Towards TDR of a Reference Detector for CEPC

Jianchun Wang IHEP

14th Workshop of the France China Particle Physics Laboratory Nov 6-10, 2023, SYSU Zhuhai Campus

The Circular Electron Positron Collider (CEPC)

- The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

Operation mode			ZH	Z	W+M-	tī
\sqrt{s} [GeV]			~240	~91.2	~160	~360
Run time [years]			7	2	1	-
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run Time [years]		10	2	1	~5	
Latest	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	2×10 ⁷	5×10 ⁵

Both **50 MW** and $t\bar{t}$ modes are considered as upgrades

Conceptual Detector Designs

Requirements of Detector and Key Technologies

Sub-detector	Key technology	Key Specifications	
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi} \sim 3 \ \mu { m m}, X/X_0 < 0.15\%$ (per layer)	
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$	
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%	
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \text{ ps}$	
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$	
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$	
Magnet system	Ultra-thin	Magnet field $2 - 3$ T	
	High temperature	Material budget $< 1.5X_0$	
	Superconducting magnet	Thickness $< 150 \text{ mm}$	
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction	
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$	
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$	

These specifications already include some of the 4th detector design

The 4th Conceptual Detector Design

Silicon Pixel Chips for Vertex Detector

JadePix4 356×498 array of 20×29 μm^2

TowerJazz 180nm CIS process $\sigma_{\text{x/y}}$ ~ 3-4 $\mu\text{m},\,\sigma_{t}$ ~ 1 $\mu\text{s},\,\text{~100}\ \text{mW/cm}^{2}$

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track.

CDR design spec:

- Single point resolution ~ 3 μm.
- Low material (0.15% X₀ / layer),
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 3 series: JadePix / MIC, TaichuPix, CPV

Upper chip

> Lower chip

CPV4 (SOI-3D), 64×64 array ~21×17 μ m² pixel size

LAPIS 200nm SOI process

TaichuPix3 1024×512 array of 25×25 μm^2

Prototyping Vertex Detector

Pixelated TPC Tracker

2.2mm

Goal:

σ(**r**-Φ) ~100 μm

6mm

- Initial TPC design has difficulty @high luminosity Z mode due to IBF. Decide to use pixelated TPC
- R&D roadmap:
 - From a module to a prototype
 - Low power consumption FEE ASIC
- Achievement so far:
 - Hybrid GEM+Micromegas module: IBF×Gain ~1 at G=2000
 - Spatial resolution of $\sigma_{r\phi} \leq 100 \ \mu m$, dE/dx for PID: <4%
 - WASA chip: ~3 mW/ch with ADC, 32 channels/chip

TPC prototype with integrated 266nm UV laser

Low power consumption readout

Silicon Pixel Tracker

- ❑ Large area: ~140 m² in Full SiTrk, or ~70 m² in TPC+SiTrk
 → Cost effectiveness
- □ Focus on MAPS pixel tracker, also started SSD for outer layers
- □ Joint efforts on an ATLASPix3 based demonstrator
- ATLASPix & MightyPix use TSI 180nm HV process
 Long term support (?)
- Exploring SMIC 55 nm HV HR process
 Smaller feature size & alternative foundry
- □ Other possibilities, e.g. MALTA3, TPSCo-65nm

The 2nd design for SMIC 55nm HV HR process

ATLASPAS tempressed impressed impressed hardressel Contis hardressel Contis

Hitmap with Fe55 source

Hitmap with electron beam

- A drift chamber optimized for PID: no stereo, larger cell, optimal gas mixture and HV
- Cluster counting algorithm (dN/dX) is more powerful than conventional dE/dx, but requires much more in the readout electronics.
- Studies: dNdX reconstruction algorithm, readout electronics, prototype test in beam

Cluster Counting Beam Tests

Test Beam 2021.11

TB 2022.07

- Test beam and analysis led by the Italian group
- Measure number of clusters
 & efficiency, study effects of configuration
- Apply clustering algorithm in the real world, more realistic parameters to simulation

Prototype PFA Calorimeters

ECAL: scintillator(strip)+SiPM, CuW

HCAL: scintillator (tile)+SiPM, steel

□ ScW-ECAL: transverse ~20×20 cm, 32 sampling layers

~6,700 channels, SPIROC2E (192 chips)

□ AHCAL: transverse 72×72 cm, 40 sampling layers

~13k channels, SPIROC2E (360 chips)

Prototypes developed within CALICE

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann

CEP

Testbeam of Prototype PFA Calorimeters

Selected Testbeam Events

信州大学

Within CALICE collaboration

15 GeV π^-

Goal

- Comparable BMR resolution as with the Si+W ECAL.
- Much better sensitivity to γ/e , EM resolution $\leq 3\%/\sqrt{E(GeV)}$

✤ Features:

- Timing at two ends of the crystal bar
- Crossed arrangement in adjacent layers.
- High granularity with reduced readout channels
- Key issues:
 - Ambiguity caused by 2D measurements (ghost hit).
 - Identification of energy deposits from particles (confusion).

Testbeam of Prototype 4D Crystal ECAL

- ✤ A successful testbeam @ DESY, Oct 2023
- To address critical issues at system level
 - Validation: design of crystal-SiPM, light-weight mechanical structure
 - EM shower performance
- Module development
 - BGO crystal bars from SIC-CAS
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch
 - Front-end electronics with CITIROC, by CNRS OMEGA. An ASIC with a large dynamic range would be more desirable

Glass Scintillator HCAL

Replacing plastic scintillator with high density glass scintillator

- Light yield: 1000~2000 ph / MeV
- Density: 5~7 g/cm³
- Scintillation time: ~100 ns
- Low cost
- Tiles in cm scale for PFA HCAL

Solenoid Magnet

HTS Cable Development

Significant progress !

Object: single tape core lc > 100 A@77K; 14-core cable lc > 830 A@77K, self-field.

Many Other Detector R&Ds

R&D Efforts for Future Higgs Factories

	Det	Technology		Det	Technology
	×	JadePix			Crystal ECAL
	erte	TaichuPix		orimeter	Stereo Crystal ECAL
	N N	CPV(SOI)			Scint+W ECAL
	oixe	Stitching			Si+W ECAL
		Arcadia			Scint+Fe AHCAL
		CEPCPix		Calc	ScintGlass AHCAL
	PID	Silicon Strip		U	RPC SDHCAL
	∿ S	ТРС			MPGD SDHCAL
	cke	Drift chamber			DR Calorimeter
	Tra	PID DC		2	Scintillation Bar
	-	AC-LGAD ToF		onl	RPC
•	-=	SiTrk+Crystal ECAL		2	μ-Rwell
	-um	SiTrk+SiW ECAL		0	HTS / LTS Magnet
		Fast LumMoni		Mise	MDI & Integration
		CEPC SW			TDAQ scheme

- Some R&D efforts are already associated with international collaborations: CALICE, LCTPC, & RD*
- The ECFA DRDs cover much broader scopes, with more general supports, e.g. testbeam facilities
- We will never stop seeking for better technologies.
- However, we need to converge for TDR of a reference detector
 - Start preparation in January of 2024
 - A draft version by **December of 2024**
 - Official release by June 30, 2025

Optimal Timeline of CEPC

