

Timing Readout Electronics for T-SDHCAL

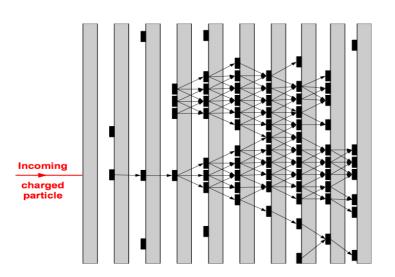
Weihao Wu, Shanghai Jiao Tong University On behalf of SJTU-IPNL Group

in collaboration with Imad Laktineh: Institut de Physique des 2 Infinis de Lyon 06/11/2023

饮水思源•爱国荣校

Introduction

- Design of the front-end board (FEB) prototype
- Timing performance evaluation
- Double-FEB setup for mRPC cosmic ray test
- DAQ development
- Conclusion

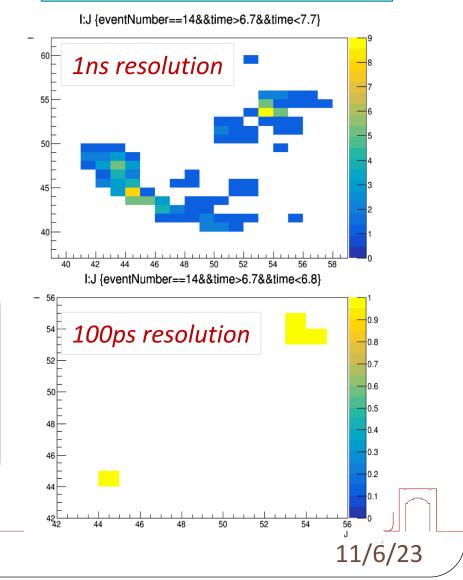

11/6/23



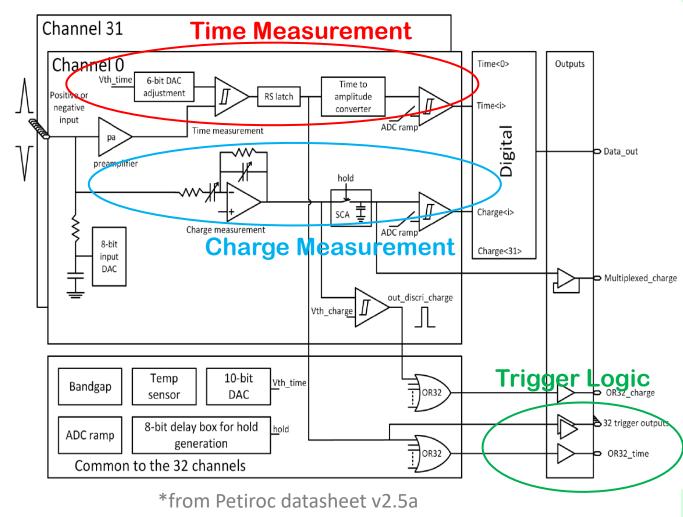
SDHCAL is one of the high granularity PFA (Particle Flow Algorithm) calorimeters

- Connect first hits and then their clusters using distance and orientation information
- The energy information helps to optimize the connections of hits belongs to the same shower.
- A SDHCAL prototype built based on Glass RPC
 - >48 layers with GRPC as sensitive medium
- Semi-digital readout (HARDROC): hits associated to three different thresholds (2-bit)
 - Ist threshold = 110fC
 - > 2nd threshold = 5pC
 - > 3rd threshold = 15pC

SDHCAL prototype at testbeam in 2015


Timing Electronics

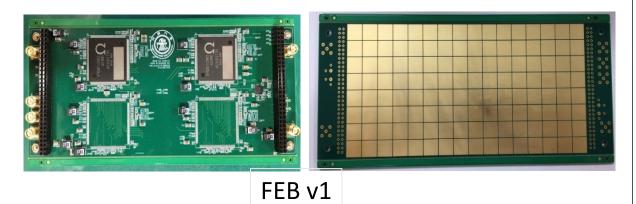
- Timing information can be very helpful to separate close-by showers and reduce the confusion for a better PFA application.
- Method: Adding some mRPC layers in the SDHCAL
- Front-End Electronics for mRPC readout
 High resolution timing measurement

