

Higgs boson property measurements with $H \rightarrow \gamma \gamma$ at CMS

Jie Xiao (IP2I-Lyon)

On behalf of the CMS collaboration

In particular the joint IP2I+IHEP team

Susan Gascon-Shotkin, Junquan Tao, Morgan Lethuillier, Antoine Lesauvage, Guoming Chen, Jiawei Fan, Sijing Zhang, Aamir Shahzad, ...

2

Overview

- Recent analyses based on $H \rightarrow \gamma \gamma$ are introduced
- All the analyses used the full Run2 data collected by the CMS detector

FCPPL2023: Higgs boson property measurements with $H \rightarrow yy$ at CMS

- Included analyses:
 - <u>HIG-19-015</u>: SM H \rightarrow $\gamma\gamma$ signal strengths & STXS
 - <u>HIG-19-016</u>: SM $H \rightarrow \gamma \gamma$ differential and fiducial x-sec
 - <u>HIG-21-014</u>: Search for non-resonant HH \rightarrow WW $\gamma\gamma$
 - <u>HIG-19-018</u>: Search for non-resonant HH→bbγγ
 - <u>HIG-21-011</u>: Search for resonant $X \rightarrow HH/HY \rightarrow bb\gamma\gamma$

Publication: JHEP07(2021)027

Publication: <u>JHEP07(2023)091</u>

Publication: JHEP03(2021)257

Accepted by JHEP

Introduction of $H \rightarrow \gamma \gamma$ decay channel

4σ

145

135

140

m_н (GeV)

- One of the golden channels in the Higgs observation
 - Small branching ratio
 - ~ 0.23 %
 - Clean final state

Roadmap of the Run2 $H \rightarrow \gamma \gamma$ analysis at CMS

• Evolving from measuring 4 signal strengths (μ) in <u>HIG-16-040</u> to over 20 parameters in <u>HIG-19-015</u>

CMS

Simplified template cross sections (STXS)

- <u>STXS</u>: developed to provide a natural way to evolve Higgs coupling measurements
 - Separate more cleanly measurement steps
 - Reduce the theory dependencies
 - More finely-grained
 - Allow global combination
- Recommended binning
 - Stage 1.2

SM $H \rightarrow \gamma \gamma$ signal strengths & STXS HIG-19-015

Definition of the categories

<u>HIG-19-015</u>

Definition of the categories

- An event might pass the selection criteria for more than one analysis category
- A priority sequence is defined to unambiguously assign each event to only one analysis category
- A higher priority assigned to analysis categories with a lower expected signal yield

Signal & Background modeling

<u>HIG-19-015</u>

137 fb⁻¹ (13 TeV)

- Signal model built separately in each category from the simulation
- Using a sum of at most five **Gaussian** functions

- Background derived from data side-band using discrete profiling method [paper]
 - Choice of background pdf type treated as discrete nuisance parameter
 - Likelihood scanned with all different choices of background pdf type
- A more detailed example, see <u>Junquan's talk</u>

CMS

Category composition

<u>HIG-19-015</u>

Results - Signal strength modifiers

HIG-19-015

- Common signal strength modifier (μ)
 - + Ratio of observed ($\sigma_{\!H} \times diphoton$ BR) to SM prediction

 $\mu = 1.12^{+0.09}_{-0.09} = 1.12^{+0.06}_{-0.06} \,(\text{theo})^{+0.03}_{-0.03} \,(\text{syst})^{+0.07}_{-0.06} \,(\text{stat})$

- Signal strength modifiers per production mode
 - μ_{VH} (VH hadronic + VH leptonic)
 - μ_{VBF} (VBF production)
 - μ_{top} (ttH + tHq + tHW)
 - μ_{ggH} (ggH + bbH)
- ggH is **syst-limited**, while others are **stat-limited**

Results - STXS fit

- Fits performed to extract **cross-sections** (σ) in the **STXS 1.2 bins**
- Merging scenarios maximal merging scenario
 - 17 parameters to fit, STXS bins merged until uncertainty is < 150% of SM prediction

