

Antonio Uras IP2I Lyon – CNRS/IN2P3

14th Workshop of the France-China Particle Physics Laboratory (FCPPL2023)

ALICE upgrade timeline

LS2: ITS2, MFT, TPC, FIT, O²

The ALICE 3 Project

ALICE 3: the Context

2018/19: first discussions of a dedicated heavy-ion program for Run 5 and 6 at the LHC within ALICE

European Strategy for Particle Physics Update

- Expression of Interest submitted to the Granada meeting (2019)
- <u>Recommendation</u>: full exploitation of LHC including heavy-ion program in Runs 5 & 6
- Further development of detector concept and physics studies within ALICE
 - > ALICE 3 workshops: October 2020, June 2021, October 2021

Letter of Intent

- Reviewed by collaboration and endorsed by Collaboration Board on 28 January 2022
- LHCC review process started in October 2021, <u>very positive report</u> of the LHCC Review Panel addressed mid-March 2022

Introduction: the Context

Antonio Uras

ALICE 3

New dedicated heavy-ion experiment at the LHC, replacing ALICE starting of Run 5:

- QGP transport properties
- Access to the pre-equilibrium phase
- Hadronization mechanisms in the medium

https://cds.cern.ch/record/2803563

The ALICE 3 Project

Selected Physics Case

> Microscopic mechanism of in-medium energy loss of heavy quarks

- > HF Hadronization mechanisms
- > Non-conventional hadronic structures
- > Dilepton production: Temperature of the QGP and pre-equilibrium phase
- ➢ Ultra-soft photons, BSM searches, ...

Heavy-Flavour Benchmark: D⁰

Excellent pointing resolution and PID: large S/B and efficiency $10-20 \times w.r.t.$ Run 3 (i.e. ITS2) for $p_T < 4$ GeV/c

Experimental benchmark giving access to the measurement of:

- Beauty meson and baryon v_2
- **DD** correlations
- Multi-charm baryons

HF Baryon v₂

Goal: disentangle effects of quark transport and hadronization

- Expect beauty thermalization slower than charm does this affect hadronization?
- \succ First measurements of $\Lambda_{\rm b}$ coupling to hydrodynamic flow (via v₂ parameter) in Run 3 and 4
- Need ALICE 3 performance for precision measurement \succ

DD Azimuthal Correlations

Goal: measure angular (de)correlations — direct probe of QGP scattering

- Very challenging measurement: need good purity, efficiency and η coverage
- Heavy-ion measurement only possible with ALICE 3

✤ In heavy-ion collisions, large increase of multi-HF baryons (≈ ×1000) expected via coalescence with charm quarks from different hard scatterings (N_{ccbar} ≈ 100 in central Pb-Pb)

Discrimination power on the role of the various hadronization mechanisms: multi-charm baryon factory (almost purely produced out of quark coalescence)

 Ω_{cc} and Ω_{ccc} not yet observed. Ω_{ccc} may only be accessible in heavy-ion collisions

Challenging **reconstruction of cascade decay,** exploiting state-of-the-art vertexing and tracking

$$\Omega_{ccc}^{++} \rightarrow \Omega_{cc}^{+} + \pi^{+}$$

$$\Omega_{cc}^{+} \rightarrow \Omega_{c}^{0} + \pi^{+}$$

$$\Omega_{c}^{0} \rightarrow \Omega^{-} + \pi^{+}$$

$$\Omega^{-} \rightarrow \Lambda + K^{-}$$

$$\Lambda \rightarrow p + \pi^{-}$$

Ecc

Multi-Charm Baryon Reconstruction

New technique: strangeness tracking with Ξ baryon provides high selectivity

$$\Xi_{cc}^{+} \to \Xi_{c}^{+} + \pi^{+}$$
$$\Xi_{c}^{+} \to \Xi^{-} + 2\pi^{+}$$

- Multi-charm baryons vs system size: unique insight in thermalization and hadronization dynamics.
- ALICE 3: unique experimental access in Pb-Pb collisions

