第五届粒子物理天问论坛

The $\Xi_c^{(*)}N$ interactions and the corresponding bound states

Jin-yu Huo (霍金钰)

Supervisor: Rui Chen

Collaborator: Li-cheng Sheng

Outline

- 1. Why do we study $\Xi_c N$ system?
- 2. One-boson-exchange (OBE) model
- 3. Numerical results
- 4. Summary

1.1 QCD color singlet

Hadron

Conventional QM states

Meson

Baryon

Exotic states

Molecule states Hybrid states

Compact multiquark states

Meson

Baryon

Tetraquark

Pentaquark

Hexaquark

Glueball

Hybrid

Glueball

1.2 From deuteron to hyperon-nucleon

1.3 ΞN and $\Xi_c N$

Phys. Rev. Lett. **126**, 062501

For the binding energy of the Ξ^- hyperon in the Ξ^- – ¹⁴N system a value of 1.27±0.21MeV was deduced.

- 1. The Ξ_c N attraction interaction may be **slightly weaker** due to the presence of fewer light quarks.
- 2. The $\Xi_c N$ system is substantially **heavier** than the ΞN system because of charm quark. It is favorable to form a bound state for ΞN system.

$$\left(\frac{\hat{p}^2}{2\mu} + \hat{V}\right)|\Psi\rangle = E|\Psi\rangle \qquad m_{\Xi_c} > m_{\Xi^-} \qquad \frac{\hat{p}^2}{2\mu_{\Xi_c N}} < \frac{\hat{p}^2}{2\mu_{\Xi^- N}}$$

It is essential to perform a calculation to explore the existence of a $\Xi_c N$ bound state!

1.4 NN and $\Xi_c N$

1. The π/η exchange interactions are suppressed due to the conservation of light quark spin-parity.

$$\Xi_{\mathbf{c}} : J^P = \frac{1}{2}^+$$
 $S_l^P = \mathbf{0}^+$ $\mathbf{N} : J^P = \frac{1}{2}^+$

2. The coupled channel effects

$$\left|\psi\right\rangle = \left|\mathbf{R}_{1}(\mathbf{r})\right\rangle \left|\mathbf{\Xi}_{c}\mathbf{N}\right\rangle \left|^{2S+1}\mathbf{L}_{J}\right\rangle + \left|\mathbf{R}_{2}(\mathbf{r})\right\rangle \left|\mathbf{\Xi}_{c}^{'}\mathbf{N}\right\rangle \left|^{2S'+1}\mathbf{L}_{J}^{'}\right\rangle + \left|\mathbf{R}_{3}(\mathbf{r})\right\rangle \left|\mathbf{\Xi}_{c}^{*}\mathbf{N}\right\rangle \left|^{2S''+1}\mathbf{L}_{J}^{''}\right\rangle$$

$$M_{\Xi_c'} - M_{\Xi_c} \simeq 100 \,\mathrm{MeV}$$

$$M_{\Xi_c^*} - M_{\Xi_c} \simeq 170 \text{ MeV}$$

Phys. Rev. D 85, 014015 (2012), Y. R. Liu and M. Oka,

The coupled channel effects from the Σ_c N and $\Sigma_c^* N$ channels are essential to generate the Λ_c N bound state.

2.1 One-boson-exchange (OBE) model

Scattering amplitude

Effective potential in momentum space

Effective potential in coordinate

Coupled channel Schrödinger equation

$$\langle f|S|i\rangle = \delta_{fi} + i\langle f|T|i\rangle = \delta_{fi} + i(2\pi)^4 \delta^4(p_f - p_i)\mathcal{M}_{fi},$$

$$\langle f|S|i\rangle = \delta_{fi} - i(2\pi)\delta(E_f - E_i)V_{fi}(p),$$

$$V_{fi}(p) = -\frac{M_{fi}}{\sqrt{\prod_{f} 2p_{f}^{0} \prod_{i} 2p_{i}^{0}}} \approx -\frac{M_{fi}}{\sqrt{\prod_{f} 2m_{f}^{0} \prod_{i} 2m_{i}^{0}}}$$

$$V(r) = \int \frac{d^3q}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{r}} \mathcal{V}_{fi}(\mathbf{q}) \mathcal{F}^2(q^2, m_E^2)$$
 Form factor

