R-ratio from Lattice QCD

Wang Nan South China Normal University 2023.11.12

第五届粒子物理天问论坛 湖南 长沙 2023年11月10-12日

Outline

- Introduction to Lattice QCD
- Inverse Problem
- R-ratio on The Lattice
- Summary and Outlook

2

Introduction to Lattice QCD

The most systematic theoretical method for studying non-perturbative QCD is Lattice QCD.





The path integral on the lattice:

- Space-time discretization \rightarrow Finite dimensional integral
- Euclidean space time \rightarrow Importance sampling

$$\begin{cases} Z = \int D\phi e^{-S_E[\phi]} \\ \langle O[\phi] \rangle = \frac{1}{Z} \int D\phi O[\phi] e^{-S_E[\phi]} \end{cases}$$

• Monte Carlo simulations \rightarrow Calculate path integral.

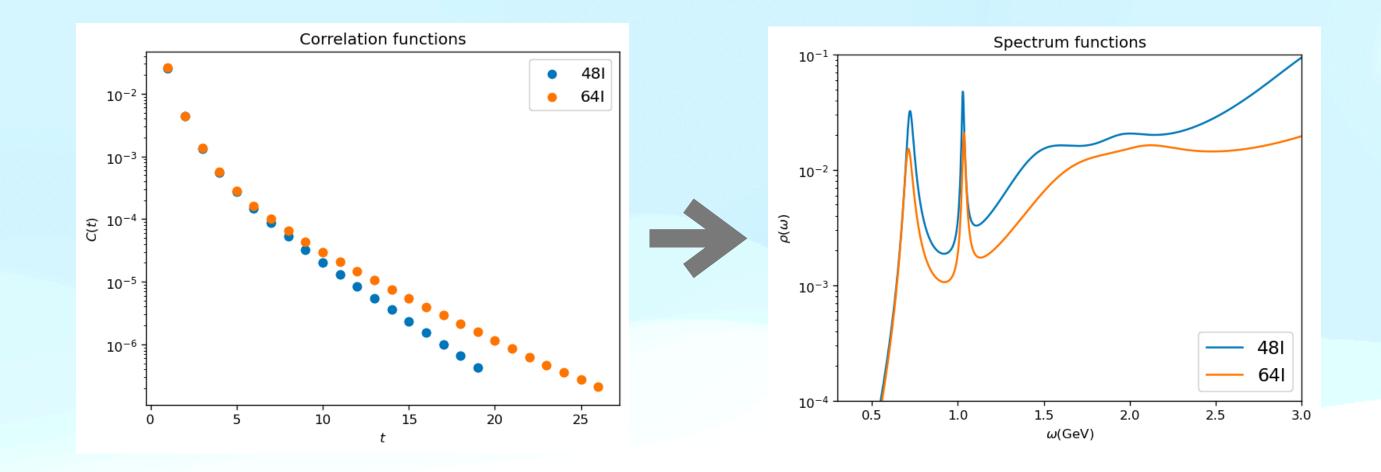
Inverse Problem

The two points correlation functions in finite volume can be expressed as:

$$C(t) = \int d\omega \rho_L(\omega) e^{-\omega t}$$

 $\rho_{L}(\omega)$ is the spectrum function at finite volume, $e^{-\omega t}$ is the kernel function.

