

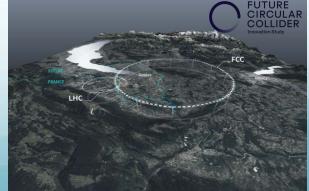
R&D on FCC and Future colliders at IN2P3 FCC-NPC

Institut national de physique nucléaire et de physique des particules

A. Faus-Golfe on behalf FCC-NPC team

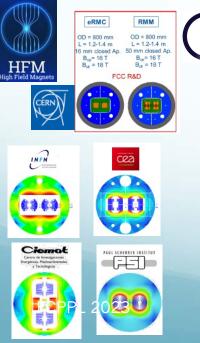
Outline

- Future Large Accelerator Projects
 ESSP & Snowmass context
 State of the Art and Scientific Issues
- IN2P3 contribution to future and current R&D and Projects (2021-2025)
- Future Perspectives


Higgs Factories

Linear: ILC/CLIC

Circular: FCC-ee



HEP FC Key Technologies

> HEP Large Accelerator Projects Key Technologies

IN2P3

			RF cavities						Magnets							
Components			SCRF				NCRF	HLRF	SC Mag.		NC Mag.	Vac	IRs	Injec-e+	Sust – C footprint	Others
Techniques		Design	HG/HQ	CRYO	CRAB		HE-Klys	Nb₃Tn	CRYO							
P R O J E C T S	FCC	FCC-hh				Х			Х	Х		X			Х	Integr.
		FCC-ee	Х	Х	Х	Х		Х			Х	Х	X	X	Х	Integr.
	LC	ILC		X	X	X		Х					X	X	Х	
		CLIC				Χ	Х	Х			Х		X		X	

Context: FCC - Next Particle Collider

A rich R&D program is driving the developing and building of these new facilities. A strong cooperation between national institutes, CERN and others global laboratories or collaborations is vital for the progress of the field and also for preserving the expertise.

In this context the main goal of the FCC-NPC project is to ensure an appropriate contribution to this vibrant and diverse R&D program focusing in where we have already demonstrated our know-how and expertise:

- Nanobeams handling
- Nanobeam stabilization and positioning techniques
- Luminosity and backgrounds
 - High-intensity e+ sources
 - > e+e- polarimetry
 - > Dynamics vacuum and material studies
 - > SRF multipacting and materials

IN2P3 FCC-NPC: in a nutshell

FCC - Next Particle Collider

^{*} MoU HL-LHC in progress

WP2 Nanobeam size handling

Scientific Issues

$$L = f_{coll} \frac{N_b^2}{4\pi \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Very high peak luminosity needs nanometre transverse IP beam sizes (FCC-ee 30-70 nm, ILC 3-8 nm, CLIC 1-3 nm). To demagnify the beams, complex IR and FFS are designed.

ILC/CLIC scaled FFS: ATF2-3

ATF/ATF2 FFS has verified the minimal technical feasibility of ILC/CLIC-FFS, to maximize the luminosity potential of **ILC/CLIC** a further investigation of:

- Intensity dependence effects on the IP size
- Optical aberrations specially with smaller β_x^* , design optics ($\beta_x^* \times \beta_v^*$)
- Smaller sizes ultra-low β* (CLIC) will be pursued in a follow-on upgraded facility "ATF3" (ILC-IDT framed).

ILC proposal state and R&D (4 years)

WP2 Nanobeam size handling

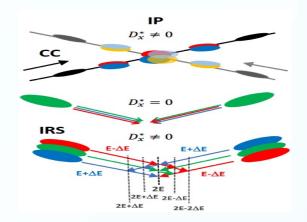
Scientific Issues

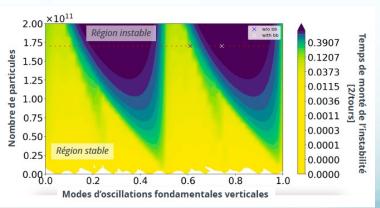
$$L = f_{coll} \frac{N_b^2}{4\pi \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Very high peak luminosity needs nanometre transverse IP beam sizes (FCC-ee 30-70 nm, ILC 3-8 nm, CLIC 1-3 nm). To demagnify the beams, complex IR and FFS are designed.

