

B工厂中 $e^+e^- \rightarrow J/\psi + J/\psi$ 两圈QCD修正

黄旭东

中国科学院高能物理研究所(IHEP)

In collaboration with Bin Gong, Rui-Chang Niu, Huai-Min Yu, and Jian-Xiong Wang (arXiv:2311.04751)

第五届粒子物理天问论坛 12th Nov., 2023, 湖南. 长沙

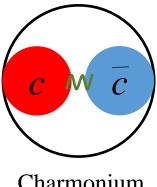
ontents

1. Introduction

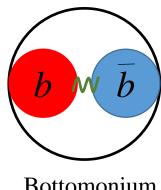
Cross Sections and NRQCD Factorization

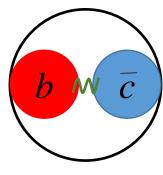
- 2. Cross Sections and NRQCD Factorization
- 3. Calculation of the NNLO SDCs
- 4. Phenomenological results
- 5. Summary

Background



Cross Sections and NRQCD Factorization





Phenomenological results

Charmonium

Bottomonium

 $b\bar{c}$ meson

- Since the discovery of I/ψ in 1974, the heavy quarkonium production has been a focus of theoretical and experimental researches.
- Heavy quarkonium is the simplest hadron in QCD, similar to the hydrogen atom in QED.
- Heavy quarkonium present an ideal laboratory for the studying QCD, which can help to understand the interplay between the perturbative effects and nonperturbative effects.

Background

Experiment

- $\sigma(e^+e^- \to I/\psi + I/\psi) \times \mathcal{B}_{>2} < 9.1 \text{fb (Belle, PRD 2004)}$
- $\sigma(e^+e^- \to I/\psi + \eta_c) \times B_{\geq 2} = 25.6 \pm 2.8 \pm 3.4 \text{fb}$ (Belle, PRD 2004)
- $\sigma(e^+e^- \to I/\psi + \chi_{c0}) \times B_{\geq 2} = 6.4 \pm 1.7 \pm 1.0$ fb (Belle, PRD 2004)
- $\sigma(e^+e^- \to I/\psi + \eta_c) \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1} \text{fb}$ (BaBar, PRD 2005)
- $\sigma(e^+e^- \to \rho^0 + \rho^0) = 20.7 \pm 0.7 \pm 2.7$ fb (BaBar, PRL 2006)
- $\sigma(e^+e^- \to \rho^0 + \phi) = 5.7 + 0.5 + 0.8$ fb (BaBar, PRL 2006)

Theoretical Calculation

- The LO NRQCD predictions is even greater than the LO NRQCD prediction for $e^+e^- \rightarrow J/\psi + \eta_c$
 - G. T. Bodwin, J. Lee and E. Braaten, PRL 2003 8.7fb G. T. Bodwin, J. Lee and E. Braaten, PRD 2003 6.65fb
- Two-photon exchange model, considered the photon fragmentation contribution only
 - M. Davier, M. E. Peskin and A. Snyder, arXiv:hep-ph/0606155 2006 2.38fb
- Further took into account the non-fragmentation contribution within the NROCD factorization framework,
 - G. T. Bodwin, E. Braaten, J. Lee and C. Yu, PRD 2006 1.69±0.35fb

Introduction

Theoretical Calculation

• The NLO NRQCD predictions, the combined NLO perturbative and relativistic corrections

```
B. Gong and J. X. Wang, PRL 2008 -3.4~2.3fb
Y. Fan, J. Lee and C. Yu, PRD 2013 -12~-0.43fb
```

- Following the recipe practised in PRD 74, 074014 (2006), splitting the amplitude into the photon-fragmentation and non-fragmentation parts Y. Fan, J. Lee and C. Yu, PRD 2013 1~1.5fb
- Following PRD 74, 074014 (2006), the interference and the non-fragmentation parts are then computed through NNLO within NRQCD W. L.Sang, F. Feng, Y. Jia, Z. Mo, J. Pan and J. Y. Zhang, PRL 2023 2.13^{+0.30}_{-0.06}fb

Motivation

- 1. The NLO perturbative correction turns out to be negative and significant, the NNLO correction in the standard NRQCD?
- 2. How to obtain an positive, physical cross section in the standard NRQCD?

