

Antonio Uras IP2I Lyon – CNRS/IN2P3

14th Workshop of the France-China Particle Physics Laboratory (FCPPL2023)

ALICE upgrade timeline

LS2: ITS2, MFT, TPC, FIT, O2

The ALICE 3 Project

ALICE 3: the Context

[❖] 2018/19: first discussions of a dedicated heavy-ion program for Run 5 and 6 at the LHC within ALICE

\dots **European Strategy for Particle Physics Update**

- \triangleright Expression of Interest submitted to the Granada meeting (2019)
- \triangleright Recommendation: full exploitation of LHC including heavy-ion program in Runs 5 & 6
- **[❖] Further development of detector concept and physics studies within ALICE**
	- Ø ALICE 3 workshops: October 2020, June 2021, October 2021

☆ Letter of Intent

- \triangleright Reviewed by collaboration and endorsed by Collaboration Board on 28 January 2022
- \triangleright LHCC review process started in October 2021, very positive report of the LHCC Review Panel addressed mid-March 2022

Introduction: the Context

ALICE 3

New dedicated heavy-ion experiment at the LHC, replacing ALICE starting of Run 5:

- ❖ QGP transport properties
- ❖ Access to the pre-equilibrium phase
- \triangle Hadronization mechanisms in the medium

https://cds.cern.ch/record/2803563

The ALICE 3 Project

Antonio Uras

Selected Physics Case

Ø Microscopic mechanism of in-medium energy loss of heavy quarks

- \triangleright HF Hadronization mechanisms
- Ø Non-conventional hadronic structures
- Ø Dilepton production: Temperature of the QGP and pre-equilibrium phase

Ø Ultra-soft photons, BSM searches, …

Heavy-Flavour Benchmark: D^o

Excellent pointing resolution and PID: **large S/B and efficiency** $10-20 \times w.r.t.$ Run 3 (i.e. ITS2) for $p_T < 4$ GeV/c

Experimental benchmark giving access to the measurement of:

- Beauty meson and baryon v_2
- DD correlations
- \triangleright Multi-charm baryons

HF Baryon v_2

Goal: disentangle effects of quark transport and hadronization

- \triangleright Expect beauty thermalization slower than charm $-$ does this affect hadronization?
- First measurements of Λ_h coupling to hydrodynamic flow (via v_2 parameter) in Run 3 and 4
- \triangleright Need ALICE 3 performance for precision measurement

$D\overline{D}$ Azimuthal Correlations

Goal: measure angular (de)correlations – direct probe of QGP scattering

- \dots Very challenging measurement: need good purity, efficiency and η coverage
- ❖ Heavy-ion measurement only possible with ALICE 3

HF Hadronization Mechanisms

 \cdot In heavy-ion collisions, large increase of multi-HF baryons (≈ \times 1000) expected via coalescence with charm quarks from different hard scatterings ($N_{ccbar} \approx 100$ in central Pb-Pb)

Discrimination power on the role of the various hadronization mechanisms: multi-charm baryon factory (almost purely produced out of quark coalescence)

Ω_{cc} and Ω_{ccc} not yet observed. Ω_{ccc} may only be **accessible in heavy-ion collisions**

Challenging **reconstruction of cascade decay,** exploiting state-of-the-art vertexing and tracking

$$
\Omega_{ccc}^{++} \to \Omega_{cc}^{+} + \pi^{+}
$$

\n
$$
\Omega_{cc}^{+} \to \Omega_{c}^{0} + \pi^{+}
$$

\n
$$
\Omega_{c}^{0} \to \Omega^{-} + \pi^{+}
$$

\n
$$
\Omega^{-} \to \Lambda + K^{-}
$$

\n
$$
\Lambda \to p
$$

9/21

 $+ \pi^-$

 E_{cc}

Multi-Charm Baryon Reconstruction

New technique: strangeness tracking with Ξ baryon provides high selectivity

$$
\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} + \pi^{+}
$$

$$
\Xi_{c}^{+} \rightarrow \Xi^{-} + 2\pi^{+}
$$

- **[◆] Multi-charm baryons vs system size: unique insight in thermalization and hadronization dynamics.**
- ◆ ALICE 3: unique experimental access in Pb-Pb collisions

