

Y production and polarization in pp collisions with ALICE at the LHC

Yanchun Ding^{1,2}

Central China Normal University¹

Institut de Physique des Deux Infinis de Lyon²

November 09, 2023

Introduction: QGP physics with ALICE

yanchun.ding@cern.ch

- AI
- Quark-gluon plasma (QGP) is a deconfined state of
- hadronic matter which can form at high temperatures
- and/or net baryonic densities
- ALICE at the LHC observes QGP produced in ultra
 - relativistic collisions of heavy ions
- Direct observation of QGP is impossible due to the short
 - life of the deconfined phase
- QGP is studied indirectly by means of a number of probes
 - The suppression of high p_{T} particles and jets
 - The enhancement of strange and multi-strange particles
 - Signatures of a collective motion of the medium

Introduction: quarkonium as a probe of QGP

Quarkonium: bound state of a heavy quark and its corresponding antiquark Heavy quarks (charm and bottom): produced at the early stages of the heavy-ion collisions

Quarkonium production inside the QGP

- **Color screening** and dissociations (**sequential melting**) vs **regeneration** mechanisms
- **Parton energy loss** (collisional vs radiative processes)

state	J/ ψ	χc	ψ (2S)
Mass(GeV)	3.10	3.53	3.69
∆E (GeV)	0.64	0.20	0.05
r₀(fm)	0.25	0.36	0.45
state	Y (1S)	Y(2S)	Y (3S)
state Mass(GeV)	Y (1S) 9.46	Y (2S) 10.0	Y (35) 10.36
state Mass(GeV) ∆E (GeV)	Y(1S) 9.46 1.10	Y(2S) 10.0 0.54	Y(3S) 10.36 0.20

yanchun.ding@cern.ch

Nature 448, 302-309 (2007)

Introduction: quarkonium in small collision systems

Small collision systems (pp and p-Pb collisions): no (or very tiny) QGP effect is expected

Measurements in pp collisions:

Provide a baseline for the measurement in p-Pb and Pb—Pb collisions freshold study of quarkonium production mechanisms: both perturbative (i.e. heavy-quark pair formation) and non-perturbative (quarkonium state formation) QCD processes involved ↓ Measurements of quarkonium production in pp allows to constrain QCD based models

Measurements in p-Pb collisions:

Investigate cold nuclear matter (CNM) effects (shadowing, coherent parton energy loss,...) \rightarrow Help the interpretation of the measurements in Pb—Pb collisions

Measurements in high-multiplicity pp/p-Pb collisions: F Study the role of *multiparton interactions* (MPIs) Observe possible *collective-like* effects

yanchun.ding@cern.ch

Introduction: quarkonium in small collision systems

Small collision systems (pp and p-Pb collisions): no (or very tiny) QGP effect is expected

- Measurement: Provide a b In this presentation: 🖆 Study of qu non-perturk Multiplicity dependence of Υ production in pp collisions ➡ Measure from Understand the particle production mechanisms (MPI) Collective effects in high multiplicity pp collisions? Measurement $\Upsilon(1S)$ polarization in pp collisions F Investigate F Help to understand the particle production mechanisms → Help the *Constrain the model predictions*
- Measurements in high-multiplicity pp/p-Pb collisions: Study the role of *multiparton interactions* (MPIs) Construction of the second sec

yanchun.ding@cern.ch

09/11/2023

A Large Ion Collider Experiment

yanchun.ding@cern.ch

A Large Ion Collider Experiment

A dedicated heavy-ion experiment at the LHC V. Silicon Pixel Detector (SPD, the two innermost)

- ITS layers)
- Vertex reconstruction
- ➡ Multiplicity estimation

\square VI. VO Detectors (-3.7 < η < -1.7 and 2.8 < η < 5.1)

- Event trigger
- Event characterization
- Background rejection

yanchun.ding@cern.ch

Multiplicity dependence of Υ production in pp collisions

yanchun.ding@cern.ch

09/11/2023

Introduction (I)

Multiplicity dependence of D-meson production in pp collisions

yanchun.ding@cern.ch

D-meson self-normalized yields present a stronger than

- linear increase as a function of self-normalized charged-
- particle multiplicity, both measured at midrapidity
- Models, including Percolation and EPOS with
- hydrodynamical expansion, describe qualitatively the data trend
- Hint of collective effects in high charged-particle multiplicity
- events?

