

Status report of the IJCLab/USTC ATLAS project with new results using Runs 2 and 3 data

Xiaowen Su on behalf of the IJCLab/USTC team

14th Workshop of France China Particle Physics Laboratory, Nov. 7, 2023

Current members

French Group			Chinese Group		
Name	Title	Affiliation(Institute)	Name	Title	Affiliation(Institute)
<i>Leader</i> Zhiqing Zhang	Dr	IJCLab	<i>Leader</i> Haiping Peng	Pr	USTC
Xiaowen Su	PhD	IJCLab-USTC	Xiaowen Su	PhD	IJCLab-USTC
Juan Tafoya	PhD	IJCLab	Yingchun Zhu	Ass. Pr	USTC
Louis Fayard	Dr	IJCLab	Xin Chen	Pr	THU

Overview

• Two thesis defenses:

- Kunlin Han 2022
- Juan Tafoya 2023

• Three ATLAS publications:

- Generic search in multiple final states associated with a Z boson with full run 2 data at 13 TeV (JHEP 06 (2023) 036) - thesis work of Kunlin HAN
- Top pair production cross section and its ratio with Z production cross section at 13.6 GeV (arXiv:2308.09529)
- Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment (arXiv:2308.13362)

• Several ongoing analyses:

- Measurement of p_{τ} distributions of the vector boson production at 5 and 13 GeV
- Measurement of differential cross sections of the W boson at 5 and 13 TeV
- Measurement of production cross sections of vector bosons and their ratios at 13.6 TeV
- First joint analysis of PDFs and EW parameters at the LHC

Showing in red is the focus of the talk

Precision measurements of electroweak parameters

W differential cross-section with low pileup dataset

Overview

- The inclusive vector boson production cross sections and their ratios measured using full 2022 run 3 data (~29fb⁻¹)
- Motivation:
 - Validate the detector performance
 - Test SM predictions at √s=13.6TeV

Fiducial phase space:

- Born lepton p_T>27GeV, |η|<2.5
- **Z**: 66<m_{ll}<116GeV, **W**: p_T^v>25GeV, m_T^W>50GeV

Event Selection:

- Lowest unprescaled single lepton triggers
- **Electron**: p_T >27GeV, $|\eta|$ <2.47, barrel-endcap crack veto
- **Muon**: p_T>27GeV, |η|<2.5
- Z: 2 OSSF leptons, 66<m_{II}<116GeV
- W: only 1 lepton, E_T^{miss} >25GeV, m_T^W >50GeV

Multijet

- Multijet background is estimated using data-driven method
- Define event categories corresponding to different regions in phase space and isolation
- Scan track isolation to reduce the bias of isolation variable
- Consistent MJ yields are obtained using different methods

Fit region (FR)	Signal region (SR)		
• Lepton $p_T > 27 \text{ GeV}$	• Lepton pT > 27 GeV		
• $E_T^{\text{miss}} > 0 \text{ GeV}$	• ETmiss > 25 GeV		
• $m_T^W > 0 \text{ GeV}$	• mTW > 50 GeV		
• Pass isolation	• Pass isolation		
Control region 1 (CR1)	Control region 2 (CR2)		
• Lepton pT > 27 GeV	• Lepton pT > 27 GeV		
• ETmiss > 0 GeV	• ETmiss > 25 GeV		
• mTW > 0 GeV	• mTW > 50 GeV		
• Fail isolation	• Fail isolation		

Fitting

- The profile likelihood method is used to extract the cross-section
- Luminosity uncertainty is 2.2%
- Expected total relative uncertainty on $\sigma(Z)$ is ~3% and is ~3.5% for W
- · Good agreement between the results and predictions is observed

ATLAS Work in progress

10¹

10¹¹

107

10⁶ 10⁵

10⁴ 10³ 10² 13.6TeV, 29 fb⁻¹, pre-fit, Z→ ee

– Data

Signal

∎tĩ ■vv

Sinale-top

 $W \rightarrow lv BG$ Z $\rightarrow \parallel BG$

Uncertainty

Results

- Theoretical predictions are calculated using DYTurbo + ReneSANCe at NNLO QCD + NLO EW and they agree at per-mille level with the ones obtained with MATRIX
- Reported in PMG PUB note (Pub note)
- Good agreement is observed between measured results and theoretical predictions

Precision measurements of electroweak parameters

W differential cross-section with low pileup dataset

W differential cross-section with low-mu datasets

- Measure the W fiducial and differential cross sections with low pileup datasets
- The differential cross-sections are measured as the functions of p_T^{-1} and η_I using low pileup datasets at $\sqrt{s}=5.02$ (~254.9 pb⁻¹) and 13 TeV (~338.1 pb⁻¹)
- Double differential cross-sections are also measured

Fiducial phase space:

- Born lepton p_T >25GeV, $|\eta|$ <2.5
- p_T^v>25GeV, m_T^W>50GeV

Event Selection:

- Lowest unprescaled single lepton trigger
- **Electron**: p_T >25GeV, $|\eta|$ <2.47, crack veto
- **Muon**: p_T>25GeV, |η|<2.4
- E_T^{miss}>25GeV, m_T^W>50GeV

Control plots

Binning

• p_T

- [25, 30, 35, 40, 45, 50, 60, 80, 100] GeV for 1D (more coarse binning for 2d).
- \circ The binning is optimized according to the resolution and $\rm m_{\rm w}$ sensitivity
- η_{I} :
 - at reco-level, the SF binnings are used (different between electron and muon);
 - A common binning is used at truth-level for both electron and muon channels

W^{*} → ev

Diboson

Z → ľ I

 $W^{\pm} \rightarrow f^{\pm} \vee BG$

Unfolding

- Bayesian unfolding derives the p_T^{-1} and η_I spectra corrected for detector effects at truth-level.
- Unfolding: use Bayesian iterations
- The iterations are optimized for bias and systematic uncertainties

Combination

- Electron and muon channels are combined using χ^2 minimization (*BLUE*)
- Good agreement between
 measured results and predictions
- The electron and muon channels are consistent

Summary

- A lot of activities and achievements since the last workshop in 2021
- Kunlin has defended his thesis in 2022, Juan has defended in 2023
- Early Run-3 W/Z cross-section
 - The fiducial cross-section of the Z boson has been out with Run-3 ttbar cross sections in arXiv:2308.09529
 - The other W/Z and their ratio results are ready and being reviewed in the SM group
 - The measurements provide a new point at 13.6 TeV in energy dependence plots

• W differential cross-section with low pileup dataset

- The cross-section results are being finalized
- Very good precision in systematics
- The results will be used to constrain PDFs
- The preliminary results have been used by Juan in doing the joint mW-PDFs fits