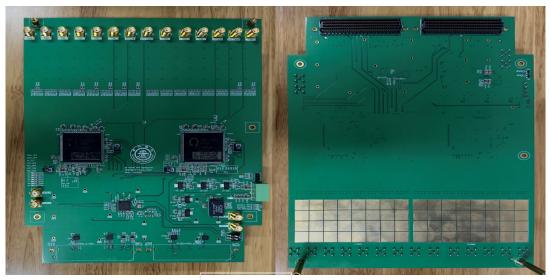

- Time measurement with 10 bits TDC interpolating 40MHz clock
- ≻ Timing resolution below 100 ps
- ➤ 32 input channels
- ➢ Power consumption: ∼6mW/channel

Example: Pi-(20 GeV), K-(10 GeV) separated by 15 cm

Petiroc2B ASIC

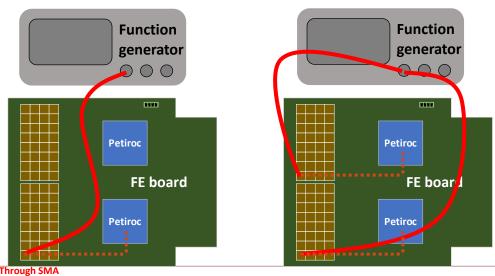
- ➤ A 32-channel front-end ASIC designed for SiPMs readout (mRPCs as well).
- Charge and timing measurement
- ➤ 40 ps bin size of on-chip TDC
- Readout time: 12us
- Fast trigger line output
- Dynamic Range 0-480 pC i.e. 3000
 - photoelectrons @ 10^6 SiPM gain
- Fast fixed gain (40) inverting voltage preamplifier
- Slow shaper with adjustable shaping time from 25 to 100 ns
- Charge measurements by Track&Hold

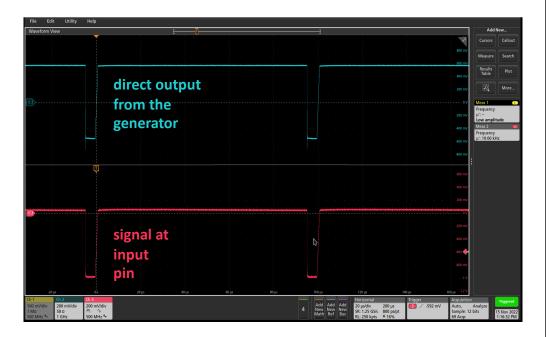

11/6/23


Power consumption 6mW/channel

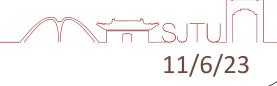
Front-end Board (FEB)

- A small FEB prototype
 - Timing performance validation
 - Readout scheme with mRPC detectors
- 2nd-version of FEB has been designed and fabricated
 - 2 Petirocs on-board
 - On-board power rails
 - ≻64-channel input pads
 - SMAs to inject signals
 - Crosstalk issue in injection test has been fixed


11/6/23

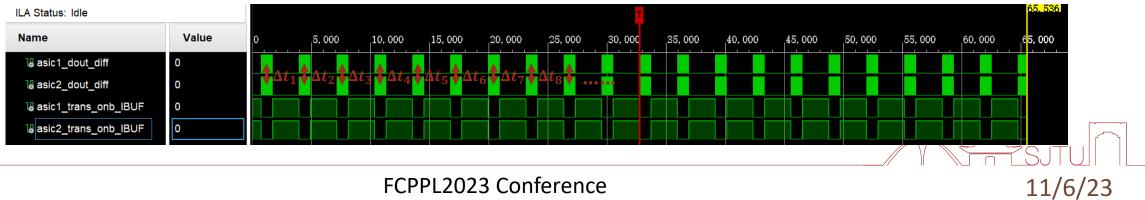

FEB v2

Injected Test


- Injection Test has been performed and verified.
- Timing performance has been evaluated based injection test
 - Setup 1: inject periodic signals to one channel, then measure the timing information between neighbor hits
 - Setup 2: inject signals to two channels, then measure the timing output of two chips

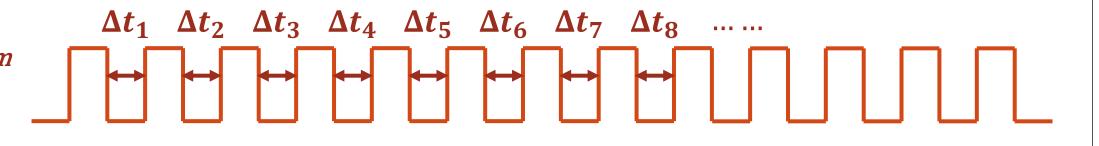
Signal profile:

- Negative pulse
- ➢ freq: 10kHz (period of 100 μ s) or 25kHz (period of 40 μ s)
- 20mV amplitude
- leading of 1us, trailing of 2ns

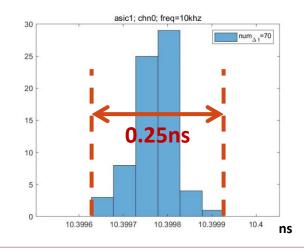

Timing Performance Tests

- > Timing tests of a single input channel, with periodic injections
 - If Petiroc2B works properly, every two neighbor hits output should have the same time gap. Analyzing the time gaps can get us the timing performance.

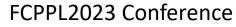
ILA Status: Idle			Λt_{\star} Λt_{\star}	At.	Λt , Λt_{-}	$\Lambda t_{\star} = \Lambda t_{\star}$	$t_{-} \Lambda t_{0}$	Т							65, 536
Name	Value	0	5, 000	10,000	15, 000	20,000	25, 000	30, 000	35, 000	40, 000	45, 000	50, 000	55, 000	60, 000	6 <mark>5, 000</mark>
🖁 asic1_dout_diff	0														
🖁 asic2_dout_diff	0														
₿ asic1_trans_onb_IBUF	1														T.
lasic2_trans_onb_IBUF	0														

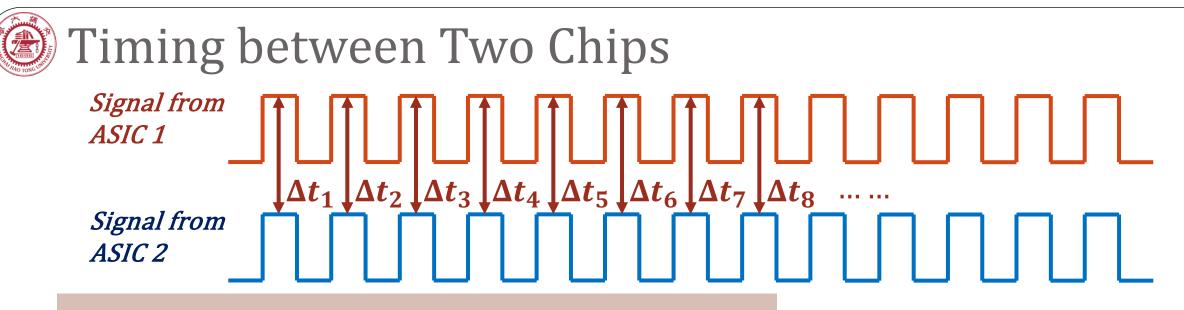

Timing tests of two clock-synchronized chips

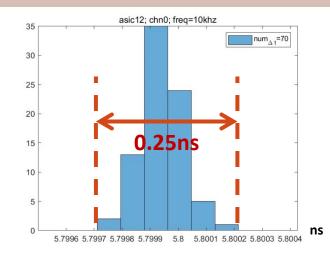
> For the same single hit, the time gap between the two chips' output should be constant.