The ALICE 3 Project

10/21 Antonio Uras

Further Topics

- **V** Quarkonium Measurements beyond S-wave States
- \dots **Dileptons: Accessing QGP Temperature**
- ***** New nuclear states: existence of bound states of a charm baryon and a nucleon without Coulomb repulsion (c-deuteron n- Λ_c and c-triton n-n- Λ_c) sheds light on the charm-nucleon potential
- ***** Ultra-soft photons (down to $p_T \approx 2$ MeV/c): Low's theorem predictions violated in previous experiments by an excess of soft-photon production
- \dots **Ultra-peripheral collisions:** rare single-resonance and resonance-pair production (e.g. $\rho' \rightarrow 4\pi$, ρ -J/ψ), light-by-light scattering
- **[◆] Net-baryon fluctuations:** baryon number conservation, baryon number susceptibility and critical behavior
- **ESM searches:** ALPs, dark photons, long-lived particles

Detector Studies

The ALICE 3 Detector Concept

- \dots **Compact all-silicon tracker with large acceptance and high-resolution vertex detector**
- \dots **Superconducting magnet system (1 T to 2 T)**
- \dots **Particle identification over large acceptance**
- **❖ Fast readout and online processing**

The ALICE 3 Detector Concept

Vertex Detector and Outer Tracker

Vertexing layers

- \triangleright Wafer-sized, bent MAPS (leveraging on ALICE ITS3)
- \triangleright Rotary petals in a secondary vacuum (thin walls to minimize material)
- \triangleright R&D on mechanics, cooling, radiation tolerance

Outer Tracker (≈ 66 m2)

- \triangleright MAPS on modules on water-cooled carbon-fiber cold plate
- \triangleright Carbon-fiber space frame for mechanical support
- Ø **R&D challenges** on powering scheme and industrialization

15/21 Antonio Uras

The ALICE 3 Project

Vertex Detector and Outer Tracker

(Model of a novel design for a retractable tracker. The four segments can be rotated to bring the tracker sensors closer to the beam pipe. Credit: C Gargiulo)

TOF and RICH

TOF detector: PID at low momenta

- \triangleright 2 barrel + 1 forward TOF layers
- $▶$ TOF resolution $≈ 20$ ps achievable with silicon timing sensors (R&D needed and ongoing)
- \triangleright Barrel TOF at R ≈ 19 cm and R ≈ 85 cm
- \triangleright Forward TOF at z ≈ 405 cm

RICH detector (barrel + forward) :

- \triangleright Extend PID reach of outer TOF to higher p_T
- \triangleright Aerogel radiator + SiPM readout
- **► R** \approx 120 cm, 50 ps time res.

The ALICE 3 Project

MID (HCal?) and ECal

Hadron absorber

- $\triangleright \approx 70$ cm non-magnetic steel \rightarrow muons down to 1.5 GeV/c at $\eta = 0$
- \triangleright HCal option under study (active absorber)

Muon chambers

A L I C E

- \triangleright Search spot for muons ≈ 0.1 × 0.1 (η × φ) \rightarrow ≈ 5 × 5 cm² cell size
- \triangleright Matching demonstrated with 2 layers of muon chambers
- \triangleright Scintillator bars + wave-length shifting fibres + SiPM read-out

Acc \times Eff \times µPID for muons

- \dots **Large acceptance ECal** → sampling calorimeter (à la ALICE EMCal/DCal): O(100) layers (1 mm $Pb + 1.5$ mm plastic scintillator)
- **V** Additional high energy resolution **segment** at mid-rapidity \rightarrow PbWO₄-based (à la ALICE PHOS)

18/21 Antonio Uras

The ALICE 3 Project

Costs and Planning

- **► 2023-25**: selection of technologies, small-scale proof of concept prototypes (\approx 25% of R&D funds)
- Ø **2026-27**: large-scale engineered prototypes (≈ 75% of R&D funds) \rightarrow Technical Design Reports
- $\geq 2028-31$: construction and testing
- \triangleright 2032: contingency
- Ø **2033-34**: Prepara7on of cavern and installa7on of ALICE 3