The ALICE 3 Project

10/21

Antonio Uras

Further Topics

- Quarkonium Measurements beyond S-wave States
- Dileptons: Accessing QGP Temperature
- New nuclear states: existence of bound states of a charm baryon and a nucleon without Coulomb repulsion (c-deuteron $n-\Lambda_c$ and c-triton $n-n-\Lambda_c$) sheds light on the charm-nucleon potential
- Ultra-soft photons (down to p_T ≈ 2 MeV/c): Low's theorem predictions violated in previous experiments by an excess of soft-photon production
- ◆ Ultra-peripheral collisions: rare single-resonance and resonance-pair production (e.g. $\rho' \rightarrow 4\pi$, ρ -J/ψ), light-by-light scattering
- Net-baryon fluctuations: baryon number conservation, baryon number susceptibility and critical behavior
- **BSM searches**: ALPs, dark photons, long-lived particles

Detector Studies

The ALICE 3 Detector Concept

- Compact all-silicon tracker with large acceptance and high-resolution vertex detector
- Superconducting magnet system (1 T to 2 T)
- Particle identification over large acceptance
- Fast readout and online processing

The ALICE 3 Detector Concept

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detectors
Vertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{DCA} \approx 10 \ \mu m at 200 \ MeV/c$	Best possible DCA resolution, $\sigma_{DCA} \approx 30 \ \mu m \ at \ 200 \ MeV/c$	Retractable silicon pixel tracker: $\sigma_{pos} \approx 2.5 \ \mu m, R_{in} \approx 5 \ mm,$ X/X ₀ $\approx 0.1 \ \%$ for first layer
Tracking	Multi-charm baryons, dielectrons	σ _p τ / p _T ~1-2 %		Silicon pixel tracker: $\sigma_{pos} \approx 10 \ \mu m, R_{out} \approx 80 \ cm,$ X/X ₀ $\approx 1 \ \% / layer$
Hadron ID	Multi-charm baryons	π/K/p s up to a	separation few GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, ɣ₀1(3872)	reconstruction of J/Ψ at rest, i.e. muons from 1.5 GeV/c		steel absorber: L ≈ 70 cm muon detectors
Electromagnetic calorimetry	Photons, jets	large acceptance		Pb-Sci calorimeter
	χc	high-resolution segment		PbWO ₄ calorimeter
Ultrasoft photon detection	Ultra-soft photons		measurement of photons in p⊤ range 1 - 50 MeV/c	Forward Conversion Tracker based on silicon pixel sensors

Vertex Detector and Outer Tracker

Vertexing layers

- > Wafer-sized, bent MAPS (leveraging on ALICE ITS3)
- Rotary petals in a secondary vacuum (thin walls to minimize material)
- R&D on mechanics, cooling, radiation tolerance

Outer Tracker (≈ 66 m²)

- MAPS on modules on water-cooled carbon-fiber cold plate
- Carbon-fiber space frame for mechanical support
- R&D challenges on powering scheme and industrialization

Antonio Uras

The ALICE 3 Project

Vertex Detector and Outer Tracker

(Model of a novel design for a retractable tracker. The four segments can be rotated to bring the tracker sensors closer to the beam pipe. Credit: C Gargiulo)

TOF and RICH

TOF detector: PID at low momenta

- 2 barrel + 1 forward TOF layers
- ➤ TOF resolution ≈ 20 ps achievable with silicon timing sensors (R&D needed and ongoing)
- ▶ Barrel TOF at R \approx 19 cm and R \approx 85 cm
- ▶ Forward TOF at $z \approx 405$ cm

RICH detector (barrel + forward) :

- \blacktriangleright Extend PID reach of outer TOF to higher p_T
- Aerogel radiator + SiPM readout
- > $R \approx 120$ cm, 50 ps time res.

