

第五届粒子物理天问论坛

Doubly charmed molecular pentaquarks with strangeness S=-1

Li-cheng Sheng(盛力成)

Supervisor: Rui Chen

Collaborator: Jin-yu Huo

Outline

- 1. Background
- 2. Theoretical framework

3. Numerical results

4. Summary

1.1: QCD color singlet

1.2: The doubly charmed molecular candidates

In 2021, LHCb obeserved the doubly charmed tetraquark state $T_{cc}^{+}(3875)$.

$$T_{cc}^+(3875) \longrightarrow cc\bar{q}\bar{q} \quad J^P = 1^+$$

Explaination of the doubly heavy tetraquark states

• The compact tetraquark picture

...

• The hadronic molecular picture

$$T_{cc}^+(3875) \longrightarrow DD^*$$
 molecular state

1.3: The heavy-strange molecular candidates

```
Phys. Rev. D 101 (2020) 9, 094034
      f_0(980) \longrightarrow K\overline{K} molecular state
      a_0(980) \longrightarrow K\overline{K} molecular state
Phys. Rev. D 104 (2021) 9, 094012
     D_{so}^*(2317) \longrightarrow DK molecular state
     D_{s1}(2460) \longrightarrow D^*K molecular state
Phys. Rev. D 82 (2010) 014010
Phys. Lett. B 811 (2020) 135870
      X(2900) \longrightarrow \overline{D^*}K^* molecular state
ArXiv: 2208.10196 [hep-ph]
     T_{c\bar{c}}^{a0(++)}(2900) \longrightarrow D^*K^* molecular state
```

```
Phys. Rev. Lett. 117, 022002 (2016)
Chin. Phys. C 40 (2016) 9
Eur. Phys. J. C 76 (2016) 10, 558 ...
      X(5568) \Longrightarrow a su\bar{b}\bar{d} tetraquark state
Eur. Phys. J. A 53 (2017) 6, 127
Eur. Phys. J. Plus 131 (2016) 10, 351
     X(5568) \longrightarrow B\overline{K} molecular state
Eur. Phys. J. A 53 (2017) 6, 127
     X(5616) \longrightarrow B^*\overline{K} molecular state
Phys. Rev. D 104 (9) (2021) 094012
    B_{s1}(6158) \longrightarrow \bar{B}K^* molecular state
```

1.4: $\Xi_{cc}K$ system

Because of the Schrödinger equations, the heavier the mass of quarks, the lower the kinetic energy of the system, the bound states can be generated easily.

$$-\frac{\hbar^2}{2m_\mu}\nabla^2$$

So, we can replace b quark or c quark by two c quarks, $\Xi_{cc}K(ccq - \bar{s}q)$.

Why we study $\Xi_{cc}K$ system?

- ① Understanding interaction between double-charm baryons and strange mesons.
- ② Enriching the family of the exotic states and helping us to understand the nature of the $\Xi_{cc}K$ system.
- ③ Giving indirect test of the molecular state picture for other structures, like D_{s0}^* , D_{s1} , X(2900), and so on.

2.1: Theoretical framework: the effective Lagrangians

The effective Lagrangians for the coupling of S-wave double-charm baryons with light mesons from nucleon-nucleon interaction.

$$\mathcal{L}_{\Xi_{cc}\Xi_{cc}\sigma} = g_{\sigma}\bar{\Xi}_{cc}\sigma\Xi_{cc}, \qquad \qquad \text{Phys. Rev. D 95, 114019 (2017)} \\ \mathcal{L}_{\Xi_{cc}\Xi_{cc}\mathbb{P}} = g_{\pi}\bar{\Xi}_{cc}i\gamma_{5}\mathbb{P}\Xi_{cc}, \qquad \qquad \text{Eur. Phys. J. A 54 (2018) 9, 143} \\ \mathcal{L}_{\Xi_{cc}\Xi_{cc}\mathbb{P}} = h_{v}\bar{\Xi}_{cc}\gamma_{\mu}\mathbb{V}^{\mu}\Xi_{cc} + \frac{f_{v}}{2M_{\Xi}}\bar{\Xi}_{cc}\sigma_{\mu\nu}\partial^{\mu}\mathbb{V}^{\nu}\Xi_{cc}.$$

$$\mathbb{V} = \begin{pmatrix} \frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^+ \\ \rho^- & -\frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \end{pmatrix}$$

$$\mathbb{P} = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} \end{pmatrix}$$

