

Study of the $B_{(s)}^0 \to \overline{D}^{(*)0}KK$ decays at LHCb

D. Ao, D. Decamp, H. Sazak, W. Qian, S. Ricciardi, V. Tisserand, S. T'Jampens, Z. Wang, Z.Xu, Z. Yang, S. Zhang, <u>X. Zhou</u>

On behalf of the LHCb Collaboration

FCPPL Workshop 2023 2023.11.06

- Motivation
- ♦ Improved measurements on $B_{(s)}^0 \to \overline{D}^{(*)0}\phi$
- Measure γ via $B_s^0 \to \overline{D}^{(*)0}\phi$ mode
- ♦ Observation of the decay $B_{(s)}^0 \to D_{s1}(2536)^{\mp}K^{\pm}$
- ♦ Dalitz analysis of $B^0/B^0_{(s)} \to \overline{D}^0 KK$
- Summary

Physics with/of $B_{(s)}^0 \to \overline{D}^0 K K$ decays

- * **Time-Dependent Dalitz analyses** can be used to access CKM angles γ and to obtain clean determination of $\beta_{(s)}$ in $B_{(s)} \overline{B}_{(s)}$ mixing (*Phys. Rev. D85(2012)114015*)
- Rich phenomenology of Dalitz structures are interesting for exited D_s^{**} charmed B-decays spectroscopy studies

- Previous Studies:
 - Measurements performed with 3/fb (Run1:2011+2012): (*Phys. Rev. D98(2018)072006, 071103*)
 - γ sensitivity studies based on 9/fb (Run1+2): (*Chin. Phys. C45(2021) 023003*)

Precise measurement of the CKM angle γ

- Measure γ directly using **tree-level** decays
- Theoretically clean (δγ/γ<10⁻⁷) (JHEP 1401(2014)051)
- HFLAV latest: $\gamma = (65.9^{+3.3}_{-3.5})^{o}$
- LHCb dominated: $\gamma = (63.8^{+3.5}_{-3.7})^{o}$ (LHCb-CONF-2022-003)
- Loop-level (indirect measurement) is sensitive to New Physics
- CKMFitter latest: $\gamma = (66.3^{+0.7}_{-1.9})^o$

$$\gamma = \arg\left(-rac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}
ight)$$

- Best knowledge of γ comes from combination of many measurements
- Largest uncertainty for γ in B_s^0 mode:

* $\gamma = (79^{+21}_{-24})^{o}$

- $\blacksquare B_{S}^{0} \to D_{S}^{\mp} K^{\pm} : \gamma = (128^{+17}_{-22})^{o} \text{ (JHEP 03(2018)059)}$
- **New!** Run2 result: $\gamma = (74 \pm 11)^o$ (*LHCb-CONF-2023-004*)
 - $B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^- : \gamma = (44 \pm 12)^o \text{ (JHEP 03(2021)137)}$

- Need more modes of B_s^0 constraint the γ errors in B_s^0 decay
 - γ sensitivity study in $B_s^0 \to D^{(*)0}\phi$: 8° ~ 19°(9/fb) *Chin. Phys. C45(2021) 023003*

Improved measurements on $B^0_{(s)} \rightarrow D^{(*)0}\phi$

Introduction of $B^0_{(s)} \rightarrow D^{(*)0}\phi$

- ♦ $B^0_{(s)} → D^{(*)0} φ$ can proceed by b → c or b → u process:
 - Color suppressed and proportional to λ^3
 - Measuring longitudinal polarisation (f_L) is particular interest
 - Can be used to determine γ

- - OZI suppress, W-exchange decay
 - Observed in charmonium decays (*Phys. Rev. D* 99 (2019) 012015) but not in b-hardon decays (*Chin. Phys. C45(2021)* 043001)
 - Theoretical predict $B(B^0 \rightarrow \overline{D}{}^0 \phi) \sim 1.6 \times 10^{-6}$ (*Phys. Lett. B* 666(2008) 185)
 - Upper limit in previous work: $B(B^0 \rightarrow \overline{D}{}^0 \phi) < 2.0(2.3) \times 10^{-6}$ at 90%(95%) CL
 - Help to extract $\omega \phi$ mixing angle

Branching fraction measurements of $B_{(s)}^0 \to \overline{D}^{(*)0} \phi$

✤ All Run1+Run2 data (~9/fb) used

- ♦ $B^0 \rightarrow \overline{D}^0 KK$: normalized mode
- Very similar study strategy to the previous Run1 work (*Phys. Rev. D98(2018)072006, 071103*)
 - sPlot technique is used to extract ϕ signal
 - Partial reconstruction for $\overline{D}^{(*)0}$
 - Different shapes for transverse/longitudinal $D^{*0} \rightarrow \gamma/\pi^0 D^0$ from MC simulation
- ◆ Optimised the selection criteria → Efficiencies and yields improved ~30% with almost similar background level

Result of $B^0_{(s)} \rightarrow \overline{D}^{(*)0} \phi$

♦ Evidence for $B^0 \to \overline{D}^{(*)0}\phi$ is reported

$$\begin{split} \mathcal{B}(B^0 \to \overline{D}{}^0 \phi) &= (7.7 \pm 2.1 \pm 0.7 \pm 0.7) \times 10^{-7}, \quad \textbf{3.6}\sigma \\ \mathcal{B}(B^0 \to \overline{D}{}^{*0}\phi) &= (2.2 \pm 0.5 \pm 0.2 \pm 0.2) \times 10^{-6}, \quad \textbf{4.3}\sigma \\ \mathcal{B}(B^0_s \to \overline{D}{}^0\phi) &= (2.30 \pm 0.10 \pm 0.11 \pm 0.20) \times 10^{-5}, \\ \mathcal{B}(B^0_s \to \overline{D}{}^{*0}\phi) &= (3.17 \pm 0.16 \pm 0.17 \pm 0.27) \times 10^{-5}. \end{split}$$