What about the multiplicity dependence of quarkonium production in small collision system?

09/11/2023

$\boldsymbol{\Upsilon}$ production as a function of multiplicity

- Self-normalized Y(1S) yield: *linear increase* with charged-particle multiplicity within uncertainties
- Solution The linear trend results in a *flat trend* of the double ratio of the normalized $\Upsilon(1S)$ yield to the normalized multiplicity
- No firm conclusion can be drawn for the excited states [Y(2S) and Y(3S)] due to the limited data sample

yanchun.ding@cern.ch

09/11/2023

$\boldsymbol{\Upsilon}$ production as a function of multiplicity

yanchun.ding@cern.ch

Model comparison

The linear increase trend is qualitatively reproduced by Coherent Particle Production (CPP) within large uncertainties

If $dN_{ch}/dy/\langle dN_{ch}/dy \rangle < 4$: the linear increase behavior is qualitatively reproduced by PYTHIA 8.2 (with or without CR), and 3-pomeron CGC approach

If dN_{ch}/dy/⟨dN_{ch}/dy⟩ > 4: the theoretical computations diverge
 i 3-pomeron CGC overestimates the observed trend

PYTHIA 8.2 underestimates the data trend

Still lack of predictions for bottomonium studies!

09/11/2023

Self-normalized yield ratio as a function of multiplicity

Double ratios (self-normalized signal yield ratios) of $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$: from Compatible with unity within the large uncertainties FYTHIA 8.2, CPP and 3-pomeron CGC calculations show a almost flat trend for Comovers approach predicts a dissociation of the excited states, leading to a suppression at high multiplicity, especially for the $\Upsilon(3S)$

yanchun.ding@cern.ch

09/11/2023

Self-normalized yield ratio as a function of multiplicity

Double ratio of $\Upsilon(1S)/J/\Psi$:

Compatible with unity within the current uncertainties

The model computations are comparable with unity with uncertainties, indicating the initial- and final-effects act on $\Upsilon(1S)$ and J/Ψ in a similar way

yanchun.ding@cern.ch

$\Upsilon(1S)$ polarization in pp collisions

yanchun.ding@cern.ch

09/11/2023

Introduction (II)

Quarkonium polarization

Related to the particle spin-alignment with respect to a chosen direction Measured via anisotropies in the decay products angular distributions

$$W(\cos\theta, \varphi) \propto \frac{1}{3+\lambda_{\theta}} (1+\lambda_{\theta}\cos^2\theta+\lambda_{\varphi})\sin^2\theta\sin^2\theta$$

yanchun.ding@cern.ch

- Reference frames: ((___))
 - F Helicity (HE): the direction of quarkonium in the center-of-mass frame
 - Collins-Soper (CS): the bisector of the angle between the direction of one beam and the opposite of the other beam in the quarkonium rest frame

Polarization in pp collisions: constrain quarkonium production mechanisms

- No sizeable polarization is observed for the J/ψ polarization measurement in pp collisions
- Theoretical calculations for J/ψ : $rac{l}$ NLO NRQCD —> transverse (longitudinal) polarization in Helicity (Collins-Soper) frame $rac{longitudinal}{longitudinal}$ (transverse) polarization in Helicity (Collins-Soper) frame

yanchun.ding@cern.ch

Introduction (II)

09/11/2023

$\Upsilon(1S)$ polarization as a function of transverse momentum

yanchun.ding@cern.ch

- Sirst ALICE $\Upsilon(1S)$ polarization measurement in pp collisions
 - $i \sim \lambda_{\theta}$ compatible with zero (maximum deviation of 1.5 σ *w.r.t* zero) in both **HE** and **CS** frames
 - If λ_{φ} and $\lambda_{\theta\varphi}$ consistent with zero within uncertainties in both frames