With the help of the quark model, coupling constants for the interactions of the double-charm baryons and light mesons are derived from nucleon-nucleon interaction.

$$g_{\sigma} = -2.82, g_{\rho NN} = 3.25, f_{\rho NN} = 19.82, g_{\pi NN} = 3.25$$

The effective Lagrangians for the strange mesons part.

$$\mathcal{L} = \mathcal{L}_{PPV} + \mathcal{L}_{VVP} + \mathcal{L}_{VVV}$$
• Phys. Rev. C 62, 034903 (2000)
• Eur. Phys. J. A 36, 73 (2008)
$$= \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} P(PV_{\mu} - V_{\mu}P) + \frac{g_{VVP}}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \langle \partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \rangle$$

$$+ \frac{ig}{2\sqrt{2}} \langle \partial^{\mu} V^{\nu} (V_{\mu} V_{\nu} - V_{\nu} V_{\mu}) \rangle.$$

Phys. Rep. 149, 1 (1987)

Phys. Rev. C 63, 024001 (2001)

Phys. Rev. C 81, 065201 (2010)

The coupling constants for the strange meson part

$$g'_{\sigma} = -3.65, g = 12.00, g_{VVP} = 7.33$$

Phys. Rev. D 30, 594 (1984)

Phys. Rev. D 85, 014015 (2012)

Phys. Rev. D 97, no. 3, 036016 (2018)

7

2.2: One-boson-exchange(OBE) model

Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935)

- 1935, Yukawa: π -exchange and nucleon-nucleon interaction.
- Nijimegen potential and Bonn potential: scalar meson σ exchange~two π exchange; vector meson ρ/ω exchange~multi- π exchange.

3.1: Numerical results

Form factor $\mathcal{F} = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2}$, Λ , m and q are the cut off, mass and four-momentum of the exchange meson respectively.

One free parameter $\Lambda \sim 1 \text{ GeV}$ N. A. Tornqvist, Z. Phys. C 61, 525 (1994)

N. A. Tornqvist, Nuovo Cim. A 107, 2471

We search for the bound state solutions for all the discussed systems after solving the coupled channel Schrödinger equations.

(1994)

Features of loosely bound molecular states

- I. the binding energy falls within the range of several MeV to several tens of MeV.
- II. the root-mean-square (RMS) radius measures approximately 1.00 fm or greater.

Research strategy,

- 1. Single channel with One-pion-exchange(OPE)
- 2. Single channel with OBE
- 3. Coupled channels with OPE
- 4. Coupled channels with OBE

$3.2.1: \Xi_{cc}K$ system

For $\Xi_{cc}K$ system in single channel. And the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	$\Lambda(\Xi_{cc}K(^2S_{1/2}))$	E	r_{RMS}
0(1/2-)	3.60	-0.42	5.39
	4.30	-1.99	3.47
	5.00	-3.68	2.65
1(1/2-)	•••	35.535	
	***	•••	• • •

The π/η exchange interactions are strongly suppressed as spin-parity conservation.

- For $\Xi_{cc}K$ system with $0(\frac{1}{2})$, loosely solutions emerge only for Λ exceeding 3.60 GeV, which is far away from 1 GeV. The interaction provides a weak attraction.
- No bound solution for $\Xi_{cc}K$ system with $1(\frac{1}{2})$.

