The results of Performance evaluation

Performance evaluation of 20cm MCP-PMTs

Jun Weng Aiqiang Zhang Benda Xu On Behalf of Jinping Neutrino Experiment Collaboration wengj20@mails.tsinghua.edu.cn

> Department of Engineering Physics, Tsinghua University Institute of Modern Physics

> > November 10, 2023, Zhuhai

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs TUHEP 0 / 12

ション エロ・エロ・ エロ・ ション

The results of Performance evaluation

1 Background

- **2** The method of Performance evaluation
- **3** The results of Performance evaluation
- **4** Summary

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Background	
0000	

The results of Performance evaluation

Summary 00

Jinping Neutrino Neutrino Observatory

- Jinping Mountain Tunnel in Xichang City, Sichuan Province (2400 m of rock);
- 2 500-ton liquid scintillator detector in construction;
- **3** ν deposits energy in LS and emits photons.
- How to observe these photons?

ののの 単則 《ヨ》 《ヨ》 《唱》 《日》

Aiqiang Zhang, Jun Weng, Benda Xu	
Performance evaluation of 20cm MCP-PM	ſ

The results of Performance evaluatio 0000000 Summary 00

Jinping Neutrino Neutrino Observatory

- Jinping Mountain Tunnel in Xichang City, Sichuan Province (2400 m of rock);
- 2 500-ton liquid scintillator detector in construction;
- **3** ν deposits energy in LS and emits photons.

How to observe these photons?

Photomultiplier Tube (PMT)

Photoelectric effect and electron multiplication

The method of Performance evaluation

The results of Performance evaluatio 0000000 Summary 00

The requirement of PMT

ものの 単間 スポッスポッス型 イロッ

Aiqiang Zhang, Jun Weng, Benda Xu

Performance evaluation of 20cm MCP-PMTs

Background 00●0 he method of Performance evaluation

The results of Performance evaluatio 0000000 Summary 00

The requirement of PMT

- 1 nearly 4,000 PMTs: to control the cost of PMTs
- Wigh Photon detection efficiency (PDE): up to 30% for energy measurement
- 3 High time resolution: nanosecond timing resolution, for position measurement
- @ Reduce background impacts: low dark noise (fake signals), high signal-to-noise ratio

ション 「山下 ・ 山下 ・ 山下 ・ 小口 >

Background 00●0 The method of Performance evaluation

The results of Performance evaluatio 0000000

- 1 nearly 4,000 PMTs: to control the cost of PMTs
- Wigh Photon detection efficiency (PDE): up to 30% for energy measurement
- **③** High time resolution: nanosecond timing resolution, for position measurement
- @ Reduce background impacts: low dark noise (fake signals), high signal-to-noise ratio

Keys: All parameters mentioned above, particularly PDE and Transit time spread (TTS).

Background 000●

he method of Performance evaluation

The results of Performance evaluation 0000000

Classical PMT: multi-stage dynode

うせん 見聞 ふぼやえばや (型) ひょう

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs TUHEP 3 / 12 Background 000●

he method of Performance evaluation

The results of Performance evaluation

Summary 00

Ø20 cm MCP-PMT

Classical PMT: multi-stage dynode

MCP: small, fast time response

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Background	
0000	

The results of Performance evaluatio 0000000 Summary 00

Ø20 cm MCP-PMT

Classical PMT: multi-stage dynode

MCP: small, fast time response

- Photons hit the photocathode and generate electrons through the photoelectric effect
- @ Electrons are accelerated into the MCP and amplified by a factor of 1×10^7 to form observable pulse signals

ション 「山下 ・ 山下 ・ 山下 ・ 小口 >

The results of Performance evaluation 0000000

Ø20 cm MCP-PMT

Classical PMT: multi-stage dynode

MCP: small, fast time response

- Photons hit the photocathode and generate electrons through the photoelectric effect
- @ Electrons are accelerated into the MCP and amplified by a factor of 1×10^7 to form observable pulse signals
- JNE uses the \emptyset 20 cm MCP-PMT from NNVT
- To improve PDE, the MCP has an **ALD coating** on upper surface

The results of Performance evaluation 0000000

1 Background

2 The method of Performance evaluation

3 The results of Performance evaluation

4 Summary

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

The results of Performance evaluatio 0000000 Summary 00

Experimental Setup

- 1 Measurements are conducted in a dark box.
- 2 FADC: 10-bit, 1 GHz sampling rate.
- PiL040XSM picosecond laser: 405 nm, splited into four channels.
- Each pulse collects 10 us of data, with approximately 5 % containing photon information.
- Seach testing run lasts for 20 hours, with data acquisition, storage, and analysis managed by self-innovate software for fully automatical execution.

The results of Performance evaluatio 0000000

Experimental Setup

- 1 Measurements are conducted in a dark box.
- 2 FADC: 10-bit, 1 GHz sampling rate.
- PiL040XSM picosecond laser: 405 nm, splited into four channels.
- Each pulse collects 10 us of data, with approximately 5 % containing photon information.
- Seach testing run lasts for 20 hours, with data acquisition, storage, and analysis managed by self-innovate software for fully automatical execution.