Introduction

Cross Sections and NRQCD Factorization

G.T. Bodwin, E. Braaten and G.P. Lepage, PRD 1995

• Under the NRQCD factorization, the cross section for $e^+e^- \rightarrow J/\psi + J/\psi$ can be written as

$$\sigma(e^{+}e^{-} \to J/\psi + J/\psi) = \hat{\sigma}(e^{+}e^{-} \to (c\bar{c})[{}^{3}S_{1}^{[1]}] + (c\bar{c})[{}^{1}S_{0}^{[1]}]) \times \langle \mathcal{O}^{J/\psi} \rangle^{2}$$

Short-distance coefficients (SDCs) perturbative calculable

Long-distance matrix elements (LDMEs) nonperturbative, universal

Separate the short-distance effect and long-distance dynamics

• At B factories, the process and expressed as

$$\sigma(e^+e^- \to J/\psi + J/\psi) = \frac{1}{8s} \sum |A|^2 d\Phi_2$$

Introduction

Phenomenological results

Calculation of the NNLO SDCs

- The SDCs can be derived by the perturbative matching procedure.
- In the lowest-order nonrelativistic approximation, only the color-singlet contribution need to be considered.
- Nearly 600 two-loop diagrams for the processes $e^+e^- \rightarrow (c\bar{c})[{}^3S_1^{[1]}] + (c\bar{c})[{}^3S_1^{[1]}]$ (FeynArts) T. Hahn, CPC 2001

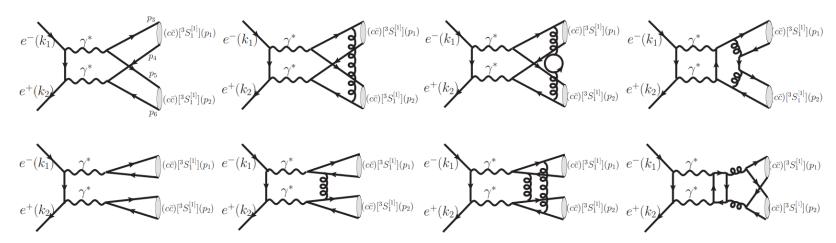
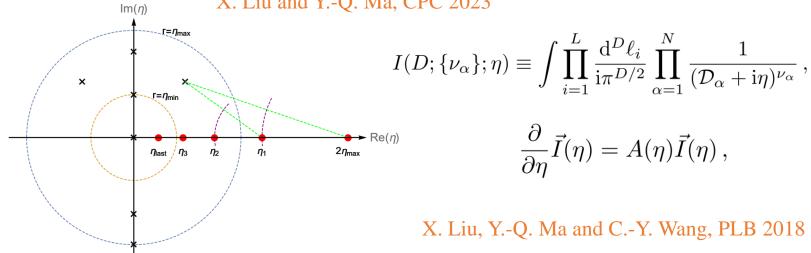


Figure 1. Several representative Feynman diagrams for $e^+e^- \to (c\bar{c})[^3S_1^{[1]}] + (c\bar{c})[^3S_1^{[1]}]$.

Calculation of the NNLO SDCs

- Handle the Lorentz index contraction and Dirac/SU(Nc) traces
 (FeynCalc) V. Shtabovenko, R. Mertig and F. Orellana, CPC 2016
- Decompose the Feynman amplitudes into 234 Feynman integral families
 (CalcLoop) Yan-Qing Ma, https://gitlab.com/multiloop-pku/calcloop
- Calculate the Feynman integrals (87287 FIs)

(Kira, AMFlow) J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, CPC 2021 X. Liu and Y.-Q. Ma, CPC 2023



• We demand 10-digit precision for each Feynman integral family.

Renormalization

The amplitudes are renormalized according to

$$\mathcal{A}(\alpha_s, m_Q) = Z_{2,c}^2 \left[\mathcal{A}_{bare}^{0l} + \mathcal{A}_{bare}^{1l}(\alpha_{s,bare}, m_{Q,bare}) + \mathcal{A}_{bare}^{2l}(\alpha_{s,bare}, m_{Q,bare}) \right]$$
where $m_{Q,\text{bare}} = Z_{m,Q} m_Q$ $\alpha_{s,\text{bare}} = \left(\frac{e^{\gamma_E}}{4\pi} \right)^{\epsilon} \mu_R^{2\epsilon} Z_{\alpha_s}^{\overline{\text{MS}}} \alpha_s(\mu_R),$