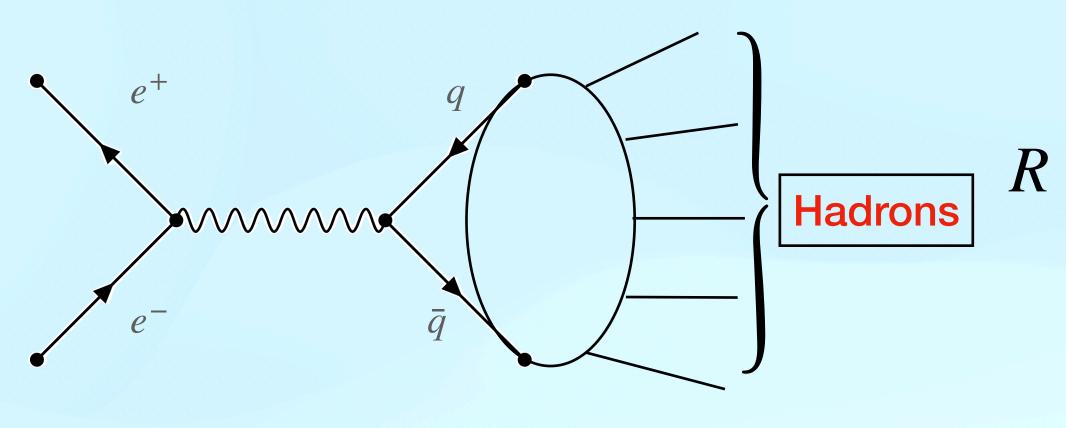
Generally, the number of lattice data is much less that the number of ω we want, so it called an 'ill-posed' problem (Inverse Problem).

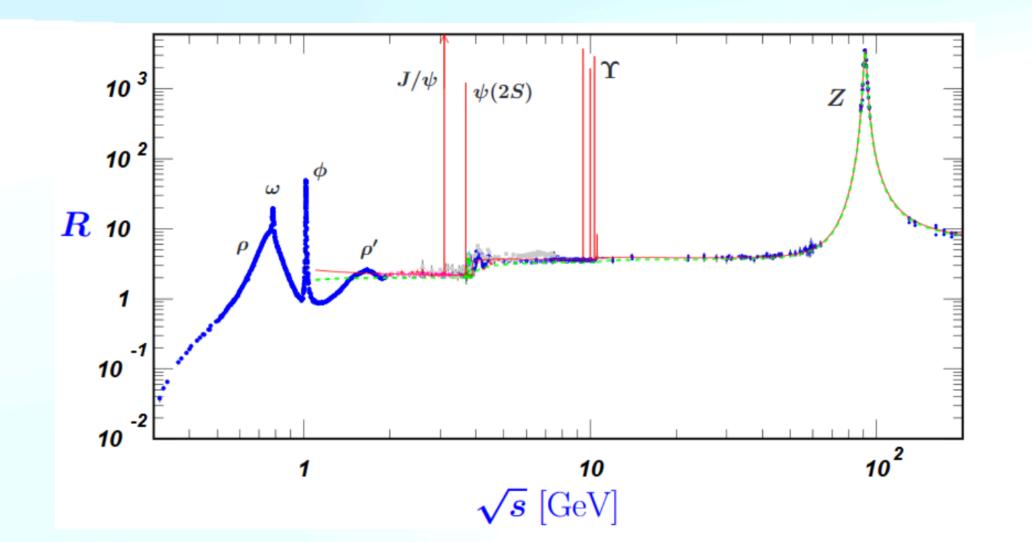


- Studying Hadronic Spectroscopy (Calculate the spectral functions) Y. Burnier and A. Rothkopf, PRL. 111, 182003 (2013).
- Studying Deep Inelastic Scatterings (Calculate) the hadronic tensor) J. Liang et al., PRD. 101, 114503 (2020)
- R-ratio、Hadronic decay widths、PDFs、etc.

C. Alexandrou et al.(ETMC), PRL. 130, 241901 (2023). M. T. Hansen et al., PRD. 96.094513(2017). J. Karpie, et al., jhep. 04, 057 (2019).

Motivation





V. V. Ezhela et al. arXiv:hep-ph/0312114 2004.

$$= \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

$$= N_c \sum_{i=1}^n Q_i^2 = \begin{cases} \frac{2}{3}N_c & \text{for } q = u, d, s; \\ \frac{10}{9}N_c & \text{for } q = u, d, s, c; \\ \frac{11}{9}N_c & \text{for } q = u, d, s, c, b; \end{cases}$$

• R-ratio is a basic experimental measurement and has very important physical significance.