Υ (1S) polarization as a function of transverse momentum

yanchun.ding@cern.ch

- Sirst ALICE $\Upsilon(1S)$ polarization measurement in pp collisions
 - If λ_{θ} , λ_{φ} and $\lambda_{\theta\varphi}$ consistent with zero within uncertainties in both HE and CS frames
 - Good agreement with LHCb pp data at $\sqrt{s} = 8$ TeV, in a similar rapidity range, within the large experimental uncertainties

LHCb Collaboration, *JHEP* 12 (2017) 110

F Qualitatively described by **NLO NRQCD** calculations

M. Butenschoen et al., Phys. Rev. Lett. 108 (2012) 172002

$\Upsilon(1S)$ polarization as a function of transverse momentum

Improved Color Evaporation Model (ICEM): using the $k_{\rm T}$ factorization approach

- CS frame
- $rac{1}{2}$ At high $p_{\rm T}$, unpolarization is expected in both frames -> consistent with the LHCb data

Full theoretical description is still missing

yanchun.ding@cern.ch

 $rac{1}{2}$ At low $p_{\rm T}$, the polarization is slightly transverse in the HX frame, while it is slightly longitudinal in the

Collaboration, JHEP 12 (2017) 110

09/11/2023

Multiplicity dependence of Υ production at forward rapidity has been measured with ALICE \checkmark Self-normalized Υ yield shows a linear increase with increasing multiplicity f The results are compared to the model predictions (initial- and/or final-state effects) No significant polarization is observed for $\Upsilon(1S)$ in pp collisions

yanchun.ding@cern.ch

yanchun.ding@cern.ch

09/11/2023

Midrapidity J/Ψ as a function of multiplicity

- multiplicity
 - forward (V0) rapidity
 - rapidity

yanchun.ding@cern.ch

09/11/2023

J/ψ production in pp (ALICE)

yanchun.ding@cern.ch

J/ψ production in pp (ALICE)

Percolation model: **color string interaction**s to describe p+p collisions

In a high-density environment, the coherence among the sources of the color strings leads to a reduction of their effective number. The total charged-particle multiplicity, which originates from soft sources, is more reduced than heavy-particle production for which the sources have a smaller transverse size

yanchun.ding@cern.ch

Multiplicity Dependent $\psi(2S)$ to J/ψ

- onset of QGP-like effects
- multiplicity dependence more or less consistent with unity

yanchun.ding@cern.ch

 J/ψ production in pp (ALICE)

• Multiplicity-dependent studies in small systems provide a testing ground for examining the

• PHENIX ($\sqrt{s_{NN}} = 200 \text{ GeV}$) and ALICE ($\sqrt{s_{NN}} = 13 \text{ TeV}$) results consistent, with weak

• Note that ALICE results have charged particle multiplicity measured at mid-rapidity

J/ψ production in pp (STAR)

yanchun.ding@cern.ch

10,00

J/ψ production in pp (PYTHIA)

Regions of azimuthal angle

Region for each track defined from angle φ between the track and J/ ψ candidate

Regions constructed regarding a pair candidate J/ψ and not precisely a $J/\psi \rightarrow$ Would this influence the results?

yanchun.ding@cern.ch

Isolate different effects in different regions:

- Toward: particles associated to J/ψ production
- Transverse: underlying event
- Away: recoil jet

Pythia prediction (only one parsonic interaction activated) Eur. Phys. J. C 79, 36 (2019)

yanchun.ding@cern.ch

J/ψ production in pp (PYTHIA)

3. PHENIX Results

• PHENIX, STAR, ALICE (Measuring multiplicity at the same acceptance with J/ψ) → Similar multiplicity dependence despite different center-of-mass energy

yanchun.ding@cern.ch

J/ψ production in pp collisions

Cross section ratio

0,00

yanchun.ding@cern.ch

J/ψ production in pp (CMS)

J/ ψ production in pp (CMS)