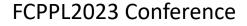

Timing between Neighbor Hits

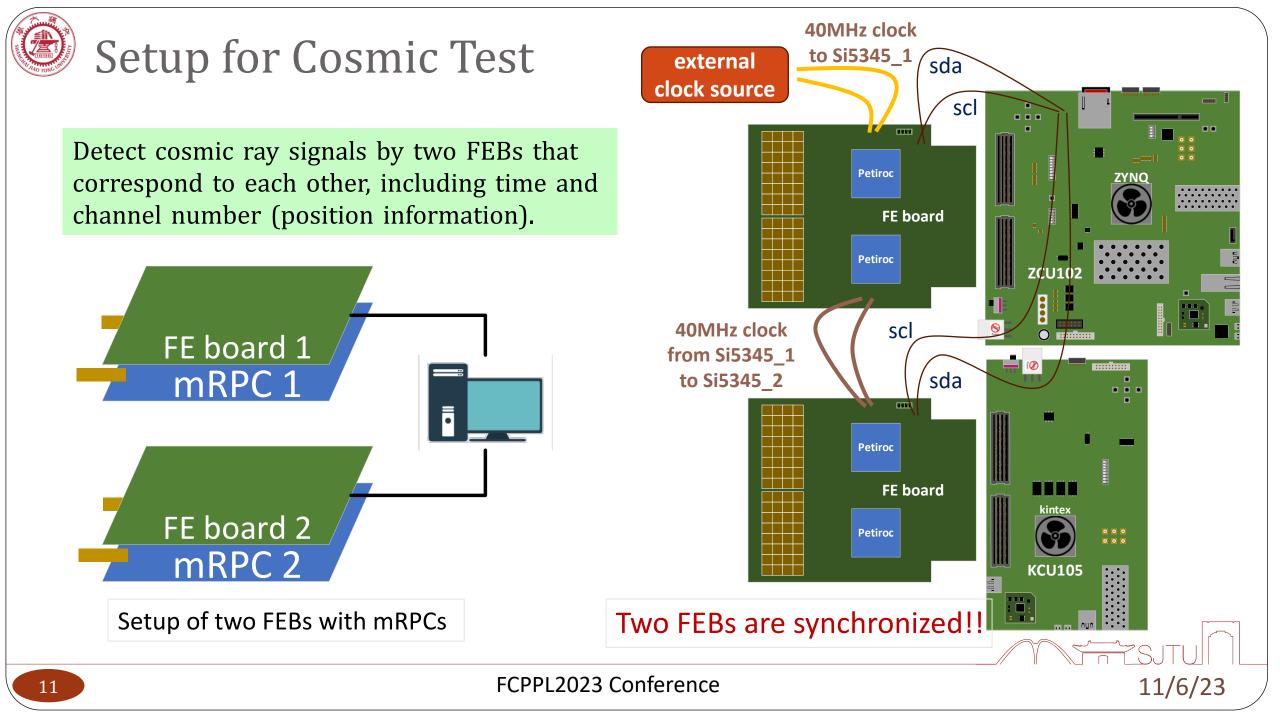
Signal from ASIC 1

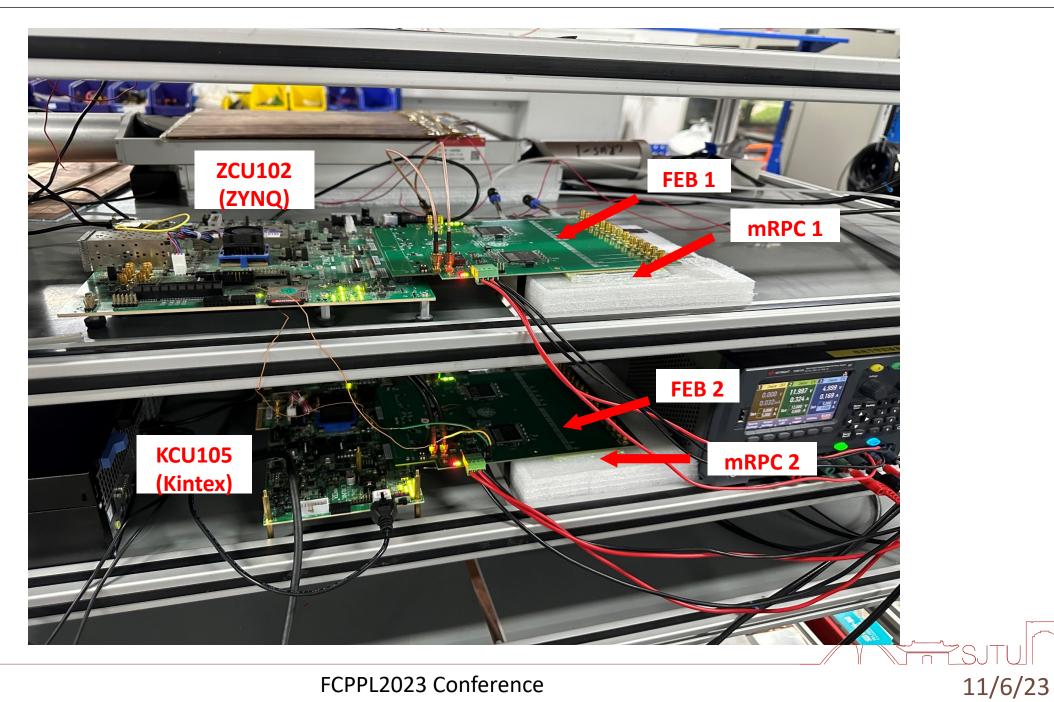

- > Inject signal into one chip.
- ➤ Calculate the timing differences (Δt) between every two neighbor hits.
- \succ Check if Δt is consistent.