3.2.2: $\Xi_{cc}K/\Xi_{cc}K^*$ coupled system in OPE case

In OPE case, considering the coupled channel effects,

$$V_{\Xi_{cc}K} = \begin{pmatrix} V_{\Xi_{cc}K \to \Xi_{cc}K} & V_{\Xi_{cc}K^* \to \Xi_{cc}K} \\ V_{\Xi_{cc}K \to \Xi_{cc}K^*} & V_{\Xi_{cc}K^* \to \Xi_{cc}K^*} \end{pmatrix}$$

The cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K(^2S_{1/2})$	$\Xi_{cc}K^*(^2S_{1/2})$	$\Xi_{cc}K^*(^4D_{1/2})$
$0(1/2^{-})$	2.49	-0.62	4.63	89.37	10.54	0.09
	2.51	-4.81	1.93	75.29	24.56	0.14
	2.53	-11.92	1.16	64.89	34.96	0.15
1(1/2-)	. • • •	•••	• • • • • •		0.000	
	•••	•••	• • •	•••	•••	•••
		***		***		***

- For $\Xi_{cc}K/\Xi_{cc}K^*$ system with $0\left(\frac{1}{2}\right)$, loosely solutions emerge only for Λ exceeding 2.49 GeV. The interaction provides a weak attraction.
- No bound solution for $\Xi_{cc}K/\Xi_{cc}K^*$ system with $1(\frac{1}{2})$.

3.2.2: $\Xi_{cc}K/\Xi_{cc}K^*$ coupled system in OBE case

In OBE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K(^2S_{1/2})$	$\Xi_{cc}K^*(^2S_{1/2})$	$\Xi_{cc}K^*(^4D_{1/2})$
$0(1/2^{-})$	1.43	-0.54	5.03	96.46	3.53	0.01
	1.45	-4.56	2.26	89.46	10.53	0.02
	1.47	-13.01	1.33	81.00	18.98	0.02
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K(^2S_{1/2})$	$\Xi_{cc}K^*(^2S_{1/2})$	$\Xi_{cc}K^*(^4D_{1/2})$
1(1/2-)	2.58	-0.34	5.27	97.20	2.60	0.20
	2.60	-5.32	1.94	91.98	7.47	0.56
	2.62	-14.61	1.15	88.08	11.12	0.80

- $\Xi_{cc}K/\Xi_{cc}K^*$ system with $0(\frac{1}{2})$ can be a prime molecular candidate, where the $\Xi_{cc}K(^2S_{1/2})$ channel dominates.
- For $\Xi_{cc}K/\Xi_{cc}K^*$ system with $1(\frac{1}{2})$, weak solutions emerge only for Λ exceeding 2.58 GeV, which is far away from 1 GeV. Despite the interaction is attractive, we can exclude it as a suitable molecular candidate.
- $\sigma \rho \omega$ exchanges are more important than one π exchange in $\Xi_{cc}K/\Xi_{cc}K^*$ system.
- The coupled channel effects play an important role in $\Xi_{cc}K/\Xi_{cc}K^*$ system.

3.3.1: $\Xi_{cc}K^*$ system in OPE case

Considering S-D wave mixing effects, in OPE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	\boldsymbol{E}	r_{RMS}	$\Xi_{cc}K^*(^2S_{1/2})$	$\Xi_{cc}K^*(^4D_{1/2})$	$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K^*(^4S_{3/2})$	$\Xi_{cc}K^*(^2D_{3/2})$	$\Xi_{cc}K^*(^4D_{3/2})$
$0(1/2^{-})$	1.96	-0.29	5.11	99.72	0.28	0(3/2-)	4.90	-0.81	4.03	97.92	0.28	1.79
	2.08	-4.50	1.80	99.34	0.66		5.09	-3.97	2.03	95.96	0.54	3.51
	2.20	-14.04	1.06	99.14	0.86		5.28	-10.09	1.32	94.21	0.75	5.05
1(1/2-)		• • •	•••	(***	•••	1(3/2-)	***	•••	***	140404		*(*(*)
		150505	•••	****	***		•••	****	•••	-1.1.1	***	******
<u> 20</u>		•••	•••	•••					•••	• • •	***	***