Plans for ALICE 3 in France and China

3 French institutes (IPHC, LPSC, IP2I) **and 5 Chinese institutes** (CCNU, CIAE, CUG-Wuhan, USTC, Fudan Univ.) **aim at participating in the ALICE 3 project**

- *** Common scientific program** based on heavy-flavor measurements, allowing for the study of the interaction of heavy quarks with the medium (energy loss + hadronization) and the characterization of the mechanisms driving the formation and dissociation of bound states inside the medium
- **[◆] France:** technical project focused on the R&D and construction of the **outer tracking layers (CMOS)**, capitalizing the experience and the efforts deployed in the ITS3 project (recently approved by IN2P3). **Ongoing discussions with the IN2P3 directorate: converging in the next months towards a technical proposal illustrating the plans for the contribution to the detector R&D and construction**
- v **China:** technical project focused on the R&D and construction of the **tracking layers (CMOS) and TOF (based on LGAD technology)**

Summary and Conclusions

- **EX** ALICE is preparing a next-generation, dedicated heavy-ion experiment for LHC Run 5 and beyond, to shed light on the microscopic dynamics of the QGP
	- \triangleright Temperature and properties of pre-hadronic stage, chiral symmetry restoration
	- \triangleright Heavy flavor transport and thermalization
	- \triangleright Hadronization and nature of hadronic states
	- \triangleright Tests of infrared limits of gauge theories, new physics, ...
- ***** Innovative detector concept to meet the requirements of the ALICE 3 physics program
	- \triangleright Fully exploiting the potential of the LHC for QGP studies
	- \triangleright Building on experience with technologies pioneered in ALICE
	- \triangleright Requiring R&D activities in several strategic areas
- **[◆] LoI available. Scoping Document under preparation:** establishing a plausible cost scenario in close exchange between the relevant stakeholders (Funding Agencies, CERN management, experiments, review bodies)

Backup Slides

Quarkonium Measurements beyond S-wave States

Quarkonium measurements in Heavy-Ion collisions are currently limited to S-wave states : J/ψ , ψ (2S), Y (nS)

χ_c states:

- \triangleright Binding energy in between J/ψ and ψ(2S)
- \triangleright Sizable (~ 25%) feed-down contribution to J/ψ

Antonio Uras

23/19

The ALICE 3 Project

Dileptons: Accessing QGP Temperature

[❖] Precision measurement of dielectrons as function of mass and p_τ

- * Excellent precision for dilepton v_2 vs p_T in different mass ranges \rightarrow time evolution of emission
- $\cdot\cdot\cdot$ Improved pointing resolution → significant reduction of charm contribution and associated uncertainty: unique opportunity at the LHC

Dielectron mass distribution

24/21 Antonio Uras

Dielectron v

Probing the QGP with HF Quarks

- \triangleright m_Q ≫ Λ _{QCD} \rightarrow early pQCD production
- $P \triangleright m_0 \gg T_{0GP}$ \rightarrow no thermal production
- Ø **Charm/beauty content is conserved and traceable**

Interaction with the QGP via elastic and radiative processes: energy loss and momentum broadening. HF quarks probe the structure and the quasi-particle nature of the QGP at **different length scales**

- \dots **Low-momentum scatterings:** Brownian motion ($m_{c,b} \gg m_{u,d,s}$) characterizing the diffusion properties of the QGP, quantified by the spatial diffusion coefficient D_s
- $\cdot \cdot$ High-momentum scatterings: dominated by radiative energy loss and its $\hat{q}L^2$ dependence, probing the properties of scattering centers in the QGP

The ultimate goal of the field is to achieve a unified microscopic description of the evolving QGP that consistently relates its basic properties, such as the transport coefficients and viscosity parameters, with the experimental observables as a function of the system size

HF in Weakly- to Strongly-Coupled QGP

transverse plane

Short-scale, high p_r: short-distance, particulate, structure of QGP made of pointlike scattering centers + radiative energy loss of HF

 \rightarrow Di-jets asymmetry, high R_{AA}

Long-scale, low-intermediate p_T: diffusion **properties of HF (***D***s) in a strongly-coupled QGP.** Universal information about the QGP transport properties, similar to η/s or the EM conductivity, σ_{FM}/T