2.2 Effective potentials

> The effective Lagrangians

$$\mathcal{L}_{\mathcal{B}_{\bar{3}}} = l_{B} \langle \bar{\mathcal{B}}_{\bar{3}} \sigma \mathcal{B}_{\bar{3}} \rangle + i \beta_{B} \langle \bar{\mathcal{B}}_{\bar{3}} v^{\mu} (\mathcal{V}_{\mu} - \rho_{\mu}) \mathcal{B}_{\bar{3}} \rangle$$

$$\mathcal{L}_{\mathcal{B}_{6}} = l_{S} \langle \bar{S}_{\mu} \sigma S^{\mu} \rangle - \frac{3}{2} g_{1} \varepsilon^{\mu\nu\lambda\kappa} v_{\kappa} \langle \bar{S}_{\mu} \mathcal{A}_{\nu} S_{\lambda} \rangle + i \beta_{S} \langle \bar{S}_{\mu} v_{\alpha} (V^{\alpha} - \rho^{\alpha}) S^{\mu} \rangle + \lambda_{S} \langle \bar{S}_{\mu} F^{\mu\nu} (\rho) S_{\nu} \rangle$$

$$\mathcal{L}_{\mathcal{B}_{\bar{3}}\mathcal{B}_{6}} = ig_{4}\langle \bar{\mathcal{S}}^{\mu}\mathcal{A}_{\mu}\mathcal{B}_{\bar{3}}\rangle + i\lambda_{I}\varepsilon^{\mu\nu\lambda\kappa}v_{\mu}\langle \bar{\mathcal{S}}_{\nu}F_{\lambda\kappa}\mathcal{B}_{\bar{3}}\rangle + h.c..$$

$$\mathcal{L}_{N} = g_{\sigma NN} \bar{N} \sigma N + \sqrt{2} g_{\pi NN} \bar{N} i \gamma_{5} P N + \sqrt{2} g_{\rho NN} \bar{N} \gamma_{\mu} V^{\mu} N + \frac{f_{\rho NN}}{\sqrt{2} m_{N}} \bar{N} \sigma_{\mu\nu} \partial^{\mu} V^{\nu} N.$$

> The spin-orbit wave functions

$$J^{P} = 1^{+} \mid {}^{3}S_{1} \rangle, \quad \left| {}^{3}D_{1} \right\rangle,$$

$$\Xi_{c}^{*}N: J^{P} = 0^{+} \mid {}^{5}D_{0} \rangle,$$

$$J^{P} = 1^{+} \mid {}^{3}S_{1} \rangle, \quad \left| {}^{3}D_{1} \rangle, \quad \left| {}^{5}D_{1} \rangle,$$

$$J^{P} = 2^{+} \mid {}^{5}S_{2} \rangle, \quad \left| {}^{3}D_{2} \rangle, \quad \left| {}^{5}D_{2} \rangle.$$

Y. R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012)

Constructed based on the heavy quark symmetry, chiral symmetry and hidden local symmetry

$$g_{\sigma NN} = 8.46, g_{\pi NN} = 13.07, \\ g_{\rho NN} = 3.25, f_{\rho NN} = 19.82.$$
 Phys. Rept.149, 1 (1987). Phys. Rev. C63, 024001(2001). Phys. Rev. C 81, 065201 (2010).