- For $\Xi_{cc}K^*$ system with $0(\frac{1}{2})$, loosely solutions emerge only for Λ exceeding 1.96 GeV. The interaction provides a weak attraction
- For $\Xi_{cc}K^*$ system with $0(\frac{3}{2}^-)$, loosely solutions emerge only for Λ exceeding 4.90 GeV. The interaction provides a weak attraction.
- No bound solution for $\Xi_{cc}K^*$ with $1(\frac{1}{2})$.
- No bound solution for $\Xi_{cc}K^*$ with $1(\frac{3}{2})$.

3.3.1: $\Xi_{cc}K^*$ system in OBE case

Considering S-D wave mixing effects, in OBE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K^*(^2S_{1/2})$	$\Xi_{cc}K^*(^4D_{1/2})$	$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}K^*(^4S_{3/2})$	$\Xi_{cc}K^*(^2D_{3/2})$	$\Xi_{cc}K^*(^4D_{3/2})$
0(1/2-)	1.14	-0.30	5.19	99.89	0.11	0(3/2-)	2.30	-0.17	5.81	99.66	0.06	0.28
	1.21	-4.83	1.86	99.79	0.21		3.30	-5.40	1.90	99.04	0.16	0.80
	1.28	-14.80	1.14	99.78	0.22		4.30	-14.13	1.27	98.80	0.19	1.00
1(1/2-)				***	*06*	1(3/2-)	3.25	-0.30	4.86	99.95	0.01	0.04
							3.27	-4.04	1.66	99.89	0.02	0.10
				***	***	Jos	3.29	-10.38	1.00	99.85	0.02	0.13

- $\Xi_{cc}K^*$ system with $0\left(\frac{1}{2}\right)$ can be a good molecular candidate, where the $\Xi_{cc}K^*(^2S_{1/2})$ channel dominates.
- For $\Xi_{cc}K^*$ with $0(\frac{3}{2})$, loosely solutions emerge only for Λ exceeding 2.30 GeV. Despite the interaction is attractive, we can exclude it as a suitable molecular candidate.
- For $\Xi_{cc}K^*$ with $1(\frac{3}{2})$, loosely solutions emerge only for Λ exceeding 3.25 GeV, which is far away from 1 GeV. Despite the interaction is attractive, we can exclude it as a suitable molecular candidate.
- No bound solution for $\Xi_{cc}K^*$ with $1(\frac{1}{2})$.
- $\sigma \rho \omega$ exchanges are more important than one π exchange for $\Xi_{cc}K^*$ system with $0\left(\frac{1}{2}\right)$.

3.4: Brief summary

• Finding two possible hadronic molecular states: $\Xi_{cc}K/\Xi_{cc}K^*$ with $0\left(\frac{1}{2}\right)$, $\Xi_{cc}K^*$ with

$$0\left(\frac{1}{2}\right)$$
.

- The coupled channel effects play an important role in generation of hadronic molecular states.
- $\bullet \sigma \rho \omega$ exchanges are important to generate this two molecular states.

$3.5.1: \Xi_{cc}\overline{K}$ system

We calculate the effective potential of the $\Xi_{cc}\overline{K}$ system through the G-parity rule.

$$V_{B_1\bar{M}_2\to B_3\bar{M}_4} = (-1)^{G_E} V_{B_1M_2\to B_3M_4}$$

 G_E stands for the G-parity for the exchanged meson in the B_1M_2 to B_3M_4 process.

The cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	$\Lambda(\Xi_{cc}\bar{K}(^2S_{1/2}))$	E	r_{RMS}
$0(1/2^{-})$	1.69	-0.17	5.97
	1.88	-4.43	2.49
	2.07	-12.13	1.59
1(1/2-)		•••	• • •
	•••	1.	
		•••	•••

- $\Xi_{cc}\overline{K}$ system with $0(\frac{1}{2})$ loosely solutions emerge only for Λ exceeding 1.69 GeV, which is slightly far away from 1 GeV. Despite the interaction is attractive, we can exclude it as a suitable molecular candidate.
- No bound solution for $\Xi_{cc}\overline{K}$ system with $1\left(\frac{1}{2}\right)$.

3.6.1: $\Xi_{cc}\overline{K}/\Xi_{cc}\overline{K^*}$ coupled system in OPE

In OPE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}\bar{K}(^2S_{1/2})$	$\Xi_{cc}\bar{K}^*(^2S_{1/2})$	$\Xi_{cc}\bar{K}^*(^4D_{1/2})$
$0(1/2^{-})$	3.27	-0.16	5.85	98.23	0.77	1.00
	3.35	-4.50	2.27	93.89	2.73	3.39
	3.43	-14.25	1.29	89.44	4.82	5.74
1(1/2-)	•••	***		•••	***	•••
	•••	•••	* (* * *	•••	1.44	•••
	•••		•••		***	

- For $\Xi_{cc}\overline{K}\setminus\Xi_{cc}\overline{K}^*$ system with $0(\frac{1}{2})$, loosely solutions emerge only for Λ exceeding 3.27 GeV. The interaction provides a weak attraction.
- No bound solution for $\Xi_{cc}\overline{K}\backslash\Xi_{cc}\overline{K^*}$ system with $1(\frac{1}{2})$.

3.6.1: $\Xi_{cc}\overline{K}/\Xi_{cc}\overline{K^*}$ coupled system in OBE

In OBE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}\bar{K}(^2S_{1/2})$	$\Xi_{cc} \bar{K}^*(^2S_{1/2})$	$\Xi_{cc} \bar{K}^*(^4D_{1/2})$
0(1/2-)	1.40	-0.26	5.76	99.63	0.05	0.32
	1.45	-3.76	2.68	98.74	0.25	1.01
	1.50	-12.05	1.59	97.31	0.77	1.92
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}\bar{K}(^2S_{1/2})$	$\Xi_{cc}\bar{K}^*(^2S_{1/2})$	$\Xi_{cc} \bar{K}^*(^4D_{1/2})$
1(1/2-)						

- $\Xi_{cc}\overline{K}\setminus\Xi_{cc}\overline{K^*}$ system with $0(\frac{1}{2})$ can be a prime molecular state, where the $\Xi_{cc}\overline{K}$ (${}^2S_{1/2}$) channel dominates.
- No bound solution for $\Xi_{cc}\overline{K}\setminus\Xi_{cc}\overline{K^*}$ system with $1(\frac{1}{2})$.
- $\sigma \rho \omega$ exchanges are more important for $\Xi_{cc}\overline{K} \setminus \Xi_{cc}\overline{K^*}$ system with $0(\frac{1}{2})$.

3.7.1: $\Xi_{cc}K^*$ system in OPE case

In OPE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_{cc}\bar{K}^*(^2S_{1/2})$	$\Xi_{cc}\bar{K}^*(^4D_{1/2})$	$I(J^P)$	Λ	\boldsymbol{E}	r_{RMS}	$\Xi_{cc}\bar{K}^*(^4S_{3/2})$	$\Xi_{cc}\bar{K}^*(^2D_{3/2})$	$\Xi_{cc}\bar{K}^*(^4D_{3/2})$
0(1/2-)	•••	• • •	• • •	95.50.5	•••	0(3/2-)	2.50	-0.56	4.44	98.39	0.37	1.24
		• • •					2.63	-4.25	1.91	96.56	0.80	2.64
		***	***	***	***		2.76	-11.86	1.20	95.20	1.11	3.69
1(1/2-)	***	•••	(€)(€)(€)	0.00 m/m	• • •	1(3/2-)	***	***		***	***	***
	•••	•••	•••	•••	•••		•••	•••	•••	•••		•••
			***	7000	***		***	***		***	***	9000