 \rightarrow R_{AA}, v₂ of D/B mesons

 \rightarrow Jet radial shapes

Transition from weakly, pointlike to strongly-coupled, near-ideal liquid QGP, (from perturbative to non-perturbative regime of QCD matter)

The ALICE 3 Project

Beauty Production and Flow

Heavy quarks "flow" with the medium, but charm and beauty quarks do it differently!

$$
\tau_Q = (m_Q/T)D_s
$$

 \cdot Thermalisation time of beauty quarks is about three times larger than that of charm quarks, longer than the lifetime of the QGP **→** beauty quarks preserve a stronger memory of the interactions with the medium

Measurements of the beauty-hadron R_{AA} and v_n coefficients + relative abundances of different beautyhadron species (e.g. baryon-to-meson ratios) down to low p_⊤ → crucial role to **simultaneously constrain the** heavy-quark diffusion coefficient and the hadronization mechanism in the beauty sector

$D\overline{D}$ Azimuthal Correlations

- v Insight on the relative importance of the **different energy loss mechanisms** as a function of p_T
- \cdot Shed light on the quasi-particle nature of the QGP at different momentum scales
- \dots In the limit of **full thermalisation**, the flight direction of the charm quarks would be **fully randomized**, and no remnant of the initial correlation would be visible

DD pair correlations: sensitive to the motion of HF quarks in the medium and the associated momentum broadening, beyond fragmentation effects already at play in the vacuum

$$
\hat{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda}
$$

29/21

Thermal Radiation and Chiral Symmetry Restoration

Precise characterization of the initial stages of the collisions: temperature measurement with \approx percent uncertainties comparable to low-energy experiments

Effects of chiral symmetry restoration, predicted by QCD, can be studied at the LHC at vanishing μ_B

- \triangleright Effect on **p-a₁ mixing** on the dilepton mass spectrum above ϕ peak
- In-medium broadening of narrow vector resonances?

Fireball chronometer: measurement of pre-equilibrium dileptons through multi-differential $(p_T, f|ow, polarization, DCA)$ measurements

Antonio Uras The ALICE 3 Project

Heavy-Flavor Exotica

Hadrons with more than 3 valence quarks for which we don't have a complete understanding of their nature: e.g. X(3872)

Ø **Detailed and differential study in heavy-ion collisions proposed as a tool to indirectly constrain its nature:** production yield in the dense QCD environment could be largely influenced by its inner structure

 \triangleright If the case of its nature is addressed by the end of Run 4 we will have a **new,** tuned tool to study HF hadronization in **the QGP**

Heavy-Flavor Exotica

Hadrons with more than 3 valence quarks for which we don't have a complete understanding of their nature: e.g. X(3872)

 \triangleright Detailed and differential study in heavy-ion collisions proposed as a tool to indirectly constrain its nature: production yield in the dense QCD environment could be largely influenced by its inner structure

 \triangleright If the case of its nature is addressed by the end of Run 4 we will have a **new, tuned tool to study HF hadronization in the QGP**

> Low- p_T reach crucial for a full characterization of the hadronization mechanism

The ALICE 3 Project

31/21 Antonio Uras

Goal: understand formation and dissociation of $c\bar{c}$ **states**

- Muon ID and ECal enable measurement of χ_c in Pb-Pb collisions down to $p_T = 2$ GeV/c
- $\mathbf{\hat{v}}$ $\chi_{c1}(3872)$ down to low p_T in pp, performence still to be assessed in Pb-Pb

DD^{*} Momentum Correlations

Studying binding potential with final state interactions through femtoscopic correlations

- ❖ Several exotic heavy flavour states identified: loosely bound meson molecule or tightly bound tetraquark?
- $\cdot \cdot$ Can we pin down the nature of the states other than performing direct observations?