Testing Procedure

- **1** Nine MCP-PMTs were tested, with a dynode PMT from Hamamatsu as a reference.
- ② The four PMTs were moved in a cycle within the dark box to eliminate the influence of different light intensities in different compartments.

Aiqiang Zhang, Jun Weng, Benda Xu

Backgrou	

The results of Performance evaluation

Data Processing

- laser signals at 240 ns
- detected light signals at 440 ns
- negative pulse

· < ㅁ > < 쿱 > < 클 > < 클 > < 립 = · 이익이

 Aiqiang Zhang, Jun Weng, Benda Xu
 TUHEP

 Performance evaluation of 20cm MCP-PMTs
 5 / 12

Background 0000	The method of Performance evaluation 00●	The results of Performance evaluation 0000000
Data Processing		
954	FWWW	 laser signals at 240 ns detected light signals at 440 ns negative pulse
Voltage 950 – PMT waveform Trigger waveforr	threshold N n(scaled) I I I I I I I I I I I I I I I I I I I	Photon Counting Capability
§ 948 − × t _{uig} − − × − × − − × − × − − × − × − − × − − × − × − − × − × − − × − × − × − − × −× −	t_{10} t_p μ_p $0.9V_p$ risetime falltime integration window	Charge distributionPhoton detection efficiency(PDE)
200 250 400	450 500 55	Time Resolution Capability

Transit time spread(TTS)

٠ Calculate the baseline and subtract it.

t/ns

- Charge: the result of integrating the pulse, which is proportional to the pulse height.
- TT: the difference between the 10% rise time of the pulse and the laser trigger time.

-

- 2 The method of Performance evaluation
- **3** The results of Performance evaluation

Charge Distribution Relative Photon Detection Efficiency Energy Resolution Time Resolution Capability Afterpulse

4 Summary

TUHEP 5 / 12

Background	

The results of Performance evaluation

Charge Distribution

- Gaussian fit to the peak (light red)
- quadratic fit to the valley (light green).

Aiqiang Zhang, Jun Weng, Benda Xu

Performance evaluation of 20cm MCP-PMTs

kground
00

The results of Performance evaluation

Charge Distribution

- Gaussian fit to the peak (light red)
- quadratic fit to the valley (light green).
- Peak-to-Valley ratio reaches 6, better than similar products (usually 3-4).
- a long tail on the right-hand side, approximately 40%.
- The relative standard deviation:

 $\nu = \sqrt{\text{Var[Charge]}}/\text{E[Charge]}$

the smaller ν , the better energy resolution

シック・川川 エル・エット 山マット

Aiqiang Zhang, Jun Weng, Benda Xu

kground
00

The results of Performance evaluation

Charge Distribution

- Gaussian fit to the peak (light red)
- quadratic fit to the valley (light green).
- Peak-to-Valley ratio reaches 6, better than similar products (usually 3-4).
- a long tail on the right-hand side, approximately 40%.
- The relative standard deviation:

 $\nu = \sqrt{\text{Var[Charge]}}/\text{E[Charge]}$

the smaller $\boldsymbol{\nu},$ the better energy resolution

クタウ 正面 スポッスポッス 手 くしゃ

- The long tail structure: significantly different from that of Classical dynode PMTs.
- Two amplification modes:
 - tail: large and broad
 - 2 main peak: small and narrow

The results of Performance evaluation 0000000

 Q/Q_1

Two Amplification Modes

- Triple Gamma Fit

 $\alpha_n = 17.499 \pm 0.803$

 $\beta = 0.058 \pm 0.003$

 $\alpha_{i} = 4.696 \pm 0.124$ $\beta = 0.595 \pm 0.007$

 $\alpha_{\rm c} = 22.500 \pm 0.853$

 $\beta_{-} = 0.022 \pm 0.001$ $\gamma^2/ndf = 124.0 / 112$

••• peak: p = 0.519 ± 0.010

•••• tail: $p = 0.440 \pm 0.011$ ---- small gamma

Aigiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Background	
0000	

The results of Performance evaluation

Summary 00

Two Amplification Modes

main peak (channel mode)

- small and narrow
- 2 electrons enter MCP channels directly
- **3** easy to count photons

Background	
0000	

The results of Performance evaluation

Summary 00

Two Amplification Modes

main peak (channel mode)

- small and narrow
- 2 electrons enter MCP channels directly
- **(3)** easy to count photons

tail (surface mode)

- large and broad
- 2 surface secondary emission electrons enter MCP
- **③** hard to count photons

ショック 正則 エル・エット 御を トート

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Background	
0000	

The results of Performance evaluation

Summary 00

Two Amplification Modes

main peak (channel mode)

- small and narrow
- 2 electrons enter MCP channels directly
- easy to count photons

tail (surface mode)

- large and broad
- 2 surface secondary emission electrons enter MCP
- **8** hard to count photons
- "Tail structure" reduces the energy resolution and needs to be studied!