P. Bärnreuther, M. Czakon and P. Fiedler, JHEP 2014 W. Tao, R. Zhu and Z.-J. Xiao, PRD 2022

$$Z_{\alpha_s} = 1 - \left(\frac{\alpha_s^{(n_f)}}{2\pi}\right) \frac{b_0}{2\epsilon} + \left(\frac{\alpha_s^{(n_f)}}{2\pi}\right)^2 \left(\frac{b_0^2}{4\epsilon^2} - \frac{b_1}{8\epsilon}\right)$$

• The renormalized $\mathcal{A}(\alpha_s, m_Q)$ can be obtained by expanding the r.h.s. of such equation over renormalized quantities to $\mathcal{O}(\alpha_s^3)$,

$$\mathcal{A}(\alpha_s, m_Q) = \mathcal{A}^{0l}(m_Q) + \mathcal{A}^{1l}(\alpha_s, m_Q) + \mathcal{A}^{2l}(\alpha_s, m_Q) + \mathcal{O}(\alpha_s^3)$$

Calculating amplitudes

Complete-basis space

Introduction

$$\begin{pmatrix} |e_{1}\rangle \\ |e_{2}\rangle \\ |e_{3}\rangle \\ |e_{4}\rangle \\ |e_{5}\rangle \\ |e_{6}\rangle \\ |e_{7}\rangle \\ |e_{8}\rangle \\ |e_{9}\rangle \\ |e_{10}\rangle \end{pmatrix} = \begin{pmatrix} g^{\rho_{1}\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{1}}k_{1}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) + k_{2}^{\rho_{1}}k_{2}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{1}}k_{1}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) - k_{2}^{\rho_{1}}k_{2}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{1}}k_{2}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{1}}.u_{m_{e}}(k_{1}) + k_{2}^{\rho_{1}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{2}}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{1}}.u_{m_{e}}(k_{1}) - k_{2}^{\rho_{1}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{2}}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{1}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{2}}.u_{m_{e}}(k_{1}) + k_{2}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{1}}.u_{m_{e}}(k_{1}) \\ k_{1}^{\rho_{1}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{2}}.u_{m_{e}}(k_{1}) - k_{2}^{\rho_{2}}\bar{v}_{m_{e}}(k_{2}).\gamma^{\rho_{1}}.u_{m_{e}}(k_{1}) \\ \bar{v}_{m_{e}}(k_{2}).\rlap{/}{p}_{2}.\gamma^{\rho_{1}}.\gamma^{\rho_{2}}.u_{m_{e}}(k_{1}) \end{pmatrix}$$

Amplitudes

$$\mathcal{A}^{nl}|_{n=0,1,2} = \sum_{i=1}^{nl} c_i^{nl} |e_i\rangle$$

$$\mathcal{A}^{ml} \mathcal{A}^{nl,*} = \sum_{i=1}^{10} \sum_{j=1}^{10} c_i^{ml} G_{i,j} c_j^{nl,*}$$

Differential cross section

• Then, the differential cross section can be written as

$$\frac{d\sigma_{e^{+}e^{-} \to (c\bar{c})[^{3}S_{1}^{[1]}] + (c\bar{c})[^{3}S_{1}^{[1]}]}}{d|\cos\theta|} = \frac{1}{8s} \frac{\kappa}{16\pi} \left| \mathcal{A}^{0l} + \mathcal{A}^{1l} + \mathcal{A}^{2l} + \mathcal{O}(\alpha_{s}^{3}) \right|^{2}
= \frac{1}{8s} \frac{\kappa}{16\pi} \left(|\mathcal{A}^{0l}|^{2} + 2\operatorname{Re}(\mathcal{A}^{1l}\mathcal{A}^{0l,*}) + 2\operatorname{Re}(\mathcal{A}^{2l}\mathcal{A}^{0l,*}) + |\mathcal{A}^{1l}|^{2}
+2\operatorname{Re}(\mathcal{A}^{2l}\mathcal{A}^{1l,*}) + |\mathcal{A}^{2l}|^{2} + \cdots \right),$$

where $\kappa = \sqrt{1 - (16m_c^2)/s}$ and θ is the angle between the J/ψ and the beam.