 Good playground to check the Bayesian **Reconstruction (BR)** algorithms solving the inverse problem. J. Liang et al., PRD101, 114503 (2020) Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013)

 Closely related to the HVP contribution to muon g - 2.

$$a_{\mu}^{\text{Had}}[\text{LO}] = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{\text{K}(s)}{s} \text{R}^{(0)}(s)$$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2021)

 \boldsymbol{R}

R-ratio on The Lattice

The electromagnetic current:

$$J^{em}_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s \qquad \rho(\omega) = 2$$

By using the method based of BR that allows to extract spectral densities from current-current correlation functions.

	٩
$\rangle = \int$	$d\omega\rho(\omega)e^{-\omega t}$

 $J^{em}_{\mu}(t)J^{em}_{\mu}(0)$

L/T Mpi (MeV) L (fm) Label a (fm) **48** 48/96 139 0.11406 5.47 **64** 64/128 0.08365 5.35 139 24D 24/64 0.1940 4.656 141 32D 32/64 141 0.1940 6.208 **48D** 48/96 0.1940 9.312 141 R. Arthur et al., PRD87, 094514 (2013)

T. Blum et al., PRD93, 074505 (2016)

P. Boyle et al., PRD 93, 054502 (2016)

- Overlap fermions on RBC/UKQCD domain wall gauge ensembles at the physical point with different lattice spacings and volumes.
- $12\pi^{2}$ W^2

 $A_n\delta(\omega,\omega_n)$

 High-precision current-current correlation functions for both u/d and s, but no charm and no disconnected insertions for now.

Wang G et al. PRD, 2023, 107(3): 034513.

Numerical Calculation

Bayesian Reconstruction Method(BR)

 $P[\rho \,|\, D, \alpha, m] \propto e^{Q(\rho)}$

 $Q = \alpha S - L - \gamma (L - N_{\tau})^2$

$$S = \sum_{\omega} \left[1 - \frac{\rho(\omega)}{m(\omega)} + \log\left(\frac{\rho(\omega)}{m(\omega)}\right) \right] \Delta \omega$$

 $P[\rho \mid D, m] = \frac{P[D \mid \rho, I]}{P[D \mid m]} \int d\alpha P[\alpha \mid D, m]$

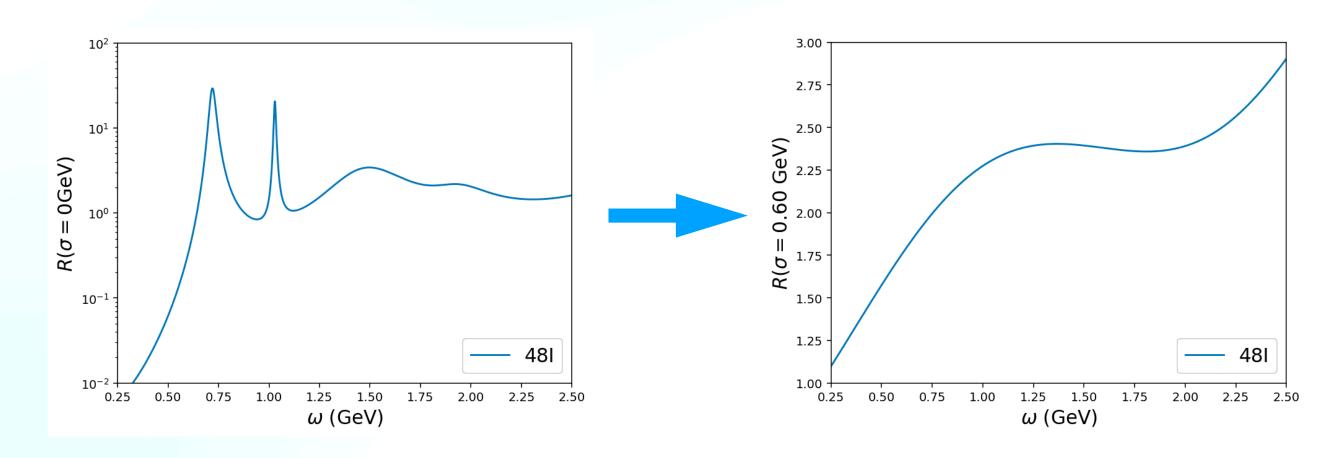
- Hyper parameter α is integrated over;
- Maximum search is in the entire parameter space($O(10^3)$)
- High precision architecture is needed(e.g.,512bit floating point number).