The ALICE 3 Project

MID (HCal?) and ECal

Hadron absorber

- $\succ \approx$ 70 cm non-magnetic steel \rightarrow muons down to 1.5 GeV/c at η = 0
- HCal option under study (active absorber)

Muon chambers

- > Search spot for muons $\approx 0.1 \times 0.1$ ($\eta \times \phi$) $\rightarrow \approx 5 \times 5$ cm² cell size
- Matching demonstrated with 2 layers of muon chambers
- Scintillator bars + wave-length shifting fibres + SiPM read-out

ECal module	Barrel sampling	Endcap sampling	Barrel high-precision
acceptance	$\Delta oldsymbol{arphi} = 2 \pi, \ oldsymbol{\eta} < 1.5$	$\Delta arphi = 2\pi, \ 1.5 < \eta < 4$	$\Delta arphi = 2\pi, \ oldsymbol{\eta} < 0.33$
geometry	$R_{ m in} = 1.15 m m,$ z < 2.7 m m	0.16 < R < 1.8 m, z = 4.35 m	$R_{ m in} = 1.15$ m, z < 0.64 m
technology	sampling Pb + scint.	sampling Pb + scint.	PbWO ₄ crystals
cell size	$30 \times 30 \text{ mm}^2$	$40 \times 40 \text{ mm}^2$	$22 \times 22 \text{ mm}^2$
no. of channels	30 000	6 000	20 000
energy range	0.1 < E < 100 GeV	0.1 < E < 250 GeV	0.01 < E < 100 GeV

$\mbox{Acc}\times\mbox{Eff}\times\mbox{\mu}\mbox{PID}$ for muons

- ★ Large acceptance ECal → sampling calorimeter (à la ALICE EMCal/DCal): O(100) layers (1 mm Pb + 1.5 mm plastic scintillator)
- Additional high energy resolution
 segment at mid-rapidity → PbWO₄-based
 (à la ALICE PHOS)

Antonio Uras

18/21

The ALICE 3 Project

Costs and Planning

System	Technology	Cost (MCHF)	
Tracker	MAPS	30.5	
TOF	Monolithic timing sensors (integrated gain layer)	14.8	
	Hybrid LGADs	26.4	
RICH	Aerogel and monolithic SiPMs	20.9	
	Aerogel, analog SiPMs + read-out	34.0	
ECal	Pb-Sci sampling and PbWO ₄	17.0	
Muon ID	Steel absorber, scintillator bars, SiPMs	7.0	
FCT	MAPS (solenoid and dipoles)	2.3	
	MAPS (solenoid and separate dipole for FCT)	5.3	
Magnets	Superconducting solenoid + FCT magnet	25.0	
	Superconducting solenoid and dipoles	40.0	
Computing	Data acquisition and processing	6.0	
Common items	Beampipe, infrastructure, engineering	15.0	
Total		141.4	

- 2023-25: selection of technologies, small-scale proof of concept prototypes (~ 25% of R&D funds)
- 2026-27: large-scale engineered prototypes (≈
 75% of R&D funds) → Technical Design Reports
- > 2028-31: construction and testing
- > **2032**: contingency
- 2033-34: Preparation of cavern and installation of ALICE 3

Plans for ALICE 3 in France and China

3 French institutes (IPHC, LPSC, IP2I) **and 5 Chinese institutes** (CCNU, CIAE, CUG-Wuhan, USTC, Fudan Univ.) **aim at participating in the ALICE 3 project**

- Common scientific program based on heavy-flavor measurements, allowing for the study of the interaction of heavy quarks with the medium (energy loss + hadronization) and the characterization of the mechanisms driving the formation and dissociation of bound states inside the medium
- France: technical project focused on the R&D and construction of the outer tracking layers (CMOS), capitalizing the experience and the efforts deployed in the ITS3 project (recently approved by IN2P3).
 Ongoing discussions with the IN2P3 directorate: converging in the next months towards a technical proposal illustrating the plans for the contribution to the detector R&D and construction
- China: technical project focused on the R&D and construction of the tracking layers (CMOS) and TOF (based on LGAD technology)