• The square of NNLO amplitude (S-NNLO)

$$|\mathcal{A}^{0l}|^{2} + 2\operatorname{Re}(\mathcal{A}^{1l}\mathcal{A}^{0l,*}) + 2\operatorname{Re}(\mathcal{A}^{2l}\mathcal{A}^{0l,*}) + |\mathcal{A}^{1l}|^{2} + 2\operatorname{Re}(\mathcal{A}^{2l}\mathcal{A}^{1l,*}) + |\mathcal{A}^{2l}|^{2} + \cdots$$
LO NLO NNLO

• There still remains IR divergence in $\mathcal{A}^{2l}\mathcal{A}^{0l,*}$, $\mathcal{A}^{2l}\mathcal{A}^{1l,*}\left|\mathcal{A}^{2l}\right|^2$.

Differential cross section

The anomalous dimension for the NRQCD current J

$$\gamma_J = \frac{\mathrm{d} \ln Z_J}{\mathrm{d} \ln \mu} = -C_F \left(2C_F + 3C_A\right) \frac{\pi^2}{6} \left(\frac{\alpha_s}{\pi}\right)^2 + \mathcal{O}(\alpha_s^3).$$

A. Czarnecki and K. Melnikov, PRL 1998, M. Beneke, A. Signer and V.A. Smirnov, PRL 1998 A. Czarnecki and K. Melnikov, PLB 2001

By including the two-loop corrections to the NRQCD bilinear operators carrying the quantum number of J/ψ in $\overline{\rm MS}$ scheme

$$\langle \mathcal{O}^{(c\bar{c})[^{3}S_{1}^{[1]}]}(^{3}S_{1}^{[1]})\rangle|_{\overline{MS}} = 2N_{c} \left[1 - \alpha_{s}^{2}(\mu_{R}) \left(\frac{\mu_{\Lambda}^{2}e^{\gamma_{E}}}{\mu_{R}^{2}4\pi} \right)^{-2\epsilon} \left(\frac{C_{F}^{2}}{3} + \frac{C_{F}C_{A}}{2} \right) \frac{1}{2\epsilon} \right]$$

H.S. Chung, JHEP 2020

The differential cross section for $e^+e^- \rightarrow J/\psi + J/\psi$ can be written as

$$\frac{d\sigma_{e^{+}e^{-}\to J/\psi + J/\psi}}{d|\cos\theta|} = \frac{d\sigma_{e^{+}e^{-}\to (c\bar{c})[^{3}S_{1}^{[1]}] + (c\bar{c})[^{3}S_{1}^{[1]}]}}{d|\cos\theta|} \frac{\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[1]})\rangle^{2}}{\langle \mathcal{O}^{(c\bar{c})[^{3}S_{1}^{[1]}]}(^{3}S_{1}^{[1]})\rangle^{2}|_{\overline{\mathrm{MS}}}}$$

$$= (f_{0} + f_{1}\alpha_{s} + f_{2}\alpha_{s}^{2} + f_{3}\alpha_{s}^{3} + f_{4}\alpha_{s}^{4} + \cdots)|R_{s}^{J/\psi}(0)|^{4}$$
where $\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[1]})\rangle \approx N_{c}|R_{s}^{J/\psi}(0)|^{2}/(2\pi)$ incomplete

• Input parameters:

PDG, PTEP 2022 G.T. Bodwin, J. Lee and C. Yu, PRD 2008

$$\begin{split} \sqrt{s} &= 10.58 \text{GeV}, \quad m_b = 4.8 \text{GeV}, \quad m_c = 1.5 \text{GeV}, \quad \alpha(2m_c) = 1/132.6, \\ \alpha_s(M_z) &= 0.1179, \left| R_s^{J/\psi}(0) \right|_{LO}^2 = 0.492 \text{GeV}^3, \quad \left| R_s^{J/\psi}(0) \right|_{NLO}^2 = 0.796 \text{GeV}^3, \\ \left| R_s^{J/\psi}(0) \right|_{NNLO,\mu_A=1GeV}^2 = 1.810 \text{GeV}^3, \end{split}$$