Cross section ratio

yanchun.ding@cern.ch

yanchun.ding@cern.ch

J/ψ polarization in pp

J/ψ polarization in pp (STAR)

yanchun.ding@cern.ch

0,0 0

Upsilon polarization in pp (CMS)

yanchun.ding@cern.ch

0,0

Figure 1.26: The polarization parameter $\lambda_{\vartheta}^{\chi_{c2}}$ values measured when the $\lambda_{\vartheta}^{\chi_{c1}}$ values are fixed to the unpolarized (left) or the NRQCD (right) scenarios as a function of p_T/M of the J/ ψ [140]. The purple band on the right is the NRQCD prediction for $\lambda_{\vartheta}^{\chi_{c^2}}$ [95].

yanchun.ding@cern.ch

0,0 0

χ_{c2} production in pp (CMS)

No significant difference is observed between the Pb—Pb and pp collisions for the ICEM model

yanchun.ding@cern.ch

J/ψ polarization in pp and Pb—Pb (ALICE)

ICEM with the collinear factorization approach for the direct J/ψ component, compared to the inclusive one

J/ψ polarization in pp and Pb—Pb collisions

 \Rightarrow ALICE measured J/ ψ polarization in Pb—Pb collisions

- F All polarization parameters are close to zero within uncertainties
 - $\downarrow \lambda_{\theta}$ shows a maximum 2σ deviation w.r.t zero in both HE and CS frames for $2 < p_T < 4 \text{ GeV}/c$
- Compatible with ALICE results in pp collisions within uncertainties EPJC 78 (2018) 562
- $f = 3\sigma$ difference w.r.t LHCb in pp collisions in HE frame LHCb Collaboration, EPJC 73 (2013) 11
- T Difference due to suppression/regeneration effects in Pb—Pb w.r.t pp collisions?
- \mathbf{T} What is the role of the angular momentum (\mathbf{L}) and the magnetic fields (\overrightarrow{B}) ?

yanchun.ding@cern.ch

Phys. Lett. B 815 (2021) 136146

Ø Phys. Rev. Lett. 108 (2012) 172002

0.0 8

yanchun.ding@cern.ch

J/ψ polarization in theory

J/ψ polarization in Pb—Pb

Reference frame:

- Frequencies Event-plane based frame (EP): axis orthogonal to the EP in the collision center-of-mass frame
- EP normal to \overrightarrow{B} and \overrightarrow{L}

yanchun.ding@cern.ch

EVENT-PLANE

yanchun.ding@cern.ch

Light flavor hadrons (K^{*0} , Φ) polarization in Pb—Pb

- ho_{00} measurement for light flavor hadrons in Pb—Pb collisions at
- $\sqrt{s_{\rm NN}} = 2.76$ TeV and in pp collisions at $\sqrt{s} = 13$ TeV
- p_{T} dependence
 - $ightarrow
 ho_{00} < 1/3$ for K^{*0} and Φ at low $p_{\rm T}$ (smaller central value for K^{*0}) in Pb—Pb collisions
 - → ρ_{00} ~ 1/3 for:
 - → $p_{T}^{K^{*0}} > 2 \text{ GeV}/c \text{ and } p_{T}^{\Phi} > 0.8 \text{ GeV}/c$
 - → A random event plane (**RP**)
 - \checkmark K^{*0} and Φ in pp collisions

Tero spin hadron K_{S}^{0} : no spin alignment is observed

The spin-density matrix element ρ_{00} is determined from the distribution of the angle θ^* between the kaon decay daughter and the quantization axis in the decay rest frame [16], [B],

$$\frac{dN}{d\cos\theta^*} \propto [1 - \rho_{00} + \cos^2\theta^* (3\rho_{00} - 1)].$$
(1)

 ρ_{00} measurement for light flavor hadrons in Pb—Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV and in pp collisions at $\sqrt{s} = 13$ TeV Centrality dependence $ightarrow
ho_{00}$ deviates w.r.t 1/3 at low $p_{\rm T}$ in semi-central collisions No centrality dependence of ρ_{00} at high $p_{\rm T}$ 4