Summary and Conclusions

- ALICE is preparing a next-generation, dedicated heavy-ion experiment for LHC Run 5 and beyond, to shed light on the microscopic dynamics of the QGP
 - > Temperature and properties of pre-hadronic stage, chiral symmetry restoration
 - Heavy flavor transport and thermalization
 - Hadronization and nature of hadronic states
 - > Tests of infrared limits of gauge theories, new physics, ...
- Innovative detector concept to meet the requirements of the ALICE 3 physics program
 - > Fully exploiting the potential of the LHC for QGP studies
 - > Building on experience with technologies pioneered in ALICE
 - Requiring R&D activities in several strategic areas
- Lol available. Scoping Document under preparation: establishing a plausible cost scenario in close exchange between the relevant stakeholders (Funding Agencies, CERN management, experiments, review bodies)

Backup Slides

Quarkonium Measurements beyond S-wave States

Quarkonium measurements in Heavy-Ion collisions are currently limited to S-wave states : J/ψ , ψ (2S), Υ (nS)

$\chi_{\rm c}$ states:

- > Binding energy in between J/ ψ and ψ (2S)
- > Sizable (~ 25%) feed-down contribution to J/ ψ

Antonio Uras

Dileptons: Accessing QGP Temperature

Precision measurement of dielectrons as function of mass and p_T **

- ***** Excellent precision for dilepton v_2 vs p_T in different mass ranges \rightarrow time evolution of emission
- \diamond Improved pointing resolution \rightarrow significant reduction of charm contribution and associated uncertainty: unique opportunity at the LHC

Dielectron mass distribution

Antonio Uras

The ALICE 3 Project

Dielectron v₂

Probing the QGP with HF Quarks

- $\succ m_Q \gg \Lambda_{
 m QCD} \Rightarrow$ early pQCD production
- \succ m_Q ≫ T_{QGP} → no thermal production
- Charm/beauty content is conserved and traceable

Interaction with the QGP via elastic and radiative processes: energy loss and momentum broadening. HF quarks probe the structure and the quasi-particle nature of the QGP at **different length scales**

- * Low-momentum scatterings: Brownian motion ($m_{c,b} \gg m_{u,d,s}$) characterizing the diffusion properties of the QGP, quantified by the spatial diffusion coefficient D_s
- * High-momentum scatterings: dominated by radiative energy loss and its $\hat{q}L^2$ dependence, probing the properties of scattering centers in the QGP

25/19

The ultimate goal of the field is to achieve a unified microscopic description of the evolving QGP that consistently relates its basic properties, such as the transport coefficients and viscosity parameters, with the experimental observables as a function of the system size

HF in Weakly- to Strongly-Coupled QGP

transverse plane

Short-scale, high p_T: short-distance, particulate, structure of QGP made of pointlike scattering centers + radiative energy loss of HF

 \rightarrow Di-jets asymmetry, high R_{AA}

26/21

Long-scale, low-intermediate p_T : diffusion properties of HF (D_s) in a strongly-coupled QGP. Universal information about the QGP transport properties, similar to η/s or the EM conductivity, σ_{EM}/T

 \rightarrow R_{AA}, v₂ of D/B mesons

ightarrow Jet radial shapes

Transition from weakly, pointlike to strongly-coupled, near-ideal liquid QGP, (from perturbative to non-perturbative regime of QCD matter)

Beauty Production and Flow

Heavy quarks "flow" with the medium, but charm and beauty quarks do it differently!

 $\tau_Q = (m_Q/T)D_s$

Thermalisation time of beauty quarks is about three times larger than that of charm quarks, longer than the lifetime of the QGP -> beauty quarks preserve a stronger memory of the interactions with the medium

Measurements of the beauty-hadron R_{AA} and v_n coefficients + relative abundances of different beautyhadron species (e.g. baryon-to-meson ratios) down to low $p_T \rightarrow$ crucial role to simultaneously constrain the heavy-quark diffusion coefficient and the hadronization mechanism in the beauty sector

$D\overline{D}$ Azimuthal Correlations

- Insight on the relative importance of the different energy loss mechanisms as a function of p_T
- Shed light on the quasi-particle nature of the QGP at different momentum scales
- In the limit of full thermalisation, the flight direction of the charm quarks would be fully randomized, and no remnant of the initial correlation would be visible