FCC-ee IR studies:

In some "special" IR configurations as monochomatization the energy spread could be reduced to maximize the sensitivity of certain physics channels. Further studies on:


- Parameters including Beamsstrahlung (BS) (increased ε_x σ_b) and crossing angle (Crab Cavities-CC)
- Optics design to generate antisymmetric D_x* are needed to probe the feasibility of this kind of IR schemes.
- Experimental implementation studies (DAPHNE and SuperKEKB)


Realistic IR simulations:

- Synchrotron Radiation (SR) and Solenoidal detector fields impacts in MADX code.
- Beam-Beam instabilities studies, including more precise wakefield model and possible experimental studies.

$$w = 2E_0 + 0(\varepsilon)^2$$

Crossing angle monochromatization scheme featuring IP dispersion of opposite signs.

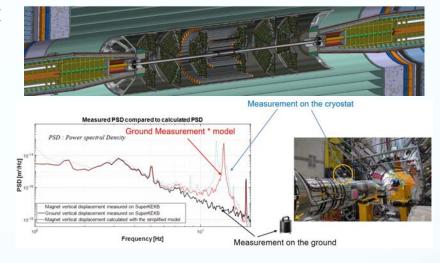
Resonances causing horizontal instabilities after beam-beam interactions with Circulant Matrix Model (CMM) semi-analytical model.

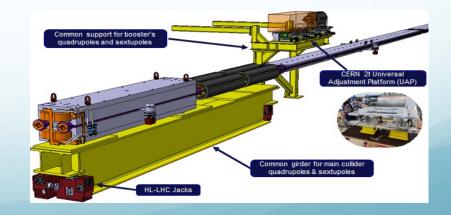
WP2 Nanobeam size handling

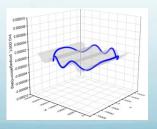
Objectives

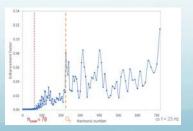
- Objective 2.1: ATF3 ILC-CLIC FFS facility test optics design, long term stability operation and tuning and high-order aberration studies in order to maximize the potential luminosity of ILC.
- Objective 2.2: Parametric study of a monochromatic scheme to maximize the sensitivity to the Yukawa coupling in FCC-ee, including BS and crossing angle effects between others and IR optics design implementation and integration of such scheme without luminosity degradation. Possible experimental studies.
- Objective 2.3: Realistic simulations of the FCC-ee IR including SR and solenoidal detector field impact in MADX and beam-beam instabilities including more precise wakefields model and experimental studies.

WP3 Nanobeam stabilization and Positioning


Scientific Issues

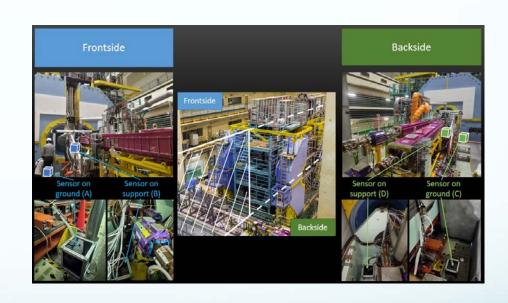

Vibration mitigation and **misalignments control** are crucial to obtain **high luminosity** (CLIC FFS magnet specification displacements 0.2 nm at 4Hz, less for FCC-ee / SuperKEKB 50-200nm at 1Hz). With thousand of magnets, **dynamic positioning approach** by girder is the most effective approach.


> FCC-ee beam stabilization


- FCC-ee MDI: guarantee the mechanical behavior of the MDI assemblies in integrating the estimated motion of the last focusing magnets into the global optics simulation (MADx)
- FCC-ee arc-cell prototype: static and dynamics studies with a special interest on the positioning system
- FCC-ee uniform waves: Simulation in function of frequency, phase and direction. Further beam dynamics studies with GND generator.

Setup of the MDI

WP3 Nanobeam stabilization and Positioning Scientific Issues


Vibration mitigation and misalignments control are crucial to obtain high luminosity (CLIC FFS magnet specification displacements 0.2 nm at 4Hz, less for FCC-ee / SuperKEKB 50-200nm at 1Hz). With thousand of magnets, dynamic positioning approach by girder is the most effective approach.

