

Highlight of recent ATLAS results

Elisabeth Petit CPPM

14th Workshop of France China Particle Physics Laboratory

7th of November 2023

Run: 451896 Event: 349429897 2023-05-11 11:46:34 CEST

- $\sim 66 \text{ fb}^{-1}$ of data recorded in Run 3
- ♦ 93(94)% data taking efficiency in 2022(2023)
- High data-quality efficiency
- Target Run2+3: 450 fb⁻¹ by the end of 2025

- Mean pileup increased to 60
- Phase-1 upgrades vital to keep trigger rate under control by reducing rate by:
 - 5 kHz by eFEX (L1Calo)
 - 6 kHz by NSW
 - 2 kHz by muon-tile coincidence
- Pixel coping with those conditions despite outer layers being designed for $\mu = 23$
 - optimised operational settings and new DAQ

- L1-Muon:
 - decrease of rate with coincidences with Tile and NSW
 - good efficiency

New triggers for Run 3 (2)

- ♦ L1-Calo:
 - decrease of trigger rate
 - increase of trigger efficiency

First Run 3 measurements!

Performance: flavour-tagging

ATL-PHYS-PUB-2022-027 FTAG-2023-01 ATL-PHYS-PUB-2023-021

- New Graph Neural Network algorithms (GN) for Run 3
- Rejections over time for a 70% efficiency:

- Boosted $H \rightarrow b\overline{b}/c\overline{c}$ tagging:
 - new algorithm using a transformer neural network architecture: GN2X

- ♦ For 50% signal efficiency:
 - top rejection increased by factor 1.6
 - multijet rejection by a factor 2.5

Performance: e/γ calibration

- Improved electron and photon energy calibration
- Energy scale: factor 2-3 with respect to previous calibration

• Calibration uncertainties:

- electrons: 0.4% at 10 GeV, 0.02% at Z mass, 0.3 % at 1 TeV
- photons: 0.2 % at 60 GeV

- ♦ Н→үү
 - 30% improvement in systematics: EM calorimeter layer calibration, measure of E lost around e/γ clusters
 - residual electron E scale nonlinearities used for first time to constrain systematic uncertainties: further x2 improvement
 - systematics reduced by factor 3: $330 \text{ MeV} \rightarrow 90 \text{ MeV}$

ATLAS

Run 1+2 Combined

124

125

126

123

- $H \rightarrow \gamma \gamma + H \rightarrow 41$:
 - 0.09 % precision achieved!

125.11 ± 0.11 (± 0.09) GeV

128

 $m_{\rm H}$ [GeV]

127

- Re-analysis of the 7 TeV dataset with improved statistical methods and refinements in the treatment of the data
- W mass determined by fitting the kinematic distributions of the decay leptons in simulation to the data
 - new measurement simultaneously adjusts the systematic uncertainties together with the W mass: reduces several systematic uncertainties, particularly those related to the theoretical modelling of W-boson production and decay
- Special low- μ run at 5 TeV in 2017 to validate the modelling of p_T^W
- Modern PDF sets

♦ 2017: $m_W = 80370 \pm 19 \text{ MeV}$ ⇒ 2023: $m_W = 80360 \pm 16 \text{ MeV}$

• Combination of 15 top quark mass measurements by ATLAS and CMS

 $m_{top} = 172.52 \pm 0.33 \text{ GeV}$

Quantum entanglement with top quark ATLAS-CONF-2023-069

- Quantum entanglement: predicted in the 1930s, entangled pairs of nonrelativistic photons measured in the 1980s (Nobel Prize 2022)
- Top quark decays before it has time to hadronise, transferring all of its quantum numbers to its decay particles ⇒ possible to reconstruct the quantum state of a top quark
 - degree of entanglement (D) from the angular separation of the decay products
 - $D < -1/3 \Rightarrow$ entanglement
- top-quark pairs at production threshold: max entanglement expected

- Entanglement observed with a significance of more than 5σ
- Highest-energy measurement ever!
 - 12 orders of magnitude above usual measurements

arxiv:2004.10612

Standard Model: VBS

- Vector Boson Scattering: probing EW symmetry
 - SM only allows WWWW, WWγγ, WWZγ and WWZZ, forbidding interactions among four neutral bosons
 - broad research programme
- Electroweak VVjj production via Vector Boson Scattering:

WWjj: observed in 2019 WZjj: observed in 2019 Zyjj: observed in 2022 ZZjj: observed in 2023

ATLAS has observed all relevant VBS channels, setting constraints on anomalous couplings

MD

Combination of EWK SUSY Searches ATLAS-CONF-2023-046

- ♦ Improves sensitivity by 15 40 %
- Covers gaps for challenging heavy-lepton scenarios

- Combination of 8 analyses in pMSSM framework
- ♦ Includes LHC (eg SUSY searches, Higgs → invisible) and external constraints (eg dark matter directdetection)
- Overall 12280 models tested

Almost full exclusion of low mass neutralino region that would not oversaturate the dark matter relic abundance

Higgs self-coupling: new prospects ATL-PHYS-PUB-2022-053

g (1)

H g ununun

Significance [o]

6

5

 κ_t

 κ_t

ATLAS Preliminary

 $HH \rightarrow b\bar{b}\gamma\gamma + b\bar{b}\tau^+\tau^- + b\bar{b}b\bar{b}$

1500

Projection from Run 2 data

Asimov data ($\kappa_{\lambda} = 1$)

 $\sqrt{s} = 14 \text{ TeV}$

1000

• Higgs self-coupling can be measured from the di-Higgs production

H

• New projection from Full Run 2 HH \rightarrow 4b, $b\overline{b}\tau\tau$ and $b\overline{b}\gamma\gamma$

• Expected significance:

	Stat-only	Stat+Syst
YR2019	3.5σ	3.0σ
ATL-PHYS-PUB-2022-05	4.9σ	3.4σ

• 68% Confidence Intervals on κ_{λ} :

	Stat-only	Stat+Syst
YR2019	[0.4 ; 1.7]	[0.25 ; 1.9]
ATL-PHYS-PUB-2022-05	[0.7 ; 1.4]	[0.5 ; 1.6]

• ATLAS-only in new prospect \approx ATLAS+CMS in 2019

3000

an alternative potential

potential

Standard Model

Current experimental knowledge

Higgs field value

in our universe

No syst. unc.

Run 2 syst. unc.

2500

Integrated Luminosity [fb⁻¹]

Theoretical unc. halved

Baseline

2000

<u>F</u>Conclusion

- ♦ 118 new ATLAS results released since last year
- A lot of Full Run 2 results
 - precision measurements
 - searches
 - continuous improvement of the object reconstruction/calibration and analysis techniques
- Already some Run 3 results available
 - Latest detector upgrades working well

Back-up