- ★ The fraction of longitudinal polarisation $f_L(B_s^0 \to \overline{D}^{*0}\phi) = (53.1 \pm 6.0 \pm 1.9)\%$
- Combining the branching fraction of $B^0 \to \overline{D}^{(*)0}\omega$, $\omega - \phi$ mixing angle determined:

 $\tan^2 \delta = (3.6 \pm 0.7 \pm 0.4) \times 10^{-3}$

Consistent with the theoretical prediction

(Phys. Lett. B 666(2008) 185)

All the results are consistent with, and supersede the previous LHCb measurement

ArXiv: 2306.02768

Measure γ via $B_s^0 \rightarrow \overline{D}^{(*)0}\phi$ mode (ongoing)

- Flavor mode: $D^0 \to K^- \pi^+ / K^- \pi^+ \pi^- \pi^+ / K^- \pi^+ \pi^0$
 - π^0 reconstruction is challenging in LHCb
- CP-even mode: $D^0 \to K^+ K^- / \pi^+ \pi^-$
 - $D^0 \rightarrow K_s^0 hh$ modes do not included due to lack of statistics
- More yields than expected due to optimisation
- Worse f_L , but dominated modes is $B_s^0 \to \overline{D}{}^0 \phi$
- ◆ Blind analysis on-going , now only B⁰_s → D⁰φ used
 γ = (xxx⁺⁸₋₁₆)^o

Consistent with the sensitivity study (Chin. Phys. C45(2021) 023003)

Search for the decay $B_{(s)}^0 \to D_{s1}(2536)^{\mp} K^{\pm}$

Search for the decay $B_{(s)}^0 \rightarrow D_{s1}(2536)^{\mp} K^{\pm}$

- The puzzle in the decays $B^0 \to D^{(*)-}K^+$ and $B^0_s \to D^{(*)-}\pi^+$:
 - Their measured branching fractions smaller than those from calculation with QCD factorization. (*Phys. Rev. D 83 (2011) 014017*) (*Eur. Phys. J. C 80 (2020) 951*)
- ♦ An extension of previous $B_{(s)}^0 \to \overline{D}{}^0 KK$ work
 - A significant peak corresponding to $D_{s1}(2536)$
 - $D_{s1}K$ decay mode not observed in $B_{(s)}^0$
- The B⁰_s mode can process via both b → c and b → u transition
 sensitive to CKM angle γ
- Probe γ from $B_s^0 \bar{B}_s^0$ mixing and decay, time dependent measurement

Observation of the decay $B_{(s)}^0 \to D_{s1}(2536)^{\mp} K^{\pm}$

- All Run1+Run2 data (~9/fb) used
- sPlot technique is used to extract $D_{s1}(2536)$ signal
- Angular decay rates of signals are considered
- Simultaneous fit to Run1& Run2
- ♦ $B_{(s)}^0 \rightarrow D_{s1}(2536)^{\mp}K^{\pm}$ observed:

$$\begin{aligned} \mathcal{B}(B_s^0 \to D_{s1}(2536)^{\mp} K^{\pm}) &\times \mathcal{B}(D_{s1}(2536)^- \to \overline{D}^* (2007)^0 K^-) \\ &= (2.49 \pm 0.11 \pm 0.12 \pm 0.25 \pm 0.06) \times 10^{-5}, \\ \mathcal{B}(B^0 \to D_{s1}(2536)^{\mp} K^{\pm}) &\times \mathcal{B}(D_{s1}(2536)^- \to \overline{D}^* (2007)^0 K^-) \\ &= (0.510 \pm 0.021 \pm 0.036 \pm 0.050) \times 10^{-5}. \end{aligned}$$

 Helicity-related parameters, fractions of S-wave component, etc. are also determined

LHCb

Dalitz analysis of $B^0/B^0_{(s)} \to \overline{D}^0 KK$ (ongoing)

- Optimised the selection for high purity of signals (different optimizations for the two decay modes)
 - ~1500 signals with purity 83% for $B_s^0 \to \overline{D}{}^0 KK$
 - ~5000 signals with purity 93% for $B^0 \to \overline{D}{}^0 KK$
- Dalitz analyses of $B^0 \to \overline{D}{}^0 KK$ and $B_s^0 \to \overline{D}{}^0 KK$ are on-going
- ♦ $B_s^0 \to \overline{D}^0 KK$ for example:
 - $D_{s2}^*(2573), D_{s1}^*(2700), D_{s1}^*(2860), D_{s3}^*(2860)$ and $\phi(1020)$ peaks are observed in the projection plots

m(D⁰K*)Get

Summary

- Two papers published in 2023 under FCPPL framework
 - Evidence for the decays $B^0 \to \overline{D}^{(*)0}\phi$ and updated measurement of the branching fractions of the $B_s^0 \to \overline{D}^{(*)0}\phi$ decays (*JHEP 10 (2023)123*)
 - Observation of the decay $B_{(s)}^0 \to D_{s1}(2536)^{\mp}K^{\pm}$ (JHEP 10 (2023)106)

- Work on-going on three analyses towards publication
 - Measure γ via $B_s^0 \to \overline{D}^{(*)0}\phi$ mode
 - Dalitz analyses of $B^0 \to \overline{D}{}^0 KK$
 - Dalitz analyses of $B_s^0 \to \overline{D}{}^0 KK$
- ✤ Future plan
 - Preparation and early study on Run3 data