• The leptonic decay widths : $\Gamma_{I/\psi \to e^+e^-} = 5.53 \text{keV}$

• The differential cross section for $e^+e^- \rightarrow J/\psi + J/\psi$ can be written as

$$\frac{d\sigma_{e^+e^-\to J/\psi+J/\psi}}{d|\cos\theta|} = \frac{d\sigma_{e^+e^-\to(c\bar{c})[^3S_1^{[1]}]+(c\bar{c})[^3S_1^{[1]}]}}{d|\cos\theta|} \frac{\langle\mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle^2}{\langle\mathcal{O}^{(c\bar{c})[^3S_1^{[1]}]}(^3S_1^{[1]})\rangle^2|_{\overline{\mathrm{MS}}}}$$

$$= (f_0 + f_1\alpha_s + f_2\alpha_s^2 + f_3\alpha_s^3 + f_4\alpha_s^4 + \cdots)|R_s^{J/\psi}(0)|^4$$

$ \cos \theta $	f_0	f_1	f_2
0.193	3.0687	-11.1472	$-43.3988 + 0.5647n_f - 11.1472\beta_0 L_{\mu} - 15.9116L_{\mu_{\Lambda}}$
0.402	3.8973	-14.2469	$-54.8858 + 0.7247n_f - 14.2469\beta_0 L_{\mu} - 20.2080L_{\mu_{\Lambda}}$
0.601	5.9069	-21.6244	$-83.0903 + 1.1036n_f - 21.6244\beta_0 L_{\mu} - 30.6282L_{\mu_{\Lambda}}$
0.698	7.9392	-28.9429	$-111.9326 + 1.4775n_f - 28.9429\beta_0 L_{\mu} - 41.1664L_{\mu_{\Lambda}}$
0.800	12.0746	-43.5649	$-171.1529 + 2.2221n_f - 43.5649\beta_0 L_{\mu} - 62.6088L_{\mu_{\Lambda}}$
0.849	15.7238	-56.2870	$-223.7382 + 2.8694n_f - 56.2870\beta_0 L_{\mu} - 81.5310L_{\mu_{\Lambda}}$
0.902	22.8893	-80.9980	$-327.4304 + 4.1287n_f - 80.9980\beta_0 L_{\mu} - 118.6851L_{\mu_{\Lambda}}$
0.922	27.1569	-95.6123	$-389.3525 + 4.8758n_f - 95.6123\beta_0 L_{\mu} - 140.8136L_{\mu_{\Lambda}}$
0.951	37.0190	-129.2083	$-532.7535 + 6.6029n_f - 129.2083\beta_0 L_{\mu} - 191.9502L_{\mu_{\Lambda}}$
0.975	50.9428	-176.3416	$-735.9322 + 9.0683n_f - 176.3416\beta_0 L_{\mu} - 264.1479L_{\mu_{\Lambda}}$
0.999	54.7376	-187.8744	$-797.7502 + 10.2369n_f - 187.8744\beta_0 L_{\mu} - 283.8247L_{\mu_{\Lambda}}$

where
$$\beta_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_f \right) L_{\mu} = \ln \frac{\mu_R^2}{m_c^2} L_{\mu_{\Lambda}} = \ln \frac{\mu_{\Lambda}^2}{m_c^2}$$

Phenomenological results

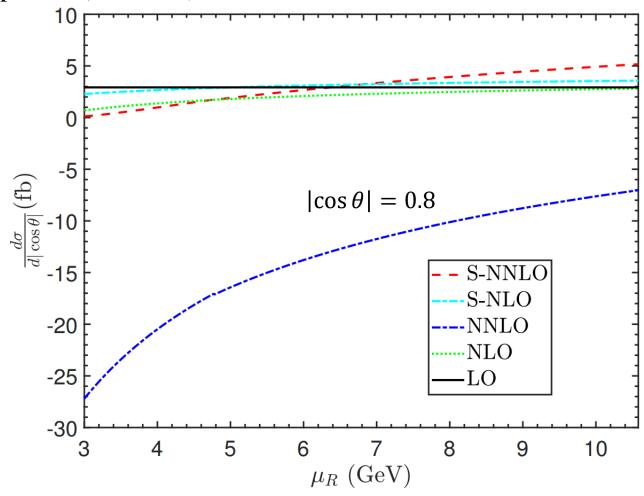
$ \cos \theta $	f_3
0.193	$92.0656 + 12.3660L_{\mu} + 28.9002L_{\mu_{\Lambda}}$
0.402	$117.4510 + 15.9175L_{\mu} + 36.9363L_{\mu_{\Lambda}}$
0.601	$178.1131 + 24.2128L_{\mu} + 56.0634L_{\mu_{\Lambda}}$
0.698	$238.4933 + 32.2766L_{\mu} + 75.0372L_{\mu_{\Lambda}}$
0.800	$359.3808 + 48.0764L_{\mu} + 112.9460L_{\mu_{\Lambda}}$
0.849	$464.6776 + 61.6160L_{\mu} + 145.9294L_{\mu_{\Lambda}}$
0.902	$669.2768 + 87.6152 L_{\mu} + 209.9949 L_{\mu_{\Lambda}}$
0.922	$790.2901 + 102.8788L_{\mu} + 247.8839L_{\mu_{\Lambda}}$
0.951	$1068.4986 + 137.7803L_{\mu} + 334.9846L_{\mu_{\Lambda}}$
0.975	$1458.9501 + 186.4323L_{\mu} + 457.1819L_{\mu_{\Lambda}}$
0.999	$1557.3600 + 196.9479L_{\mu} + 487.0818L_{\mu_{\Lambda}}$