SM $H \rightarrow \gamma \gamma$ differential and fiducial cross-sections HIG-19-016

Fiducial phase space definitions

HIG-19-016

- Inclusive and differential fiducial phase spaces are defined at particle level (simulation truth)
- Phase space defined such that it follows **detector configuration** and **event selection** as close as possible
- Two definitions do not align perfectly
- Outside of Acceptance (OOA) component treated as production process, signal strength fixed to SM prediction

- Fiducial phase space requirements applied to all phase spaces
- VBF-enriched phase space for differential measurement w.r.t. dedicated 2-jet observables
- Dedicated fiducial x-sec measurements in 3 special phase spaces

Maximum Likelihood Unfolding

- Unfolding through full detector response matrix K
 - Parameterized as a function of nuisances in the likelihood

Results - Fiducial cross-section

HIG-19-016

Inclusive fiducial fit

- Same analysis framework
 with <u>HIG-19-015</u>
- Same signal/background modeling strategy

Results - Fiducial cross-section

Inclusive fiducial fit

- Same analysis framework
 with <u>HIG-19-015</u>
- Same signal/background modeling strategy

CMS $137 \text{ fb}^{-1} (13 \text{ TeV})$ 2.00 $\text{H} \rightarrow \gamma\gamma$ MG5.anc@nlo.nnlops1.75 1.50 1.25 1.00 0.75 0.50 0.55 0.50 0.55 0.50 0.55

agree with **expectation** of 75.4 ± 4.1 fb

Results - Fiducial cross-section

HIG-19-016

X-secs in **dedicated** regions of the **fiducial phase space**

S/(S+B) Weighted Events / GeV

60

40

30 F

20 F

2000

1500 E

1000

Results - Differential fiducial x-sec

HIG-19-016

- Fiducial x-sec also measured as function of **20 observables**, **2 double differential** measurements
- Example of $\tau_{C,j} = \max_{j} \left(\frac{\sqrt{E_j^2 p_{z,j}^2}}{2\cosh(Y_j Y_H)} \right)$, jet-pT weighted by a rapidity dependent function *PRD* **91**, 054023
 - Binning in $\tau_{c,i}$ does not spoil **resummation** \rightarrow flat pT cut cannot be treated correctly when resumming logs

Search for non-resonant HH \rightarrow WW $\gamma\gamma$ HIG-21-014

HH production

• Higgs potential: self-couplings λ is crucial for understanding the field potential H $V = \mu^2 H^2 + \frac{\mu^2}{\nu} H^3 + \frac{\mu^2}{4\nu^2} H^4 = \frac{m_H^2}{2} H^2 + \frac{m_H^2}{2\nu} H^3$ $\frac{m_{H}^{2}}{8\nu^{2}}H^{4}$ plus effect of cov. Н Η derivative on ϕ in \mathscr{L}_{μ} Mass-term λ_3 , trilinear self-coupling λ_4 , quartic self-coupling C_{2V}, VVHH • H H Bevond reach at coupling accessible energies

HIG-21-014

HH production

• Higgs potential: self-couplings λ is crucial for understanding the field potential

• Effective Field Theory (EFT) is also powerful to catch BSM

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v} H^{2}) G_{\mu\nu}^{a} G^{a, \mu\nu}$$

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}} \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}, \qquad \kappa_{t} = \frac{y_{t}}{y_{t}^{SM}}, \qquad y_{t}^{SM} = \frac{\sqrt{2}m_{t}^{2}}{v}$$

$$\mathbf{SM} \ (k_{\lambda} = 1, \ \mathbf{k}_{t} = 1, \ c_{2g} = c_{g} = c_{2} = 0)$$

$$\mathbf{BSM}$$

и		; [,]	ł		
. н					
. Н		H			
H H H Beyond reach at accessible energies					
Benchmark	κ_{λ}	κ _t	<i>c</i> ₂	C _g	c _{2g}
SM	1.0	1.0	0.0	0.0	0.0
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6 7	2.4 5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
8a	1.0	1.0	0.5	$\frac{0.8}{3}$	0.0
1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
2b	6.84	0.61	1/2	0.0	1.0
3b	2.21	1.05	$\frac{3}{-1}$	0.75	-1.5
4b	2 79	0.61	3 1	-0.75	-0.5
-10 5h	3.95	1 17	$\frac{3}{-1}$	0.25	1.5
5D	5.95	1.17	3	0.25	1.5
6b	5.68	0.83	<u>3</u>	-0.75	-1.0
7b	-0.10	0.94	10	0.25	05