SuperKEKB stabilization

 Analysis of the vibrations effects on beam parameters and relevance of the associated optics simulation

Positioning

- Development of a low cost system dedicated to a singular magnet on two transverse axes
- Application to FCCee arc cell prototype and ATF3 final focus magnets

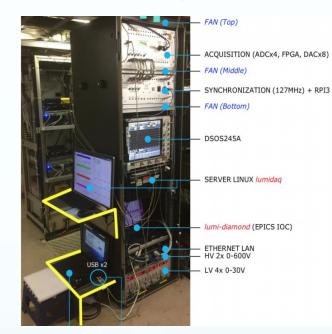
4 seismic sensors (2 each side) BELLE II

WP3 Nanobeam stabilization and Positioning

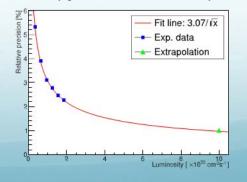
Objectives

- Objective 3.1: FCC-ee Innovation Study MDI WP leading (Vibrations study and its associated control strategy Beam optics simulations of vibrations, and impact on beam emittance/luminosity).
- Objective 3.2: FCC-ee studies for static (uniform waves) and dynamics (generator) vibrations
- Objective 3.3: FCC-ee Arc-Cell mock-up: static and dynamic studies and prospect for positioning.
- Objective 3.4: SuperKEKB: analysis of the vibrations impact on beam and associated optics simulations

WP4 Luminosity and Backgrounds

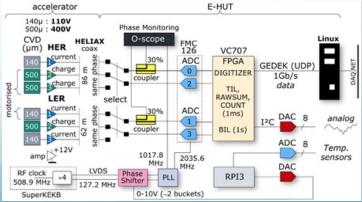

Scientific issues

High luminosity implies continuous correction of residual beam offsets and aberrations, fast luminosity measurement are an essential tool. Background mitigation is increasingly difficult with ultra-low β* and very high currents.


> Fast luminosity measurements

Fast luminometers (1% precision at 1 kHz) designed by IJCLab are deployed at SuperKEKB with large dynamic range, bunch-by-bunch and serve also as beam loss monitors. The measurements are inputs for:

- Feedback systems which stabilize the colliding beams and minimise their residual horizontal (and vertical) offsets.
- Aberration correction tuning procedure due to imperfections in the field quality and alignment of magnets.
- Luminosity optimization studies, including mechanical vibration near the detector area



Measured 1 kHz relative luminosity precision versus luminosity

WP4 Luminosity and Backgrounds

Scientific issues

High luminosity implies continuous correction of residual beam offsets and aberrations, fast luminosity measurement are an essential tool. Background mitigation is increasingly difficult with ultra-low β* and very high currents.

Backgrounds

Simulation and **experimental** studies on beam loss backgrounds from continuous top-up injection system:

 Beam dynamics studies including: collimators and septum aperture, Dynamic aperture DA (beam-beam, crab waist), optics mismatchs, Injection angle and offset, coupling... of HER injection efficiency cooperating with SuperKEKB injection task force at KEK

Major current issue: sudden beam loss beyond threshold **Beam Current Monitor** bunch current [mA] beam aborted Emit-effi Effect of increased input emittance HER MQEAE23 40%

WP4 Luminosity and Backgrounds

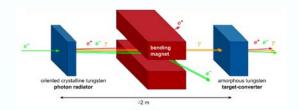
Objectives

Objective 4.1: Conducting dedicated experiments at the SuperKEKB collider aiming at maximizing luminosity performance and mitigating beam-induced backgrounds, including specific tests and validations of concepts and methods proposed / under development for future e⁺e⁻ high-energy colliders, based on operating the LumiBelle2 fast luminosity monitor, on the Belle II and SuperKEKB loss monitors, including comparing with LAPP mechanical vibration monitors near the IP, and supplemented by suitable simulation efforts.

WP5 High-Intensity e⁺ sources

Scientific issues

$$L = f_{coll} \frac{N_b^2}{4\pi \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

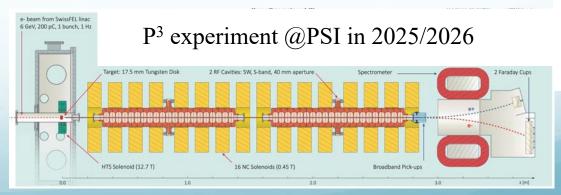

High-beam intensity and low emittance e⁺ are necessary to achieve high-luminosity (ILC/CLIC 10¹⁴-10¹⁵ e⁺/s, FCC-ee ~10¹³ e⁺/s while demonstrated @SLC ~6x10¹²e⁺/s)

➤ Novel types of e⁺ sources

R&D beyond existing lepton injector technology:

- Novel types of e⁺ source based on the hybrid scheme (channeling in crystals) with new granular targets.
- e⁺ capture system based on SC solenoid as the matching device for the capture system
- Use of the Artificial Intelligence (AI) for global optimisation of the e⁺ injector parameters

Crystal-based target Hybrid scheme


AMD Solenoid long Solenoid short Solenoid connector Cavities Cell 1

FCC-ee: Production + Capture System

Design studies for the FCC-ee are ongoing and well advanced (input for the FCC mid term project review)