$$\begin{split} l_S &= -2l_B = -\frac{2}{3}g_{\sigma NN}, g_1 = \frac{2\sqrt{2}}{3}g_4 \\ &= \frac{2\sqrt{2}f_\pi g_{\pi NN}}{5M_N}, \beta_S g_V = -2\beta_B g_V = -4g_{\rho NN}, \text{ Estimated from the quark model} \\ \lambda_S g_V &= -\sqrt{8}\lambda_I g_V = -\frac{6(g_{\rho NN} + f_{\rho NN})}{5M_N} \end{split}$$

$$\Xi_c^{(')}N: J^P = 0^+ \mid {}^1S_0 \rangle$$

$$V_{\Xi_cN}^{ ext{C}} = \left(egin{array}{ccc} V_{\Xi_cN
ightarrow \Xi_cN} & V_{\Xi_c^{\prime}N
ightarrow \Xi_cN} & V_{\Xi_c^{\ast}N
ightarrow \Xi_cN} \ V_{\Xi_cN
ightarrow \Xi_c^{\prime}N} & V_{\Xi_c^{\prime}N
ightarrow \Xi_c^{\prime}N} & V_{\Xi_c^{\ast}N
ightarrow \Xi_c^{\prime}N} \ V_{\Xi_cN
ightarrow \Xi_c^{\ast}N} & V_{\Xi_c^{\prime}N
ightarrow \Xi_c^{\ast}N} \end{array}
ight)$$

3.1 Numerical results

- Two essential features
 - Binding energy: several MeV to several tens of MeV.
 - The root-mean-square(RMS)~1.00 fm or greater.

	$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c' N(^3S_1)$	$\Xi_c'N(^3D_1)$	$\Xi_c^* N(^3S_1)$	$\Xi_c^* N(^3D_1)$	$\Xi_c^* N(^5 D_1)$
$\begin{bmatrix} 0.92 \\ -5.63 \end{bmatrix}$ $\begin{bmatrix} 1.47 \\ 50.13 \end{bmatrix}$ $\begin{bmatrix} 2.43 \\ 47.37 \end{bmatrix}$ $\begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix}$ $\begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix}$	0(1+)	0.89	-0.29		86.81	1.83	11.31	~ 0.00	0.04
		0.92	-5.63	1.47	50.13	2.43	47.37	0.01	0.07
0.95 -16.32 0.86 32.53 1.76 65.55 0.02 $0.$		0.95	-16.32	0.86	32.53	1.76	65.55	0.02	0.15

> Investigate strategy

$3.2 \, \Xi_c N \, 0(0^+) \, \text{system}$

- 1. $\Xi_c N \ 0(0^+)$:Can be regarded as a molecular candidate because of the cut value around 1 GeV
- 2. The OPE interactions are sufficiently strong to bind $\Xi_c N/\Xi_c' N \ 0(0^+)$ system.

		OPE 2	$\Xi_c N / \Xi_c N$	V 0(0·)	-
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c N(^1S_0)$	$\Xi_c' N(^1S_0)$
0(0+)	0.73	-0.05	5.96	93.25	6.75
	0.76	-6.14	1.48	69.50	30.50
	0.79	-18.72	0.88	55.83	44.17

ODE $\Xi M/\Xi/MO(0+)$

The cutoff Λ , the binding energy E, and the root-mean-square r_{RMS} are in the units of GeV, MeV, and fm, respectively.

- 3. The scalar σ , ρ , and ω exchanges have the positive contribution to form the bound state.
- 4. Compared to $\Xi_c N \ 0(0^+)$ single channel, $\Xi_c N/\Xi_c' N \ 0(0^+)$ channel binds much deeper due to the coupled channel effects.
- 5. The results for the coupled $\Xi_c N/\Xi_c' N/\Xi_c^* N/(0^+)$ system don't change too much

$3.2 \, \Xi_c N \, 1(0^+) \, \text{system}$

1. Compared to $\Xi_c N$ $0(0^+)$, the result of $\Xi_c N$ $1(0^+)$ don't change too much. So, the scalar σ interaction is dominant.