 $D\overline{D}$ pair correlations: sensitive to the motion of HF quarks in the medium and the associated momentum broadening, beyond fragmentation effects already at play in the vacuum

$$\hat{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda}$$

28/19

Thermal Radiation and Chiral Symmetry Restoration

Precise characterization of the initial stages of the collisions: temperature measurement with ≈ percent uncertainties comparable to low-energy experiments

Effects of chiral symmetry restoration, predicted by QCD, can be studied at the LHC at vanishing μ_B

- Effect on p-a₁ mixing on the dilepton mass spectrum above φ peak
- In-medium broadening of narrow vector resonances?

Fireball chronometer: measurement of pre-equilibrium dileptons through multi-differential (p_T , flow, polarization, DCA) measurements

Heavy-Flavor Exotica

Hadrons with more than 3 valence quarks for which we don't have a complete understanding of their nature: e.g. X(3872)

Detailed and differential study in heavy-ion collisions proposed as a tool to indirectly constrain its nature: production yield in the dense QCD environment could be largely influenced by its inner structure

If the case of its nature is addressed by the end of Run 4 we will have a new, tuned tool to study HF hadronization in the QGP

Heavy-Flavor Exotica

Hadrons with more than 3 valence quarks for which we don't have a complete understanding of their nature: e.g. X(3872)

Detailed and differential study in heavy-ion collisions proposed as a tool to indirectly constrain its nature: production yield in the dense QCD environment could be largely influenced by its inner structure

If the case of its nature is addressed by the end of Run 4 we will have a new, tuned tool to study HF hadronization in the QGP

Low- p_{T} reach crucial for a full characterization of the hadronization mechanism

The ALICE 3 Project

31/21Antonio Uras

Goal: understand formation and dissociation of $c\overline{c}$ states

- Muon ID and ECal enable measurement of χ_c in Pb-Pb collisions down to $p_T = 2 \text{ GeV/c}$
- * $\chi_{c1}(3872)$ down to low p_T in pp, performence still to be assessed in Pb-Pb

DD^{*} Momentum Correlations

Studying binding potential with final state interactions through femtoscopic correlations

- Several exotic heavy flavour states identified: loosely bound meson molecule or tightly bound tetraquark?
- Can we pin down the nature of the states other than performing direct observations?

Detector Setup

ALICE 3 overview

Detector Setup

Antonio Uras

Dilepton Spectra and Electric Conductivity

Electric conductivity, or electric charge diffusion coefficient: response of an equilibrated relativistic gas of electrically charged particles, upon the influence of a small, static, electric field

QGP electric conductivity: connected to lower and upper limits of thermal dilepton production spectra

Diffusion coefficients of the strongly interacting QGP: precise data needed to challenge theoretical models

Physics Motivations: Executive Summary (1)

Characterization of chiral symmetry restoration at vanishing μ_B

> Dilepton mass spectra from the threshold to intermediate mass, down to zero p_T

HF correlations down to zero p_T (collisional vs radiative energy loss, flavour dependence)

Physics Motivations: Executive Summary (2)

Hadronization mechanisms and nonconventional hadron structures:

- In-medium production rates of multicharm states
- In-medium effects on the production of exotic states

Searches for signals of new physics beyond Standard Model

Exploiting the unique potential of (ultra-peripheral) heavy-ion collisions in a phase space

38/21

HF Hadronization Mechanisms

Hadronization mechanisms: key ingredient for a precise characterization of HF quark interactions with the medium

QGP has its own, specific hadronization mechanisms due to the dense environment of partons close to thermal equilibrium \rightarrow quarks that are close in phase space can combine into colourless hadrons

- Production of baryons and other heavy hadrons more favourable than in vacuum
- Most of the measured yields are well described by the Statistical Hadronization Model (SHM), with the abundances of light and strange hadrons following the equilibrium populations of a hadronresonance gas at the freeze-out temperature of about 156 MeV
- A systematic study of the relative abundances of the different heavy flavour species is needed, extending measurements to hadrons containing multiple heavy-flavour quarks, including multi-quark states

Heavy Flavor Correlations

Photon-HF correlations for an unquenched reference for energy and direction. Complementarity with CMS performance?