J. Liang et al., PRD101, 114503 (2020) Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013)

Numerical Calculatio

• Smearing Method

- For finite lattice size the spectrum is discrete, in principle, lattice spectrum functions are delta functions.
- Experimentally, what we have a continuous result.
- We can compare the experimental results with the smeared lattice spectrum function.

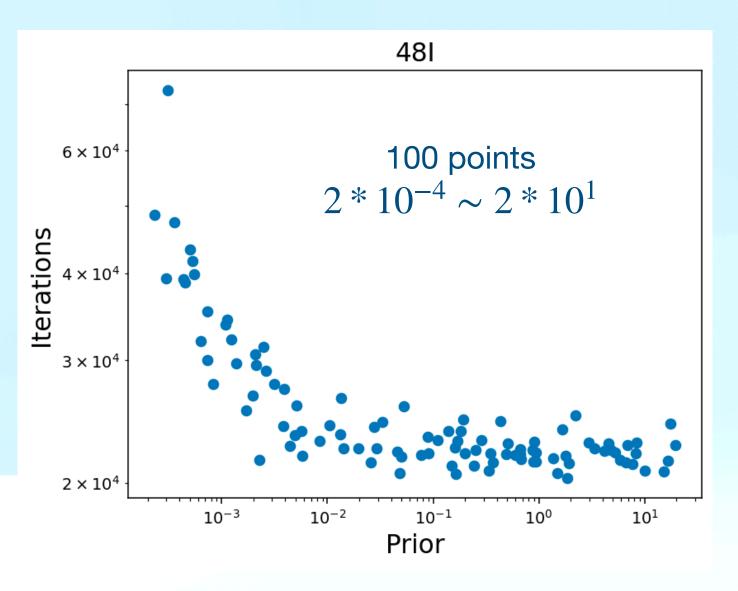


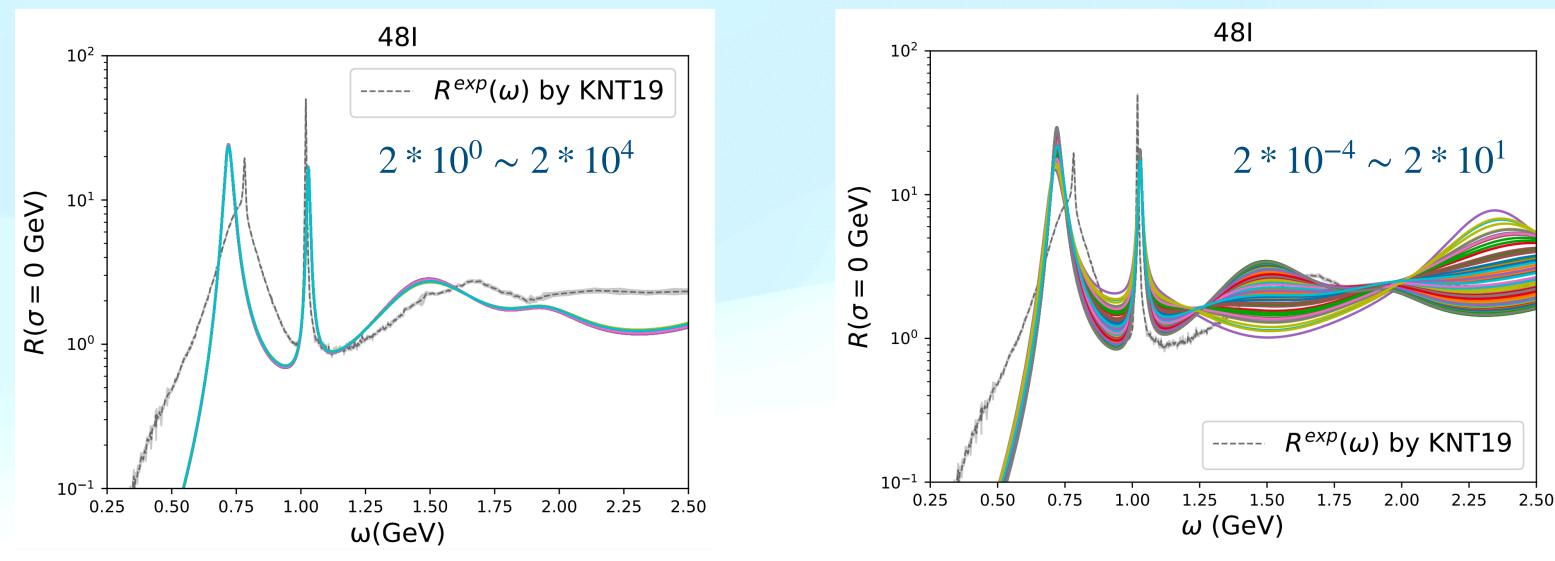
 $C(t) = \sum A_n e^{-\omega_n t} = \int d\omega \rho_L(\omega) e^{-\omega t}$ BR $\rho_L(\omega) = \sum A_n \delta(\omega, \omega_n)$ Smearing