Test 20 EFT benchmarks

FCPPL2023: Higgs boson property measurements with $H \rightarrow \gamma \gamma$ at CMS

CMS

Event categorization & fitting

• Consider **three** categories of the **H(γγ)H(WW)** events according to the W decay modes

- Use **same analysis framework** with <u>HIG-19-015</u>
 - Same signal and background modeling method
 - Fit to $\mathbf{m}_{\mathbf{y}\mathbf{y}}$ to extract upper limits

CMS

HIG-21-014

Results

<u>HIG-21-014</u>

HH gluon fusion production with

Search for non-resonant/resonant HH \rightarrow bb $\gamma\gamma$ <u>HIG-19-018</u> <u>HIG-21-011</u>

Search for non-resonant $HH \rightarrow bb\gamma\gamma$

- Similar goals with the HH \rightarrow WW $\gamma\gamma$ <u>HIG-21-014</u>
 - Set limits on the **coupling parameters**
 - Constraint the EFT benchmarks
- VBF HH production is considered
 - Constraint c_v, c_{2v}
- ttH production is included in fitting to improve the constraints

Fit strategy

Fit is performed in both m_{vv} and m_{jj}

Results

<u>HIG-19-018</u>

Search for resonant $X \rightarrow HH/HY \rightarrow bb\gamma\gamma$

Summary

- Present Run2 single and double Higgs measurements with one Higgs decays to diphoton
- Detailed Higgs properties studies and validation with theory predictions are performed
 - <u>HIG-19-015</u>: SM $H \rightarrow \gamma \gamma$ signal strengths & STXS
 - <u>HIG-19-016</u>: SM $H \rightarrow \gamma \gamma$ differential and fiducial cross sections
- Non-resonant HH productions with diphoton in the final state are useful to constrain couplings and explore EFT settings
 - <u>HIG-21-014</u>: Search for non-resonant HH \rightarrow WWyy
 - <u>HIG-19-018</u>: Search for non-resonant $HH \rightarrow bb\gamma\gamma$
- Search for additional particles could benefit from resonant HH productions with diphoton in the final state
 - <u>HIG-21-011</u>: Search for resonant $X \rightarrow HH/HY \rightarrow bb\gamma\gamma$
- Analysis groups from China and France work together to make contributions on relevant analyses

Run2 STXS H→γγ systematics

<u>HIG-19-015</u>

Results - STXS fit

- Fits performed to extract **cross-sections** (σ) in the **STXS 1.2 bins**
- Merging scenarios minimal merging scenario
 - + 24 parameter fit, merges as few bins as possible to satisfy correlations $\lessapprox 0.75$

Results - Coupling modifiers

- Parameterize deviations from SM in Higgs couplings to other particles
- **Resolved** *κ* model
 - Scaling of ggH and $H \rightarrow \gamma \gamma$ loops resolved into SM components in terms of other κ parameters
 - **2D scan** of κ_v and κ_f : universal coupling modifiers to vector bosons/fermions other κ parameters fixed to unity
 - Data still favors positive $\kappa_{\rm f}$: exclude negative $\kappa_{\rm f}$ with 1.0 (2.4) σ confidence
- Unresolved κ model
 - Parameterize deviations in ggH and $H \rightarrow \gamma \gamma$ loops using effective coupling modifiers (κ_g , κ_γ)
 - Other κ parameters fixed to unity

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j$

Observables

<u>HIG-19-016</u>

New observables

<u>HIG-19-016</u>

Minimizes the impact of experimental uncertainties

Analysis Strategy: Summary flowchart^{HIG-21-014}

Event categories

<u>HIG-19-018</u>