 ± 0.3	45^{+55}_{-38}		27^{+19}_{-27}
QCDF-II [36]	$0.5^{+0.4}_{-0.3}$	62_{-33}^{+42}		
SCET [37]	0.52 ± 0.18	50 ± 16		22.9 ± 10.0
FAT [38]	0.66 ± 0.18	58.3 ± 11.1		20.8 ± 6.0
Data [5, 6]	0.91 ± 0.29	82^{+15}_{-21}	•••	

Modes	$B(10^{-6})$	$f_0(\%)$	$f_{\parallel}(\%)$	$f_{\perp}(\%)$
$B^0_s \rightarrow K^{*0} \bar{K}^{*0}$	$9.5^{+1.1+1.1+4.6}_{-1.1-1.1-2.6}$	$63.6^{+2.7+3.3+1.0}_{-4.2-3.9-1.0}$	$18.2^{+2.1+1.9+0.4}_{-1.5-1.7-0.5}$	$18.2^{+2.0+1.8+0.5}_{-1.3-1.6-0.6}$
PQCD-I [32]	$5.4^{+3.0}_{-2.4}$	$38.3^{+12.1}_{-10.5}$		$30.0^{+5.3}_{-6.1}$
PQCD-II [33]	$7.8^{+4.2}_{-2.7}$	$49.7^{+5.7}_{-6.1}$	$26.8^{+3.3}_{-3.0}$	$23.5^{+2.8}_{-2.7}$
PQCD-NLO [34]	$6.7^{+2.9}_{-2.2}$	$43.4^{+12.7}_{-12.9}$		$23.5^{+5.8}_{-5.9}$
QCDF-I [35]	6.6 ± 2.2	56^{+22}_{-27}		
QCDF-II [36]	$9.1^{+11.3}_{-6.8}$	63^{+42}_{-29}		
SCET [37]	8.6 ± 3.1	44.9 ± 18.3		24.9 ± 11.1
FAT [38]	14.9 ± 3.6	34.3 ± 12.6		33.2 ± 6.9
Data [5, 6]	11.1 ± 2.7	24 ± 4	30 ± 5	38 ± 12
$B^0 \rightarrow K^{*0} \bar{K}^{*0}$	$0.32^{+0.09+0.09+0.16}_{-0.04-0.04-0.04}$	$71.5^{+3.8+2.7+1.5}_{-2.6-1.6-0.8}$	$14.6^{+1.3+0.8+0.4}_{-1.9-1.4-0.7}$	$13.9^{+1.3+0.8+0.4}_{-1.9-1.4-0.8}$
PQCD-I [32]	$0.34^{+0.16}_{-0.15}$	58 ± 8		$19.7^{+4.0}_{-3.6}$
PQCD-II [119]	0.35	78	12	10
QCDF-I [120, 121]	$0.6^{+0.2}_{-0.3}$	52 ± 48		24 ± 24
QCDF-II [36]	$0.6^{+0.5}_{-0.3}$	69^{+34}_{-27}		
SCET [37]	0.48 ± 0.16	50 ± 16		22.9 ± 10.0
FAT [38]	0.61 ± 0.17	58.3 ± 11.1		20.8 ± 6.0
Data [5, 6]	0.83 ± 0.24	74 ± 5		

The polarization puzzle associated with the two U-spin related channels $B_S^0 \to \overline{K^*}K^*$ and $B^0 \to \overline{K^*}K^*$ still exists.

	Modes	$B(10^{-6})$	f ₀ (%)	f _⊥ (%)
	$B^0 \rightarrow \phi K^{*0}$	$7.4^{+2.5+1.1+2.6}_{-2.1-1.2-1.8}$	74.1+3.1+1.5+1.1 -5.8-3.0-1.2	$13.3^{+3.0+1.6+0.6}_{-1.6-0.8-0.5}$
	PQCD-I [52]	14.86	75.0	11.5
	PQCD-II [62]	$9.8^{+4.9}_{-3.8}$	$56.5^{+5.8}_{-5.9}$	$21.3^{+2.8}_{-2.9}$
	QCDF-I [38]	$9.3^{+0.5+11.4}_{-0.5-6.5}$	44+0+59	-23
	QCDF-II [39]	$9.5^{+13+11.9}_{-1.2-5.9}$	$\begin{array}{r} 44^{+0+59}_{-0-36} \\ 50^{+50}_{-42} \end{array}$	25^{+21}_{-25}
-0.31 ± 0.19	SCET [63]	9.14 ± 3.14	51.0 ± 16.4	22.2 ± 9.9
	FAT [64]	$8.64 \pm 1.76 \pm 1.70 \pm 0.90$	48.0 ± 16.0	26.0 ± 8.6

$$a_{2\phi}^0 = -0.31 \pm 0.19$$

Asymmetry	Value
A_T^1	$0.003 \pm 0.041 \pm 0.009$
A_T^2	$0.009 \pm 0.041 \pm 0.009$
A_T^3	$0.019 \pm 0.041 \pm 0.008$
A_T^4	$-0.040 \pm 0.041 \pm 0.008$
A_D^1	$-0.061 \pm 0.041 \pm 0.012$
A_D^2	$0.081 \pm 0.041 \pm 0.008$
A_D^3	$-0.079 \pm 0.041 \pm 0.023$
A_D^4	$-0.081 \pm 0.041 \pm 0.010$

Table 3.	Triple	product	and d	direct	CP	asymmetries	measured i	in this	analysis.	The first	uncer-
----------	--------	---------	-------	--------	----	-------------	------------	---------	-----------	-----------	--------

tainties a	re statistical a	nd the second a	systematic.			
	SCET [30]	19.0 ± 6.5	51.0 ± 16.4	22.2 ± 9.9	2.41 ± 0.62	2.54 ± 0.62
	FAT [31]	26.4 ± 7.6	39.7 ± 16.0	31.2 ± 8.9	2.53 ± 0.28	2.56 ± 0.27
	Data	18.7 ± 1.5	37.8 ± 1.3	29.2 ± 0.9	2.56 ± 0.06	2.82 ± 0.19
	$B^0 \to \phi \phi$	$0.016^{+0.005}_{-0.004}$	$98.9^{+0.1}_{-0.7}$	$0.02^{+0.01}_{-0.00}$	$2.38^{+0.21}_{-0.10}$	$4.39^{+0.21}_{-0.27}$
	PQCD [28]	$0.012^{+0.006}_{-0.005}$	97 ± 1	0.05 ± 0.02	$3.26^{+0.20}_{-0.14}$	3.50 ± 0.17
	Data	< 0.027	••••			