 $\rho_{\sigma,L}(E) = \int_{\Omega} d\omega \Delta_{\sigma}(E,\omega) \rho_L(\omega)$

$$\Delta_{\sigma}(\omega, E) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(E - \omega)}{2\sigma^2}\right)$$

Numerical Calculation $P[\rho \mid D, m] = \frac{P[D \mid \rho, I]}{P[D \mid m]} \int d\alpha P[\alpha \mid D, m]$





- We tested the number of iterations of different prior in the BR program.
- With the prior decreases, the number of iterations increases exponentially.

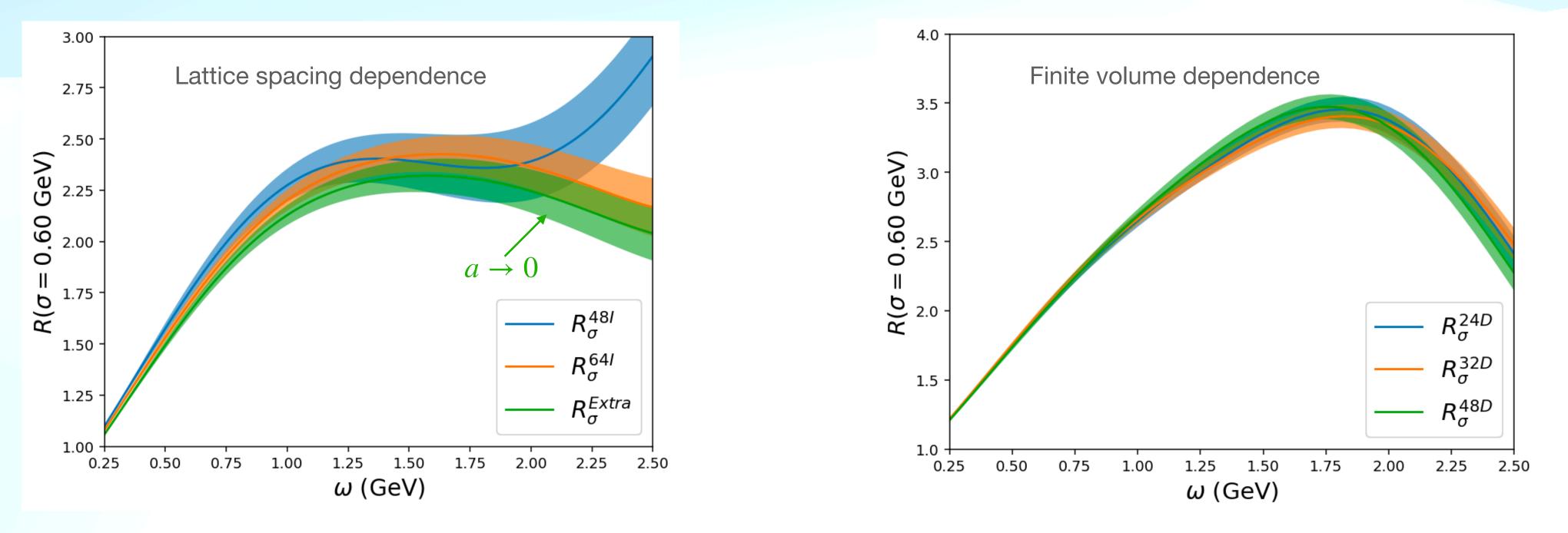
The input variable function 'prior' of the BR program has a significant impact on the result of the R-ratio.