		OPE $\Xi_c N$	_		
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c N(^1S_0)$	$\Xi_c' N(^1 S_0)$
1(0+)	3.05	-0.10	5.78	98.26	1.74
	3.15	-4.52	1.76	93.01	6.99
	3.25	-14.70	0.97	88.68	11.32

ODE $\Xi M/\Xi/M1(0+)$

- 2. The OPE interactions are not strong enough attractive to bind $\Xi_c N/\Xi_c' N$ 1(0⁺) system.
- 3. For the OBE case, $\Xi_c N \ 1(0^+)$ channel is dominant.

$3.2 \equiv_c N 1(0^+)$ system

				/5 _c N/5 _c N1		
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c N(^1S_0)$	$\Xi_c' N(^1 S_0)$	$\Xi_c^* N(^5 D_0)$
1(0+)	1.94	-0.19	5.59	98.53 94.99 91.45	0.59	0.87
	2.04	-3.74	2.11	94.99	2.13	2.88
	2.14	-12.01	1.24	91.45	3.74	4.81

ODE \square $M/\square'M/\square*M1(0+)$

- 1. Although the OPE interactions are stronger than before, for this bound state, it is not strong enough attractive to bind $\Xi_c N/\Xi_c' N/\Xi_c$
- 2. For the OBE case, $\mathcal{E}_c N \ 1(0^+)$ channel is dominant.
- 3. The $\mathcal{E}_c N$ 1(0⁺) system can be regarded as a good molecular candidate

3.1 $\Xi_c N$ 0(1⁺) system

$I(J^P)$	Λ	Е	r_{RMS}	$\Xi_c N(^3S_1)$	$\Xi_c N(^3D_1)$	$\Xi_c' N(^3S_1)$	$\Xi_c' N(^3D_1)$
0(1+)	1.50	-0.38	5.16	98.37	0.06	0.19	1.38
	1.62	-4.32	2.12	94.82	0.12	0.92	4.13
	1.74	-13.42	1.32	90.47	0.12	2.45	6.96

- 1. The loosely $\Xi_c N$ 0(1⁺) bound states emerge as the cutoffs is 0.92 GeV.
- 2. For the $\Xi_c N/\Xi_c' N$ $0(1^+)$ system $,\Xi_c N(^3S_1)$ channel is dominant.
- 3. The scalar σ and vector mesons exchanges ρ , ω still have the positive contribution to form the bound state.
- 4. The $\Xi_c N$ $0(1^+)$ channel is dominant in the OBE interactions.

3.2 $\Xi_c N \ 0(1^+)$ system

OPE $\Xi_c N / \Xi_c' N / \Xi_c^* N \ 0(1^+)$

$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c N(^3S_1)$	$\Xi_c N(^3D_1)$	$\Xi_c' N(^3S_1)$	$\Xi_c' N(^3D_1)$	$\Xi_c^* N(^3S_1)$	$\Xi_c^* N(^3D_1)$	$\Xi_c^* N(^3D_1)$
0(1+)	0.75	-0.68	4.33	94.01	~0.00	0.85	0.21	4.71	0.02	0.20
	0.78	-5.83	1.69	81.66	~0.00	2.68	0.31	14.98	0.04	0.33
	0.81	-16.63	1.02	69.59	~0.00	4.46	0.26	25.36	0.03	0.30

- 1. In the OPE case, $\Xi_c^* N$ channel deepens the binding and gain significance.
- 2. The σ , ρ , and ω still have the positive contribution to form the bound state.
- 3. The $\mathcal{E}_c^* N(^3S_1)$ channel gains significance and play a positive role in forming the bound state.
- 4. The $\mathcal{E}_c N$ 1(0⁺) system can be regarded as a good molecular candidate

$3.2 \,\Xi_c N \, 1(1^+)$ system

1. For $\Xi_c N$ 1(1⁺) single channel, we can get the bound state solutions at the cutoff around 1.00 GeV.

		OPI	$\Xi E_c N/\Xi$	$\Xi_c' N1(1^+)$		
$I(J^P)$	Λ	E	r_{RMS}	$\Xi_c N(^3S_1)$	$\Xi_c N(^3D_1)$	$\Xi_c' N(^3S_1)$
1(1+)	2.05	-0.47	4.56	89.51	0.58	7.83
	2.10	-0.47 -5.28	1.57	70.12	1.67	22.79
	2.15	-14.19	0.97	56.98	2.41	33.21

- 2. The OPE interactions are sufficiently strong to bind $\Xi_c N/\Xi_c' N \ 1(1^+)$ system.
- 3. The σ , ρ , and ω still have the positive contribution to form the bound state.
- 4. For the OBE case, $\Xi_c N 1(1^+)$ channel is dominant.