Results: ✓ The std of **Δt** is 45.8ps ✓ **Δt** is consistent

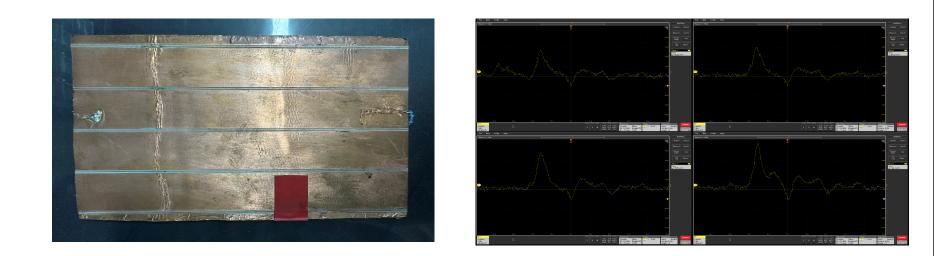

11/6/23


- > Inject the same signal into two chips (with a double-pass).
- \succ Calculate the Δt between two Petiroc2B chips of each hit.
- \succ Check if Δt is consistent.

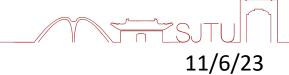

Results: ✓ The std of Δt is 53.6ps ✓ Δt is consistent



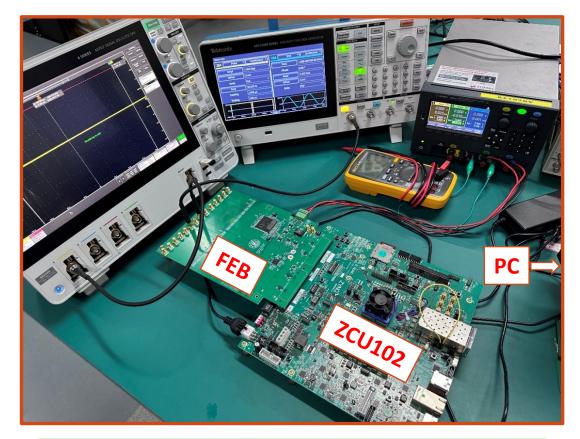
11/6/23

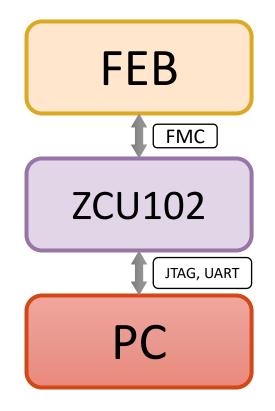


mRPC Test

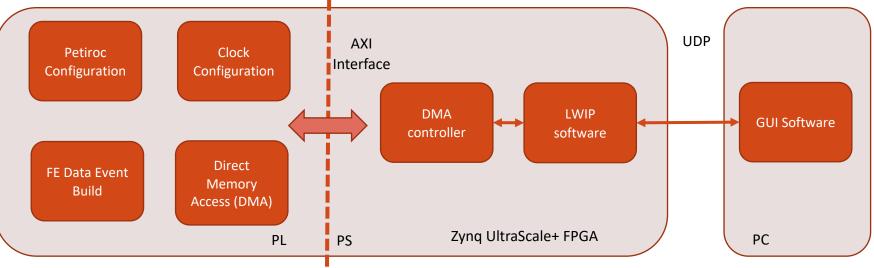


mRPC detector

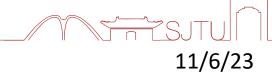

- > The test conditions are:
 - ➤ voltage: 7500V
 - ▶ gas: 10% C4H10, 12% SF6, 18.9% F134a


- Preliminary Test
- Use a readout pad with copper strips, and observe the signal from an oscilloscope
- > Can capture something, but probably noises only.
- Still working on the mRPC test, with our colleagues' help

DAQ Development for FEB Prototype



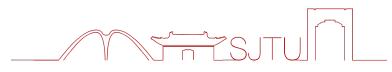
Xilinx ZCU102, with Zynq UltraScale+[™] MPSoC