• BR is stable so long as the prior value is more than 2.

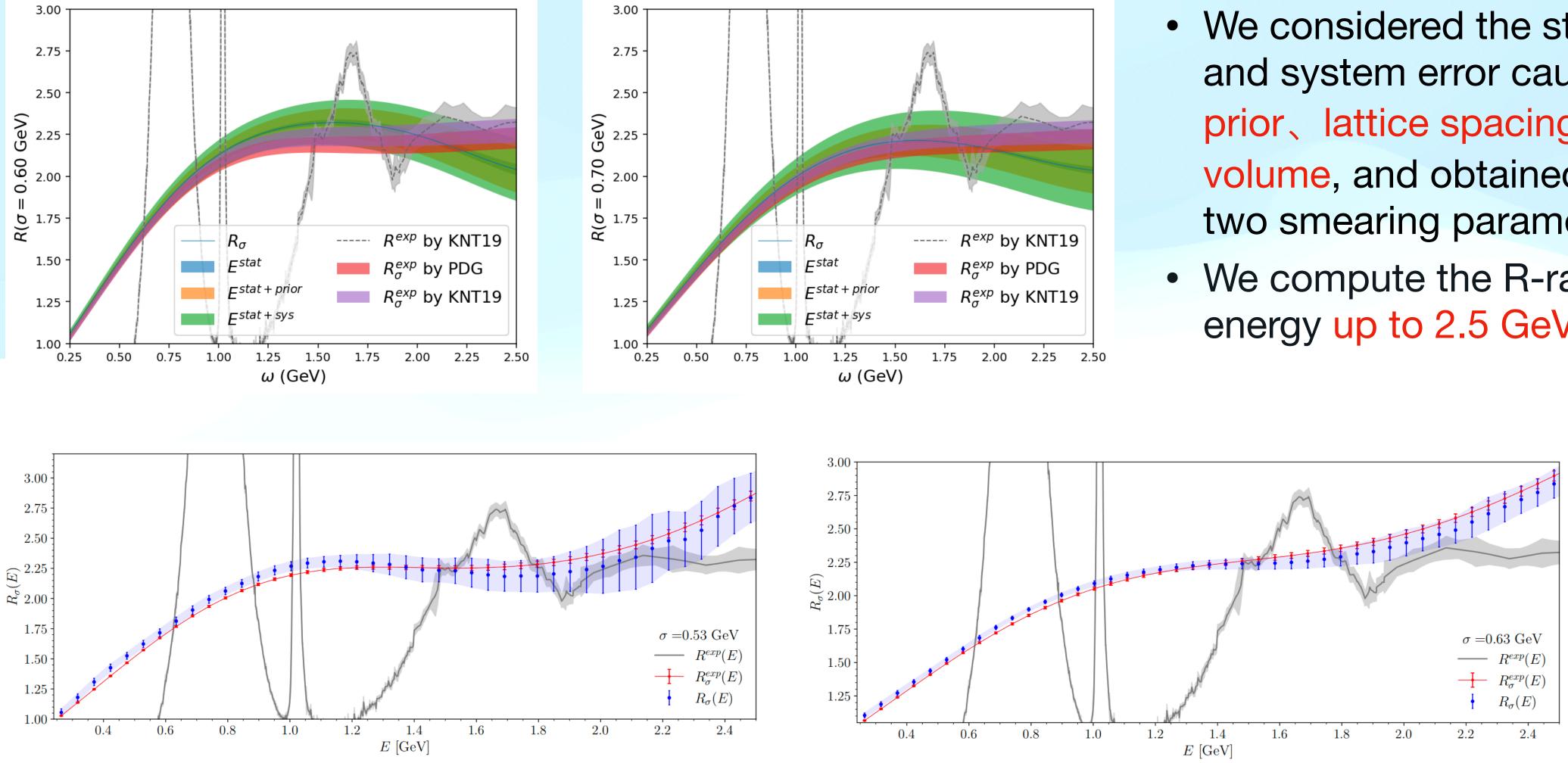
• When the prior of BR is less than 1, the lattice results change as the prior decreases.