Away-side HF-HF correlations: sensitive to radiative vs elastic energy loss. Exploiting the larger "collinearity" found in radiative collisions, which could be seen in long-range azimuthal correlations

Antonio Uras

Nuclear States: Charm-Deuteron

• The lightest possible bound states of a charm baryon and a nucleon without Coulomb repulsion are bound states of Λc and a neutron: c-deuteron and c-triton.

• Their possible (non) existence sheds light on the charm-nucleon potential.

• Most promising decay channels:

 $-cd d + K - + \pi +$

-ct $t + K - + \pi +$

41/21

Physics Motivations

https://indico.cern.ch/event/937309/contributions/3998000/ _0925.pdf APW_2020 attachments/2109935/3549091/gunjl_

Antonio Uras

42/21

Physics Prospects for ALICE in Run 5 and Beyond

Soft Photons: Testing Low's Theorem

Experiments

[Cheuk-Yin Wong, arXiv:1404.0040v1]

Experiment	Collision	Photon k_T	Photon/Brem
	Energy		Ratio
<i>K</i> ⁺ <i>p</i> , CERN,WA27, BEBC (1984)	70 GeV/c	$k_T < 60 \text{ MeV/c}$	4.0 ± 0.8
<i>K</i> ⁺ <i>p</i> , CERN,NA22, EHS (1993)	250 GeV/c	$k_T < 40 \text{ MeV/c}$	6.4 ±1.6
$\pi^+ p$, CERN,NA22, EHS (1997)	250 GeV/c	$k_T < 40 \text{ MeV/c}$	6.9 ±1.3
$\pi^{-}p$, CERN, WA83, OMEGA (1997)	280 GeV/c	$k_T < 10 \text{ MeV/c}$	7.9 ±1.4
$\pi^+ p$, CERN, WA91, OMEGA (2002)	280 GeV/c	$k_T < 20 \text{ MeV/c}$	5.3 ±0.9
<i>pp</i> , CERN, WA102, OMEGA (2002)	450 GeV/c	$k_T < 20 \text{ MeV/c}$	4.1 ±0.8
$e^+e^ \rightarrow$ hadrons, CERN, DELPHI	~91 GeV(CM)	$k_T < 60 \text{ MeV/c}$	4.0
with hadron production (2010)			
$e^+e^- \rightarrow \mu^+\mu^-$, CERN, DELPHI	~91 GeV(CM)	$k_T < 60 \text{ MeV/c}$	1.0
with no hadron production (2008)			

Soft photon puzzle: excess above hadronic bremsstrahlung

Physics Prospects for ALICE in Run 5 and Beyond

Detector Scenarios: Tracker

Ultra-light tracker:

≈ 0.05 % X₀ vertexing layers ≈ 0.5 % X₀ tracking layers Large acceptance: $|\eta| < 4.0$, full azimuth down to very low p_T

Retractable layers (IRIS) under study:

Getting closer to the interaction point during stable beam (R = 0.5, 1.2, 2.5 cm)

Great potential for charm measurements

THE STRON STOOL

44/21

Charmonium States in the SHM

Fig. 2. Transverse momentum spectrum at mid-rapidity |y| < 0.9 of J/ψ for most central Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5$ TeV. The results are based on a charm cross section at mid-rapidity |y| < 0.9 including shadowing as discussed above. In addition to the full spectrum calculation, the contributions for the thermal core part and the corona are shown. While at low p_{T} the uncertainties are due to the charm cross section, at high p_{T} the uncertainties come from the uncertainty of the corona thickness.

A. Andronic et al.: PLB 797, 2019, 134836

More to Come on Heavy-Flavor Exotica?

- So far only the X(3872) has been observed as a prompt state: what about the others?
- Can we establish a direct comparison between the yields of deuteron, He nuclei, and X states?
- What about X states decaying into pairs of J/ψ, D mesons, or Y ?
- ♦ What about multi-charm exotic states like T_{cc}⁺?