DAQ Development for FEB Prototype

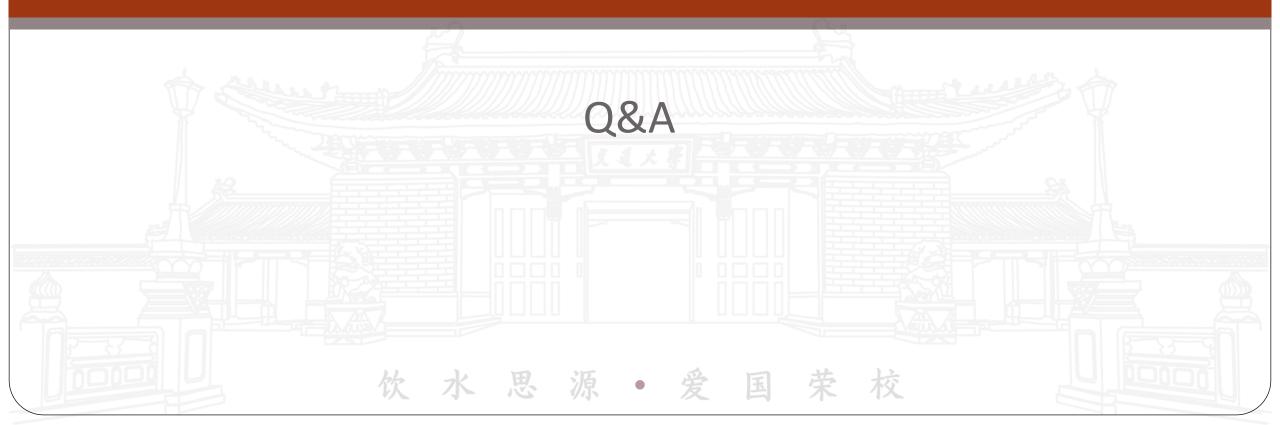
•	————————————————————————————————————	• 🗆 ×	▲ 正在時間 (3大月 文件(F) 編編(E) 祝酒(V) 訓練(G) 損	設(C) 分析(A) 統計(S	电话(Y) 无线(W)	工具の 料約	0(H)		- 0
络设置	网络教掘接收								
(1)协议类型	37 30 33 37 63 37 33 33 30 30 37 65 33 37 37 36 33 37 63 37 36	10 .	直 底用显示过滤器 《Ctrl-/〉	******	4442				
UDP V	33 37 38 33 30 33 36 63 37 37 33 37 63 37 33 33 37 63 37 30 33		Xo Time Source	· ·	stination	Protocol	Length Info		
	30 33 33 37 63 37 65 33 33 00 63 37 36 33 66 38 33 30 33 37 63	37	1114 193,091113 192,16		2.168.1.100	UDP	286 62510 + 5001 Len=244		
(2)本地IP地址	37 33 36 30 37 33 33 66 63 37 30 33 37 38 37 37 33 66 38 37 36		9467 1139,663585 192,16		2.168.1.100	UDP	286 62510 + 5001 Len=244		
192,168, 1,100	66 38 37 30 33 66 63 37 37 33 66 63 37 36 33 63 63 37 30 33 66	18	9468 1139.663585 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
	37 33 33 37 63 37 30 33 64 63 37 37 33 64 38 37 33 33 66 38 37		9469 1139.663585 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
(3)本地端口号	33 66 63 37 66 33 66 63 37 33 37 66 64 64 66 37 66 64 66 66 37		9470 1139.663585 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
5001	64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64		9474 1140.745996 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
	66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66		9491 1141.824085 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
● 断开			9497 1142.902359 192.16	8.1.10 19	2.168.1.100	UDP	286 62510 → 5001 Len=244		
्र् धारा	66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66	54	9508 1143.980360 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
	66 66		9520 1145.058596 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
敞区设置	FF FF FF FF 33 66 38 37 37 33 65 30 37 37 33 37 30 37 65 33 36		9531 1146.136616 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
	37 30 33 37 63 37 33 33 30 30 37 65 33 37 37 36 33 37 63 37 36	10	9546 1147.219025 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
	33 37 38 33 30 33 36 63 37 37 33 37 63 37 33 33 37 63 37 30 33	55	9551 1148.297214 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
✔ 自动换行显示	30 33 33 37 63 37 65 33 33 00 63 37 36 33 66 38 33 30 33 37 63	37	9559 1149.375384 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
✔ 十六进制显示	37 33 36 30 37 33 33 66 63 37 30 33 37 38 37 37 33 66 38 37 36	33	9564 1150.453439 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
暂停接收显示	66 38 37 30 33 66 63 37 37 33 66 63 37 36 33 63 63 37 30 33 66	38	9568 1151.531612 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
	37 33 33 37 63 37 30 33 64 63 37 37 33 64 38 37 33 33 66 38 37	30	9574 1152.609687 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244		
保存数据 清除显示	33 66 63 37 66 33 66 63 37 33 37 66 64 64 66 37 66 64 66 66 37		9584 1153.692142 192.16 9593 1154.770257 192.16		2.168.1.100	UDP	286 62510 → 5001 Len=244 286 62510 → 5001 Len=244		
	64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64		9593 1154.770257 192.10 9599 1155.848596 192.10		2.168.1.100	UDP	286 62510 → 5001 Len=244 286 62510 → 5001 Len=244		
送区设置	66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66		9613 1156,926548 192,10		2.168.1.100	UDP	286 62510 + 5001 Len=244		
自用文件教掘頂	66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66 64 66 66 37 66		9613 1158.004847 192.10		2.168.1.100	UDP	286 62510 → 5001 Len=244		
		54	9620 1159.082801 192.10		2.168.1.100	UDP	286 62510 → 5001 Len=244		
- 自动发送附加位	66 66		5020 1155.002001 152.10		2.100.1.100	007	200 02510 4 5001 201-244		
- 发送完自动遭空			K						
按十六进制发送		~					its) on interface \Device\NPF_{	FB78D9BD-D56D-47B1-B462-A08AD	DEF72F15}, 1d
			> Ethernet II, Src: Xilinx_0 > Internet Protocol Version +				t:/2 (d0:8e:/9:10:8t:/2)		
数据流循环发送	目标主机: 192.168.1.10 目标端口: 62510		 Internet Protocol Version 4 User Datagram Protocol, Sri 			8.1.100			
发送间隔 1000 毫秒		_	 User Datagram Protocol, Sri Data (244 bytes) 	. POPC: 62510, DS	. POPC: 5001				
aliziani 1000 jiziy	http://www.cmsoft.cm.QQ:10865600		 Data (244 bytes) Data: ffffffff3132303363 	21262022252121242	2622122202222721	22242225222	12022642121		
文件载入 清除输入	X	8E	[Length: 244]	513636555555151545	303313336333731	333433333333	13833043131		
			[rengen: 244]						