$ \cos \theta $	f_4
0.193	$209.5396 + 56.1687L_{\mu} + 131.4701L_{\mu_{\Lambda}} + 17.6318L_{\mu}L_{\mu_{\Lambda}} + 3.7722L_{\mu}^{2} + 20.6262L_{\mu_{\Lambda}}^{2}$
0.402	$265.3937 + 71.6562L_{\mu} + 166.7230L_{\mu_{\Lambda}} + 22.5346L_{\mu}L_{\mu_{\Lambda}} + 4.8556L_{\mu}^{2} + 26.1955L_{\mu_{\Lambda}}^{2}$
0.601	$401.8986 + 108.6657L_{\mu} + 252.5597L_{\mu_{\Lambda}} + 34.2039L_{\mu}L_{\mu_{\Lambda}} + 7.3860L_{\mu}^{2} + 39.7032L_{\mu_{\Lambda}}^{2}$
0.698	$540.8027 + 145.5020L_{\mu} + 339.6221L_{\mu_{\Lambda}} + 45.7797L_{\mu}L_{\mu_{\Lambda}} + 9.8459L_{\mu}^{2} + 53.3639L_{\mu_{\Lambda}}^{2}$
0.800	$824.0584 + 219.2561L_{\mu} + 517.0743L_{\mu_{\Lambda}} + 68.9077L_{\mu}L_{\mu_{\Lambda}} + 14.6655L_{\mu}^{2} + 81.1595L_{\mu_{\Lambda}}^{2}$
0.849	$1074.4249 + 283.4970L_{\mu} + 673.7844L_{\mu_{\Lambda}} + 89.0306L_{\mu}L_{\mu_{\Lambda}} + 18.7958L_{\mu}^{2} + 105.6884L_{\mu_{\Lambda}}^{2}$
0.902	$1566.1342 + 408.3217L_{\mu} + 981.5335L_{\mu_{\Lambda}} + 128.1166L_{\mu}L_{\mu_{\Lambda}} + 26.7267L_{\mu}^{2} + 153.8510L_{\mu_{\Lambda}}^{2}$
0.922	$1858.9494 + 482.1512L_{\mu} + 1164.8197L_{\mu_{\Lambda}} + 151.2324L_{\mu}L_{\mu_{\Lambda}} + 31.3829L_{\mu}^{2} + 182.5361L_{\mu_{\Lambda}}^{2}$
0.951	$2536.2604 + 651.8733L_{\mu} + 1588.3677L_{\mu_{\Lambda}} + 204.3721L_{\mu}L_{\mu_{\Lambda}} + 42.0295L_{\mu}^{2} + 248.8244L_{\mu_{\Lambda}}^{2}$
0.975	$3491.4667 + 890.0966L_{\mu} + 2186.5424L_{\mu_{\Lambda}} + 278.9239L_{\mu}L_{\mu_{\Lambda}} + 56.8706L_{\mu}^{2} + 342.4140L_{\mu_{\Lambda}}^{2}$
0.999	$3766.2171 + 950.1359L_{\mu} + 2354.0053L_{\mu_{\Lambda}} + 297.1657L_{\mu}L_{\mu_{\Lambda}} + 60.0783L_{\mu}^{2} + 367.9209L_{\mu_{\Lambda}}^{2}$