18.2 T @15K@2kA reached for stack of 4 coils

PoP experiment for novel positron source (P³)

WP5 High-Intensity e⁺ sources

Objectives

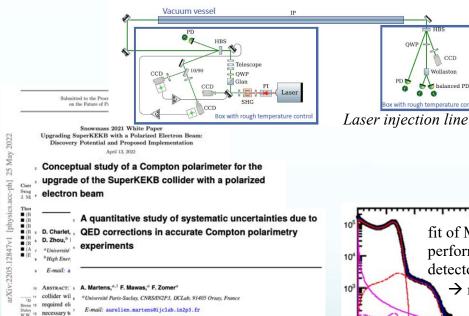
- Objective 5.1: Deep investigation of the positron source performances, with a focus on production target and capture systems suitable for applications in current and future accelerators. Approach the e+ production rate 10¹⁵-10¹⁶ e+/second requested by the future collider. Exploit Artificial Intelligence (AI) techniques for the start-to-end optimization studies of positron injectors.
- Objective 5.2: Participation in the PoP e+ experiment in PSI (P³).

WP6 e⁺e⁻ Polarimetry

Scientific issues

To optimize collision of polarized beams, rapid measurements of polarization are a key ingredient.

Accurate energy measurements thanks to resonant depolarization is critical for physics.

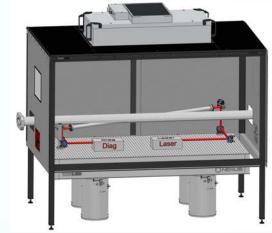

Compton polarimetry

R&D on:

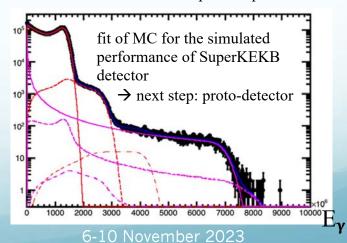
- Laser systems: specific design for real time monitoring of the laserbeam polarization (unavoidable systematic uncertainty on longitudinal polarization); critical for ILC, FCC-ee; goal: per-mille accuracy.
- Photon detectors: design and development towards real time monitoring (funding requested to ANR for SuperKEKB); useful for EIC too.
- Pixelized detectors: conceptual design studies for FCC-ee

Recent highlights:

- Snowmass21 paper, https://arxiv.org/abs/2205.12847
- QED corrections for Compton polarimetry under review
- paper dedicated to Compton polarimeter design submitted



ABSTRACT: Several new high-energy physics accelerators will exploit beam polarization as a core part of their program. In several cases the beam polarization needs to be accurately measured


be accounted for. In this paper, we estimate the related correction for the detectors considered for several projects as ILC and PCC-ee. Two different techniques to extract the beam polarization are investigated and found to provide complementary information. The related measurements are dom-

intated by different sources of systematic uncertainties, either related to QED corrections or likely to tou necontrolled variations of experimental conditions at the per-mille level. It is found in particular that the measurement of the spatial distribution of photons, besides experimental challenges, is more sensitive to OED corrections than the technique consisting in measuring electrons snatial and

KEYWORDS: Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors, beam-intensity monitors, bunch length monitors)

Conceptual implementation for SuperKEKB

WP6 e⁺e⁻ Polarimetry

Objectives

Objective 6.1: Design and optimization of laser systems for the Compton polarimeters, including the implementation and the laser beam transport for SuperKEKB and ILC and for resonant depolarization at FCC-ee. In particular for the ILC and FCC-ee to obtain the required one (or below for FCC-ee) per-mille precision on the determination of the laser polarization in the accelerator, in a reliable and reproducible way, which otherwise may become a limiting systematic uncertainty.

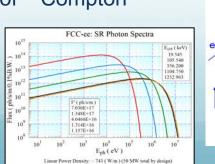
WP7 Dynamics Vacuum and Material studies

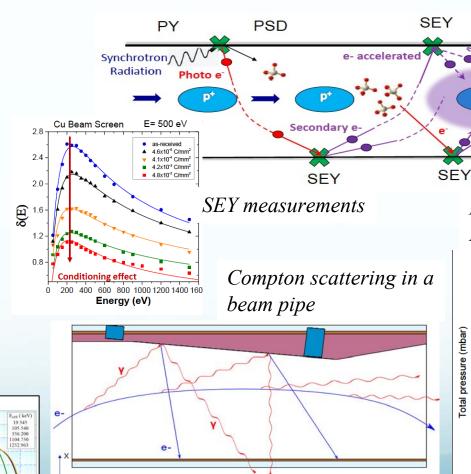
Scientific Issues

One of the main **potential limitation** in all future colliders is the **dynamic pressure**.