$3.2 \Xi_c N 1(1^+)$ system

$O_1 \cup \cup_{C_1 \cup I} \cup_{C_1 \cup I$	OPE $\Xi_c N$	$/\Xi_c'N/\Xi_c'$	$\Xi_c^* N 1$	(1^{+})
---	---------------	-------------------	---------------	-----------

$I(J^P)$	Λ	Ε	r_{RMS}	$\Xi_c N(^3S_1)$	$\Xi_c N(^3D_1)$	$\Xi_c' N(^3S_1)$	$\Xi_c' N(^3D_1)$	$\Xi_c^* N(^3S_1)$	$\Xi_c^* N(^3D_1)$	$\Xi_c^* N(^3D_1)$
1(1+)	1.80	-0.16	5.72	98.16	~0.00	0.20	0.53	0.64	0.05	0.42
	1.90	-4.57	1.92	92.59	0.01	0.95	2.01	2.70	0.17	1.57
	2.00	-15.31	1.11	86.97	0.02	1.87	3.41	4.84	0.29	2.60

- 1. The OPE interactions are not strong enough attractive to bind $\Xi_c N/\Xi_c' N/\Xi_c^* N 1(1^+)$ system yet.
- 2. The σ , ρ , and ω still have the positive contribution to form the bound state.
- 3. For the OBE case, $\Xi_c N 1(1^+)$ channel is dominant yet.
- 4. The $\mathcal{E}_c N$ 1(1⁺) system can be regarded as a good molecular candidate 16

3.2 A short summary for $\Xi_c N$ system

- 1. For $\Xi_c N$ single system, we always gain the bound state solutions at the cutoff 1.00 GeV.
- 2. The σ , ρ , and ω exchanges interactions have the positive contribution to form the bound state.
- 3. The coupled channel effects always deepen the binding.
- 4. We can predict the $\mathcal{E}_c N$ states with $O(0^+)$, $I(0^+)$, $O(1^+)$, $O(1^+)$ as good hadronic molecular candidates.

$3.3 \; \Xi_c N \; \text{system}$

- 1. We can predict the $\mathcal{E}'_c N$ states with $0(0^+)$, $1(0^+)$, $0(1^+)$ and $1(0^+)$ as good hadronic molecular candidates.
- 2. The OPE interactions are pivotal in the formation of $\mathcal{E}'_c N$ states with $0(0^+)$, $1(0^+)$ and $0(1^+)$, while the OBE interactions also contribute positively.
- 3. However, the coupled channel effects do not significantly impact these four bound states.

$3.4 \, \Xi_c^* N \, \text{system}$

OPE: $0(1^+)$ and $0(2^+)$ can be regard as the good hadronic molecular candidate.

OBE: Gained deeper binging energy.

The states with $I(J^P) = 0,1(1^+,2^+)$ can be regard as good hadronic molecular candidates.

4 Summary

- 1. Explore the interactions between charm-strange baryons and nucleons, employing the OBE model.
- 2. Take into account both the S –D wave mixing effects and the coupled channel effects.
- 3. Our results indicate the molecular candidates as follows.

```
\mathcal{E}_c N states with 0(0^+), 1(0^+), 0(1^+) and 1(1^+) \mathcal{E}'_c N states with 0(0^+), 1(0^+), 0(1^+) and 1(0^+) \mathcal{E}^*_c N states with 0(1^+), 1(1^+), 0(2^+) and 1(2^+)
```

Thanks for your attention