Detector Setup

ALICE 3 overview

Detector Setup

Dilepton Spectra and Electric Conductivity

[◆] Electric conductivity, or electric charge diffusion coefficient: response of an equilibrated relativistic gas of electrically charged particles, upon the influence of a small, static, electric field

V QGP electric conductivity: connected to lower and upper limits of thermal dilepton production spectra

Diffusion coefficients of the strongly interacting QGP: precise data needed to challenge theoretical models

Physics Motivations: Executive Summary (1)

Characterization of chiral symmetry restoration at vanishing μ_B

 \triangleright Dilepton mass spectra from the threshold to intermediate mass, down to zero p_T

 \triangleright HF correlations down to zero p_T (collisional vs radiative energy loss, flavour dependence)

Physics Motivations: Executive Summary (2)

Hadronization mechanisms and nonconventional hadron structures:

- \triangleright In-medium production rates of multicharm states
- \triangleright In-medium effects on the production of exotic states

Searches for signals of new physics beyond Standard Model

 \triangleright Exploiting the unique potential of (ultra-peripheral) heavy-ion collisions in a phase space

38/21

Hadronization mechanisms: key ingredient for a precise characterization of HF quark interactions with the medium

QGP has its own, specific hadronization mechanisms due to the dense environment of partons close to thermal equilibrium **→** quarks that are close in phase space can combine into colourless hadrons

- $\cdot \cdot$ Production of baryons and other heavy hadrons more favourable than in vacuum
- ◆ Most of the measured yields are well described by the Statistical Hadronization Model (SHM), with the abundances of light and strange hadrons following the equilibrium populations of a hadronresonance gas at the freeze-out temperature of about 156 MeV
- **[◆] A systematic study of the relative abundances of the different heavy flavour species is needed, extending measurements to hadrons containing multiple heavy-flavour quarks, including multi-quark states**

Heavy Flavor Correlations

Photon-HF correlations for an unquenched reference for energy and direction. Complementarity with CMS performance?

Away-side HF-HF correlations: sensitive to radiative vs elastic energy loss. Exploiting the larger "collinearity" found in radiative collisions, which could be seen in long-range azimuthal correlations

Nuclear States: Charm-Deuteron

• The lightest possible bound states of a charm baryon and a nucleon without Coulomb repulsion are bound states of Λc and a neutron: c-deuteron and c-triton.

• Their possible (non) existence sheds light on the charm-nucleon potential.

• Most promising decay channels:

– cd d + K- + π+

– ct t + K- + π+

Physics Motivations

https://indico.cern.ch/event/937309/contributions/3998000/ 0925.pdf https://indico.cern.ch/event/937309/contributions/3998000/ attachments/2109935/3549091/gunjI_APW_2020_0925.pdf APW_2020 attachments/2109935/3549091/gunjl_

42/21

Antonio Uras **Physics Prospects for ALICE in Run 5 and Beyond** Physics Prospects for ALICE in Run 5 and Beyond

Soft Photons: Testing Low's Theorem

Experiments

[Cheuk-Yin Wong, arXiv:1404.0040v1]

Soft photon puzzle: excess above hadronic bremsstrahlung

Action Antonio Uras Antonio Uras Antonio Uras Active Active Physics Prospects for ALICE in Run 5 and Beyond

Ultra-light tracker:

A L I C E

> \approx 0.05 % X₀ vertexing layers \approx 0.5 % X₀ tracking layers Large acceptance: $|\eta| < 4.0$, full azimuth down to very low p_T

Retractable layers (IRIS) under study:

Getting closer to the interaction point during stable beam (R = 0.5, 1.2, 2.5 cm)

Great potential for charm measurements

Charmonium States in the SHM

Fig. 2. Transverse momentum spectrum at mid-rapidity $|y| < 0.9$ of J/ψ for most central Pb–Pb collisions at $\sqrt{s_{NN}} = 5$ TeV. The results are based on a charm cross section at mid-rapidity $|y| < 0.9$ including shadowing as discussed above. In addition to the full spectrum calculation, the contributions for the thermal core part and the corona are shown. While at low p_T the uncertainties are due to the charm cross section, at high p_T the uncertainties come from the uncertainty of the corona thickness.

A. Andronic et al.: PLB 797, 2019, 134836

More to Come on Heavy-Flavor Exotica?