Theory needs inputs on the p_T , rapidity, and multiplicity dependence of yields

For a recent review of the available theoretical approaches >> <u>https://indico.in2p3.fr/e/tcc_2021</u>

Antonio Uras

In-jet HF Hadrochemistry and Fragmentation

- Direct measurement of the fragmentation patterns of charmed/beauty mesons and baryons
- Jets provide energy and direction scale for the fragmentation process: proxy for initial HF quark direction and energy

Insights into the properties of in-medium propagation of quarkonium states inside the QGP: fragmentation shower of quarkonium and open HF inside jets in AA collisions

7/21

Low- p_T reach needed for a complete picture of the fragmentation functions

3. Last, but not least

- Double Parton Scattering
- ✤ Ultra-soft photons
- Beyond Standard Model Searches

♦ (Small systems, ...)

Double Parton Scattering: Quarkonia and Open HF

Measurements of the production of quarkonia "in association" with another final state particle

Double parton scattering: two independent scatterings in one pp/pA collision

- Powerful probe to study factorization of hard processes in hadronic collisions, and transverse parton densities in nucleons and nuclei
- DPS events characterized by large pseudorapidity gap between the two hadrons:
 → At large Δη pure DPS "environment"

Ultra-Soft Photons: Testing Low's Theorem

- * Soft photons ($p_T^{\gamma} \ll p_T^{hadrons} \approx 300-500 \text{ MeV}$) can be produced at any stage of hadronic collisions, with no specific constraints in their number by conservation laws
- Low's theorem: QCD prediction providing a precise relation between very soft photon and inclusive hadron production

$$\frac{dN_{\gamma}}{d^{3}k} = \frac{\alpha}{2\pi k_{0}} \int d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}...d^{3}p_{N} \sum_{i,j=1}^{N} \eta_{i}\eta_{j}e_{i}e_{j} \frac{-(p_{i} \cdot p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \frac{dN_{\text{hadrons}}}{d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}...d^{3}p_{N}}$$

Soft photon puzzle: nearly every measurement shows factor 2–5 enhancement w.r.t. Low's theorem predictions. Proposed explanations: cold quark-gluon plasma, quark synchrotron radiation, string fragmentation. Handle to investigate fundamental non-perturbative properties of QCD

Ultra-light converter-tracker + calorimeter at forward η should allow measuring soft photons down to $p_{\rm T} \approx 10$ MeV (possibly exploiting HBT analysis techniques)

Dark Photons

Dark Photons: hypothetical extra-U(1) gauge bosons, motivated by:

- Antiproton spectrum and positron excess in cosmic ray observations
- Muon anomalous magnetic moment

Possible channels in ALICE 3:

- > Meson decays such as π^0 , η , ϕ Dalitz decays, D^{*0} decays, radiative J/ψ and Υ decays
- Final-state radiation, Drell-Yan, thermal rad. for M >1 GeV
- Displaced searches (M < 20 MeV)</p>

Requirements for ALICE 3

- > Good electron ID capability for wide momentum range (low momenta from π^0 Dalitz decays to high momenta from DY and thermal dielectrons)
- > High-rate capability and in-bunch pileup separation + good vertexing to separate thermal dielectrons and HF pairs

51/21

Physics Prospects for ALICE in Run 5 and Beyond

BSM Searches in Ultra-Peripheral Collisions

Ultra-peripheral heavy-ion collisions (UPC): clean environment + huge $Z^4 \approx 5 \cdot 10^7$ enhanced gamma+gamma rate w.r.t. pp

Searches of BSM particle coupling predominantly to photons: modifications of the light-by-light scattering rates from virtual corrections from heavy particles (magnetic monopoles, vector-like fermions, dark sector particles)

Precision measurements of EM couplings of SM particles: anomalous magnetic moment (g-2) of the tau

Challenge for ALICE 3: acceptance for tau and light-by-light scattering down to low p_T ?