• They are not changed when we demand 10-digit or 20-digit precision for each Feynman integral family

renormalization scales μ_R dependence

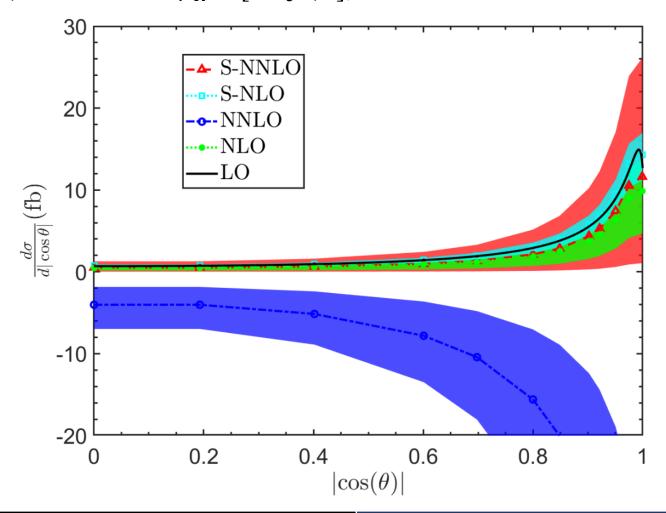
• The μ_R dependence of the differential cross section at LO, NLO, NNLO, the square of NLO amplitude (S-NLO), and the square of NNLO amplitude (S-NNLO).



Differential cross section

Introduction

• The differential cross section for $e^+e^- \to J/\psi + J/\psi$. (central value for $\mu_R = \sqrt{s}/2$, bound for $\mu_R \in [2m_c, \sqrt{s}]$)



Introduction

The integrated cross section can be obtained by using the trapezoidal rule approximately
 Ueberhuber, C. W. Berlin: Springer-Verlag, 1997.

$$\int_{x_1}^{x_2} f(x)dx = \frac{f(x_2) + f(x_1)}{2} (x_2 - x_1)$$

• The integrated cross section (in fb) of $e^+e^- \rightarrow J/\psi + J/\psi$ with three typical renormalization scales μ_R .

$\sigma(fb)$	LO	NLO	NNLO	S-NLO	S-NNLO
$\mu_R = 2m_c$	2.29	0.61	-21.10	1.83	0.12
$\mu_R = \sqrt{s/2}$	2.29	1.54	-11.97	2.37	1.76
$\mu_R = \sqrt{s}$	2.29	2.25	-5.27	2.84	4.17

Scale uncertainties are ~ 106%, 132%, 43%, 230%

Integrated cross section

• The integrated cross section (in fb) of $e^+e^- \rightarrow J/\psi + J/\psi$ at the B factories :

$$\sigma_{\text{S-NNLO}} = 1.76^{+2.41+0.25}_{-1.64-0.25}$$

= $1.76^{+2.42}_{-1.66}$ (fb),

Uncertainties caused by: $\mu_R \in [2m_c, \sqrt{s}]$ and the method for estimating the integrated cross section from the differential cross section.

• Results of PRL 131 (2023) 161904

$ f(x_2) - f(x_1) $		$-x_{1}$
2	(x_2)	$-x_1$

σ (fb)	Fragmentation	LO	NLO	NNLO
Optimized NRQCD	2.52	1.85	$1.93^{+0.05}_{-0.01}$	$2.13^{+0.30}_{-0.06}$
Traditional NRQCD	2.92	6.12	$1.56^{+0.73}_{-2.95}$	$-2.38^{+1.27}_{-5.35}$

• Exp: an upper limit is placed, $\sigma(e^+e^- \to J/\psi + J/\psi) \mathcal{B}_{>2} < 9.1$ fb at the 90% confidence level,

Summary

Introduction

- The μ_R dependence of the cross section for $e^+e^- \rightarrow$ $I/\psi + I/\psi$ becomes larger at the NNLO level.
- The NNLO prediction for $e^+e^- \rightarrow J/\psi + J/\psi$ suffers from an unphysical, negative cross section.
- We obtain a physical prediction of the cross section for $e^+e^- \rightarrow I/\psi + I/\psi$ in the standard NRQCD method.