- \cdot So far only the X(3872) has been observed as a prompt state: what about the others?
- \cdot Can we establish a direct comparison between the yields of deuteron, He nuclei, and X states?
- $\cdot \cdot$ What about X states decaying into pairs of J/ψ, D mesons, or Y?
- \dots **What about multi-charm exotic states like T_{cc}⁺?**

Theory needs inputs on the p_T , rapidity, and multiplicity **dependence of yields**

For a recent review of the available theoretical approaches >> https://indico.in2p3.fr/e/tcc_2021

In-jet HF Hadrochemistry and Fragmentation

- \dots **Direct measurement of the fragmentation patterns** of charmed/beauty mesons and baryons
- **V** Jets provide energy and direction scale for the fragmentation process: proxy for initial HF quark direction and energy

[❖] Insights into the properties of in-medium propagation of quarkonium states inside the QGP: fragmentation shower of quarkonium and open HF inside jets in AA collisions

47/21

Low- p_T reach needed for a complete picture of the fragmentation functions

3. Last, but not least

◆ Double Parton Scattering

- ❖ Ultra-soft photons
- ◆ Beyond Standard Model Searches

❖ (Small systems, ...)

49/21

Double Parton Scattering: Quarkonia and Open HF

Measurements of the production of quarkonia "in association" with another final state particle

Double parton scattering: two independent scatterings in one pp/pA collision

- **[◆] Powerful probe to study** factorization of hard processes in hadronic collisions, and transverse parton densities in nucleons and nuclei
- \diamondsuit **DPS events characterized by large pseudorapidity gap between the two hadrons: → At large Δη pure DPS "environment"**

Ultra-Soft Photons: Testing Low's Theorem

- **Soft photons (** p_T^{γ} ≪ $p_T^{hadrons}$ ≈ 300-500 MeV) can be produced at any stage of hadronic collisions, with no specific constraints in their number by conservation laws
- **V** Low's theorem: QCD prediction providing a precise relation between very soft photon and inclusive hadron production

$$
\frac{dN_{\gamma}}{d^{3}k} = \frac{\alpha}{2\pi k_{0}} \int d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}...d^{3}p_{N} \sum_{i,j=1}^{N} \eta_{i}\eta_{j}e_{i}e_{j} \frac{-(p_{i} \cdot p_{j})}{(p_{i} \cdot k)(p_{j} \cdot k)} \frac{dN_{\text{hadrons}}}{d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}...d^{3}p_{N}}
$$

[◆] Soft photon puzzle: nearly every measurement shows factor 2–5 enhancement w.r.t. Low's theorem predictions. **Proposed explanations:** cold quark-gluon plasma, quark synchrotron radiation, string fragmentation. Handle to investigate fundamental non-perturbative properties of QCD

Ultra-light converter-tracker + calorimeter at forward η should allow measuring soft photons down to $p_T \approx 10$ MeV (possibly exploiting HBT analysis techniques)

Dark Photons

Dark Photons: hypothetical extra-U(1) gauge bosons, motivated by:

- \triangleright Antiproton spectrum and positron excess in cosmic ray observations
- \triangleright Muon anomalous magnetic moment

Possible channels in ALICE 3:

- \triangleright Meson decays such as π⁰, η, φ Dalitz decays, D^{*0} decays, radiative J/ψ and Y decays
- Final-state radiation, Drell-Yan, thermal rad. for M >1 GeV
- Ø Displaced searches (M < 20 MeV)

Requirements for ALICE 3

- \triangleright Good electron ID capability for wide momentum range (low momenta from π^0 Dalitz decays to high momenta from DY and thermal dielectrons)
-

Antonio Uras **Physics Prospects for ALICE in Run 5 and Beyond** Physics Prospects for ALICE in Run 5 and Beyond

BSM Searches in Ultra-Peripheral Collisions

Ultra-peripheral heavy-ion collisions (UPC): clean environment + huge $Z^4 \approx 5 \cdot 10^7$ **enhanced gamma+gamma rate w.r.t. pp**

[❖] Searches of BSM particle coupling predominantly to photons: modifications of the light-by-light scattering rates from virtual corrections from heavy particles (magnetic monopoles, vector-like fermions, dark sector particles)

[◆] Precision measurements of EM couplings of SM particles: anomalous magnetic moment (g-2) of the tau

Challenge for ALICE 3: acceptance for tau and light-by-light scattering down to low p_T ?