yanchun.ding@cern.ch

Light flavor hadrons (K^{*0} , Φ) polarization in Pb—Pb

Charm mesons polarization in pp

- Charmed vector meson (D^{*+}) polarization crucial to complete the picture in HICs
- D^{*+} polarization in pp collisions at $\sqrt{s} = 13$ TeV
 - ρ_{00} spin matrix element (1/3 means no polarization)
 - → Prompt D^{*+} (c→ D^{*+}) unpolarized
 - ▶ Non-zero polarization for non-prompt D^{*+} (b→ D^{*+})
 - ► Both well predicted by PYTHIA 8 + EVTGEN

yanchun.ding@cern.ch

Charm mesons polarization in pp

yanchun.ding@cern.ch

PYTHIA 8: only considering the direct component

Introduction: quarkonium as a probe of QGP

Charmonia nuclear modification factor R_{AA}

₩ ₩ 1.4 Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV CMS, |*y*_{cms}| < 1.6, 0–100%– ALICE, 2.5 < *Y*_{cms} < 4, 0–90% (EPJC78(2018)509) J/ψ (JHEP 2002 (2020) 041) 1.2 J/ψ ψ(2S) • ψ(2S) TAMU **J**/ψ 8.0 $\psi(2S)$ 0.6 0.4 0.2 0 25 10 15 20 5 30 $p_{_{T}}$ (GeV/*c*) ALI-PUB-528412

Transport model (TAMU) is in good agreement with results as a function of $p_{\rm T}$ and centrality

Statistical hadronization model (SHMc) tends to underestimate $\psi(2S)$ in central collisions

whereas TAMU includes *regeneration* in the QGP phase

yanchun.ding@cern.ch

arXiv:2210.08893

TAMU: Rapp et al, Nucl. Phys. A943 (2015) 147-158 **SHMc**: Andronic et al, Phys. Lett. B 797 (2019) 134836

In SHMc, charmonia are produced (regenerated) from *deconfined charm quarks* at the QCD phase boundary

18/09/2023

Introduction: quarkonium as a probe of QGP

Bottomonia nuclear modification factor R_{AA}

ALICE Collaboration, Phys. Lett .B 822 (2021) 136579

yanchun.ding@cern.ch

- Stronger suppression for $\Upsilon(2S)$ w.r.t $\Upsilon(1S)$
- The various calculations (e.g. Transport model w/ or w/o regeneration) reproduce the trend of the data within the corresponding uncertainties
- Weak regeneration effect expected in the bottom sector

Dataset: collected in 2016, 2017 and 2018 in pp collisions at $\sqrt{s} = 13$ TeV

- Event selection:
 - CMUL7) trigger and minimum bias (MB) trigger Physics selection with default pileup rejection $rac{rac}{rac}$ SPD vertex selection ($N_{\text{contributors}} > 0, \sigma_{z_{\text{vtx}}} < 0.25 \text{ cm}, |z_{\text{vtx}}| < 10 \text{ cm}$)
- In this analysis:
 - f The signal Υ is measured at forward rapidity (2.5<y<4.0), the charged-particle multiplicity is measured at central rapidity ($|\eta| < 1$)
 - from The Y yield (dN_{γ}/dy) and the pseudorapidity charged-particle multiplicity density $(dN_{ch}/d\eta)$ are both measured for INEL > 0 events

yanchun.ding@cern.ch

Data sample

09/11/2023

Signal extraction

- L T Υ analysis is performed measuring the number of produced resonances
- free free standard muon and dimuon selections, invariant mass spectra muon pairs are built
- The invariant mass spectra are fitted with a L'A combination of phenomenological functions for peaks and background
- The number of produced resonances is extracted through the integral of the peak

yanchun.ding@cern.ch

Analysis strategy

18/09/2023

Data sample and analysis strategy

Data sample: collected in 2016, 2017 and 2018 in pp collisions at \sqrt{s} = 13 TeV, dimuon trigger + quality criteria used to select the events

Analysis procedure:

- mass distribution in each angular interval considered in the analysis
 - estimated via a MC simulation

Collins-Soper reference frames

yanchun.ding@cern.ch

f Signal extraction: the number of $\Upsilon(1S)$ candidates is obtained via a fit procedure on the dimuon invariant

race Acceptance x efficiency correction: the raw number of $\Upsilon(1S)$ extracted from the fit procedure is corrected for a factor quantifying the geometrical acceptance and reconstruction efficiency effects,

f Polarization parameters determination: the polarization parameters λ_{θ} , λ_{φ} and $\lambda_{\theta\varphi}$ are extracted by fitting the acceptance- and efficiency-corrected angular distributions of $\Upsilon(1S)$, in both the Helicity and