Specifications of **vacuum systems** and vacuum studies, including **materials** are of paramount importance.

Dynamics Vacuum

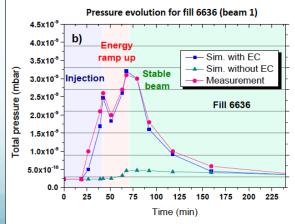

Dynamics Vacuum and Materials studies


Experimental and **Simulation** studies on:

- Measurement of the Secondary Emission Yield (SEY) (multipacting)
- Surface analysis of materials
- In situ measurements of pressure and development of the Dynamic pressure simulation (DYVACS)
- Ion Stimulated Desorption (ISD) experimental studies at yields of production for the conditioning surfaces of FCC-ee
- Electron Stimulated Desorption (ESD)
 experimental measurement using the same
 electron energy as that of Compton
 electrons

E=182 Gev

Energie critique ~ 1.2Mev!!!


Compton scattering: photon collides with electron and is scattered into a

LHC measurements versus
DYVACs simulations

ESD

multipacting

Electron

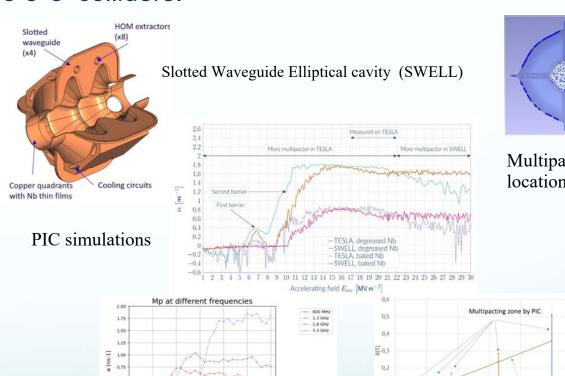
ovember 2023

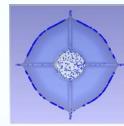
WP7 Dynamics Vacuum and Material studies

Objectives

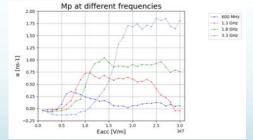
- Objective 7.1: Study and measurement of SEY, ESD and ISD for materials relevant for FCC-ee (low desorption yield, low SEY, fast conditioning, weak magnetic permeability, with a pumping action..)
- Objective 7.2: Development of the Dynamic pressure simulation (DYVACS) for FCC-ee

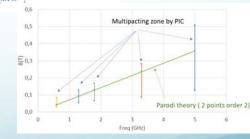
WP8 SRF multipacting and materials


Scientific Issues


Multipactor phenomena is triggered by the electromagnetic fields present in RF devices under vacuum such as SRF cavities. This phenomena is one of the potential limitation in in SRF cavities for future e⁺e⁻ colliders.

> SRF multipacting and materials


Further studies on:


- Multipacting modelling n the SRF SWELL cavities prototypes for FCC-ee (locations, power ranges, level, SEY impact..)
- Participation into cryogenic RF tests of SRF **SWELL** at CERN to measure multipacting levels and conditioning capabilities
- Measurement of the Secondary Emission Yield (SEY) on samples representative of SWELL cavity surface (at room and cryogenic temperatures).
- Fundamental understandings of frequency dependence of the SRF cavities
- Study on thermoelectric current that degrades **SRF** performance

Multipactor locations

FCPPL 2023

6-10 November 2023

WP8 SRF multipacting and materials

Objectives

- Objective 8.1: Multipacting simulations and experimental benchmarking of the SRF SWELL cavity prototypes for FCC-ee
- Objective 8.2: SEY measurements on samples representative of SRF SWELL cavity surfaces for FCC-ee
- Objective 8.3: Measurements on frequency dependence of SRF surface resistance
- Objective 8.4 : Simulation and analysis of thermoelectric current in bimetal structure of SRF cavities

FCC-NPC

R&D Teams evolution

PROJECTS	Present	MT F	uture			
R&D	B Factories	Higgs Factories				
11002	SuperKEKB	ILC/CLIC	FCC-ee			
Nanobeams & IRs		X	X			
Nanobeam stabilization & Monitoring	X	X	X			
Luminosity & Backgrounds	X					
e+ sources		X	X			
e+e- Polarimetry	X	X	X			
Vacuum & Materials			X			
SRF Cryo & Materials			X			

Thanks for your attention