- For $\Xi_{cc}\overline{K^*}$ with $0(\frac{3}{2}^-)$, loosely solutions emerge only for Λ exceeding 2.50 GeV. The interaction provides a weak attraction.
- No bound solution for $\Xi_{cc}\overline{K^*}$ with $0\left(\frac{1}{2}\right)$.
- No bound solution for $\Xi_{cc}\overline{K^*}$ with $1(\frac{1}{2})$.
- No bound solution for $\Xi_{cc}\overline{K^*}$ with $1(\frac{3}{2}^-)$.

3.7.2: $\Xi_{cc}K^*$ system in OBE case

In OBE case, the cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	\boldsymbol{E}	r_{RMS}	$\Xi_{cc}\bar{K}^*(^2S_{1/2})$	$\Xi_{cc}\bar{K}^*(^4D_{1/2})$	$I(J^P)$	Λ	\boldsymbol{E}	r_{RMS}	$\Xi_{cc}\bar{K}^*(^4S_{3/2})$	$\Xi_{cc}\bar{K}^*(^2D_{3/2})$	$\Xi_{cc}\bar{K}^*(^4D_{3/2})$
0(1/2-)	1.36	-0.24	5.54	99.52	0.48	0(3/2-)	1.15	-0.17	5.72	99.46	0.12	0.42
	1.43	-3.89	2.16	98.51	1.49		1.25	-5.18	1.92	98.18	0.40	1.42
	1.50	-12.52	1.30	97.57	2.43		1.35	-15.77	1.22	97.09	0.64	2.27
1(1/2-)	•••	***	* * *	⊙ ∗ ⊙• ∗	***	1(3/2-)	***	•••	• • •	* (* * ()	3	
		•••	•••	•••	•••		•••	• • •	•••		•••	
	***	***	•••		***		•••	•••		***		***

- $\Xi_{cc}\overline{K^*}$ system with $0\left(\frac{1}{2}\right)$ can be a prime molecular state, where the $\Xi_{cc}\overline{K}$ (${}^2S_{1/2}$) channel dominates.
- $\Xi_{cc}\overline{K^*}$ system with $0\left(\frac{3}{2}\right)$ can be a good molecular state, where the $\Xi_{cc}\overline{K}$ (${}^4S_{3/2}$) channel dominates.
- No bound solution for $\Xi_{cc}\overline{K^*}$ system with $1(\frac{1}{2})$.
- No bound solution for $\Xi_{cc}\overline{K^*}$ system with $1(\frac{3}{2})$.
- $\sigma \rho \omega$ exchanges are more important for $\Xi_{cc}\overline{K^*}$ system with $0\left(\frac{1}{2}\right)$ and $\Xi_{cc}\overline{K^*}$ system with $0\left(\frac{3}{2}\right)$.

4: Summary

• Finding five possible hadronic molecular states: $\Xi_{cc}K/\Xi_{cc}K^*$ with $0\left(\frac{1}{2}\right)$, $\Xi_{cc}\overline{K}/$

$$\Xi_{cc}\overline{K^*}$$
 with $0\left(\frac{1}{2}\right)$, $\Xi_{cc}K^*$ with $0\left(\frac{1}{2}\right)$, $\Xi_{cc}\overline{K^*}$ with $0\left(\frac{1}{2}\right)$, $\Xi_{cc}\overline{K^*}$ with $0\left(\frac{3}{2}\right)$.

- The coupled channel effects play an important role in systems we studied.
- For $ccq \bar{s}q$ system, $\sigma \rho \omega$ exchanges are important.

Thanks for your attention