09/11/2023

Polarization parameters determination

→ λ_{θ} , λ_{φ} and $\lambda_{\theta\varphi}$ extracted by fitting the $A \times \varepsilon$ simultaneously

$$W(\cos \theta) \propto \frac{1}{3 + \lambda_{\theta}} (1 + \lambda_{\theta} \cos^{2} \theta)$$

$$W(\varphi) \propto 1 + \frac{2\lambda_{\varphi}}{3 + \lambda_{\theta}} \cos 2\varphi$$

$$W(\tilde{\varphi}) \propto 1 + \frac{\sqrt{2}\lambda_{\theta\varphi}}{3 + \lambda_{\theta}} \cos 2\tilde{\varphi}$$

$$\int_{\tilde{\varphi}} \tilde{\varphi} = \varphi - 3\pi/4, \ \cos \theta < 0$$

$$\tilde{\varphi} = \varphi - \pi/4, \ \cos \theta > 0$$

yanchun.ding@cern.ch

Analysis strategy

$\downarrow \lambda_{\theta}$, λ_{φ} and $\lambda_{\theta\varphi}$ extracted by fitting the $A \times \varepsilon$ -corrected $\Upsilon(1S)$ angular distributions in both frames

18/09/2023

Prospects for Run 3:

Significantly higher statistical data sample compared to Run 1 and 2 is expected ($L_{int} = 10 \text{ nb}^{-1}$ in Pb—Pb, 200 nb^{-1} in pp)

During the LS2 in 2019 - 2021, all detectors have been upgraded

yanchun.ding@cern.ch

ALICE 2 - LS2 upgrade

Muon Forward Tracker (MFT, 2.5 < η < 3.6)

- forward area near the interaction point
 - Matching muon track with MFT tracks
 - ➡ High-precision vertexing capabilities

- Image: New silicon chips with MAPS technology (ALPIDE)
 - \checkmark Pixel size = 27 x 27 μ m²
 - 4 Position resolution ~ 5 μ m
- Physics motivations
 - Prompt and non-prompt charmonia disentangling
 - Precise measurement of low-mass dimuon

Both Central China Normal University and Institut de Physique des 2 Infinis de Lyon are involved in this MFT project

yanchun.ding@cern.ch

Ultra-relativistic heavy-ion collisions

0,0 0

yanchun.ding@cern.ch

I.		

System	Year(s)	√s _{NN} (TeV)	Recorded L _{int} (for muon triggers)	
Pb–Pb	2010,2011	2.76	~75 µb⁻¹	
	2015	5.02	~0.25 nb ⁻¹	
	2018	5.02	~0.55 nb ⁻¹	
Xe-Xe	2017	5.44	~0.3 µb⁻¹	
p–Pb	2013	5.02	~15 nb-1	
	2016	5.02, 8.16	~3 nb-1; ~25 nb-1	
pp	2009-2013	0.9,2.76,7,8	~200 µb ⁻¹ ; ~100 nb ⁻¹ ; ~1.5 pb ⁻¹ ; ~2.5 pb ⁻¹	
	2015,2017	5.02	~1.3 pb-1	
	2015-2018	13	~36 pb-1	

yanchun.ding@cern.ch

ALICE data taking history

yanchun.ding@cern.ch

Charm mesons polarization in pp

$$|J,J_z\rangle = b_{+1}|1,+1\rangle + b_0|1,0\rangle + b_{-1}|1,-1\rangle$$

Spin-alignment \Leftrightarrow decay products angular distribution
 \bigotimes EPJC 69 (657-673), 2010, Faccioli et al.

Dilepton decay angular distribution

$$\phi) \propto \frac{1}{3 + \lambda_{\theta}} \cdot (1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos^2 \phi + \lambda_{\theta \phi} \sin^2 \theta \cos^2 \phi)$$