Numerical Calculation

- We use the difference of the R-ratio with prior in range 2 × 10⁻⁴ ~ 2 × 10¹ as a part of the systematic uncertainty.
- The impact of lattice spacing on the results is significant. We extrapolate the lattice data to a lattice spacing of 0.
- The effect of finite volume on the results is negligible.

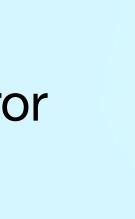


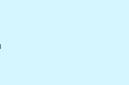
Results



- We considered the statistical error and system error caused by the prior、lattice spacing and finite volume, and obtained results for two smearing parameters.
- We compute the R-ratio with energy up to 2.5 GeV.

C. Alexandrou et al.(ETMC), PRL. 130, 241901 (2023).





Summary and Outlook

- We present a new method based on BR for addressing inverse problems and calculate the R-ratio through spectral function.
- This study provides a new possibility to support the lattice calculation for muon g - 2.
- We demonstrate a systematic approach based on BR to tackle the inverse problem with sophisticated error control.
- In the future, we hope this new approach can be applied to address the inverse problems arising in many aspects of lattice QCD.

Summary and Outlook

- We present a new method based on BR for addressing inverse problems and calculate the R-ratio through spectral function.
- This study provides a new possibility to support the lattice calculation for muon g - 2.
- We demonstrate a systematic approach based on BR to tackle the inverse problem with sophisticated error control.
- In the future, we hope this new approach can be applied to address the inverse problems arising in many aspects of lattice QCD.

Thanks for your attention!

Back up

 $\sigma(e^+e^- \to hadrons) \propto \sum_i Q_i^2 * 3 * \frac{4\pi\alpha^2}{3E_{cm}^2}$ $\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3E_{cm}^2}$

• Smearing Method $C(t) = \sum_{n} A_{n} e^{-\omega_{n} t} = \int d\omega \rho_{L}(\omega) e^{-\omega t}$ $\rho_{n}(\omega) = \sum_{n} A_{n} \delta(\omega, \omega)$

$$\rho_L(\omega) = \sum_n A_n \delta(\omega, \omega_n)$$

- For finite lattice size the spectrum is discrete, in principle, lattice spectrum functions are delta functions.
- Experimentally, what we have is a continuous spectrum function.
- We can compare the experimental results with the smeared lattice spectrum function.