Ethernet data test - read from DMA

- The event data is sent to PS memory by a DMA in PL (FPGA)
- The ethernet transfer function is realized through PS (ARM core) of ZYNQ, using LWIP protocol
- Counter data has been tested and verified



Main settings EN/PP Calibrat		pmenti	for FEB P	iototype
Mask disci charge 0 1 2 3 4 5	□ 8 □ 9 □ 10 □ 11 □ 12 □ 13	☐ 16 ☐ 17 ☐ 18 ☐ 19 ☐ 20 ☐ 21	24 25 26 27 28 29	
☐ 6 ☐ 7 Mask disci time	☐ 14 ☐ 15	22 23	30 31	The DAQ software is a Python GUI application.
□ 0 □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7	8 9 10 11 12 13 14 15	☐ 16 ☐ 17 ☐ 18 ☐ 19 ☐ 20 ☐ 21 ☐ 22 ☐ 23	□ 24 □ 25 □ 26 □ 27 □ 28 □ 29 □ 30 □ 31	The GUI is designed via QT designer, which is set of cross- platform C++ libraries that implement high-level APIs.
ADC ramp compensation		Cin	Cf 100fF 200fF 300fF 400fF 	PyQt5 modules binding with QT v5.
Polarity Negative ~	Z DAC delay 0	τ =25ns FCPF	τ =25ns PL2023 Conference	11/6/23


Conclusion

- ◆ A FEB prototype based on Petiroc ASIC has been designed
- The timing performance of the FEB has been evaluated, which has a resolution better than 100*ps*.
- The commissioning test of the FEB and mRPC detectors is ongoing.
- A DAQ system based on Zynq FPGA and PyQT5, is being developed steadily.

Thank you for your attention