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

The method of Performance evaluation

The results of Performance evaluation

Summary 00

Relative Photon Detection Efficiency (ϵ^0)

Aiqiang Zhang, Jun Weng, Benda Xu

Performance evaluation of 20cm MCP-PMTs

The method of Performance evaluation

The results of Performance evaluation

Summary 00

Relative Photon Detection Efficiency (ϵ^0)

Characterizing the probability of photons converting into observable signals

- The PDE of reference PMT is : ϵ_0
- The PDE of tested PMT is : ϵ_k
- Testing each PMT on each channel
- The relative relationships: $\epsilon_k^0 = \frac{\epsilon_k}{\epsilon_0}$
- General linear model of Binomial exponential family distribution is used for ϵ^0 .

The method of Performance evaluation

The results of Performance evaluation

Summary 00

Relative Photon Detection Efficiency (ϵ^0)

Characterizing the probability of photons converting into observable signals

- The PDE of reference PMT is : ϵ_0
- The PDE of tested PMT is : ϵ_k
- Testing each PMT on each channel
- The relative relationships: $\epsilon_k^0 = \frac{\epsilon_k}{\epsilon_0}$
- General linear model of Binomial exponential family distribution is used for ϵ^0 .

tested $\epsilon^0 = 1.7$, significantly improving photon counting and energy resolution

の2の 正則 エル・エリ・エピ・トロ・

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs TUHEP 8 / 12

Background	
0000	

The results of Performance evaluation

Energy Resolution

• Energy resolution is determined by $\frac{\sqrt{1+\nu^2}}{\epsilon^0}$ which is the smaller, the better.

- The thicker the ALD coating, the bigger the tail, the larger the u, the higher ϵ^0
- There is a balance between PDE and energy resolution, and finally T₄ nm is chosen.

The method of Performance evaluation

The results of Performance evaluation

Summary 00

Transit Time Spread(TTS)

- Gaussian fitting of the Transit Time (TT) to get TTS of 1.7 ns, a significant improvement compared to the previous generation Ø50 cm PMT (which is 10 ns).
- 2 There is a certain correlation between transit time and charge size to be guantified.

-

Background	

The results of Performance evaluation

Summary 00

Afterpulse

lonization of gas inside the MCP-PMT generates ions that can strike the photocathode and produce additional electrons, with a delay time on the order of 100 ns.

- The timing of afterpulses is related to the properties of the ions $\binom{Z}{M}X$ with a relationship of $\sqrt{\frac{M}{Z}}$
- Afterpulses are concentrated at 300 ns, 550 ns, 1200 ns, and 1700 ns, with a ratio of approximately $1:\sqrt{3}:\sqrt{16}:\sqrt{32}$
- Possible ion components include H⁺, He⁺, O⁺, or CH₄⁺, O₂⁺. $\langle \Box \rangle \langle \Box \rangle \langle$

- **2** The method of Performance evaluation
- **3** The results of Performance evaluation
- **4** Summary

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Background	
0000	

The results of Performance evaluation

Summary

- The new Ø20 cm MCP-PMT from NNVT used in the Jinping Neutrino Experiment demonstrates superior performance in terms of PDE and Peak-to-Valley ratio, with other terms comparable to similar international products.
- The long tail in the charge distribution is countered by the high PDE, resulting in an overall boost in energy resolution
- The ongoing research on new waveform analysis methods holds promise for mitigating the impact of the tail component in the charge spectrum.

Paper Information

Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment. https://doi.org/10.1016/j.nima.2023.168506

- 1 Dark count rate
- 2 Afterpulse

クタウ 正面 スポッスポッス 手 くしゃ

Gain and single PE resolution

- The gain of the main peak G_1 : $\frac{C_1}{e \times 50\Omega}$
- The gain of the total charge $G: G = \frac{\mu_C}{e \times 50\Omega}$
- The main peak resolution Res₁: $\frac{\sigma_{C_1}}{C_1}$
- The total charge resolution Res: $G_{e \times 50\Omega}^{\mu_C}$
- G is about 2 times G_1 for the MCP-PMTs
- Mean of Res_1 , Res : about 0.25, 0.69

Peak-to-valley ratio and some time characteristics

- **1** The mean P/V ratio of MCP-PMTs is about 5.8 while the reference PMT is about 2.4.
- @ Estimated mean and deviation of rise time, fall time, and FWHM are 3.71 ± 0.15 ns, 15.6 ± 1.8 ns, and 9.07 ± 0.63 ns for 9 MCP-PMTs.

 Energy resolution boost Relative PDE TTS

Aiqiang Zhang, Jun Weng, Benda Xu Performance evaluation of 20cm MCP-PMTs

Energy resolution boost

- the number of expected photons N on a PMT: $\pi(\mu_N)$
- Energy *E* of an event is proportional to $N = k\eta E$
- The output charge distribution *C* is a hierarchical model

$$E[C] = \mu_N \mu_C \tag{1}$$

(日)

$$Var[C] = \mu_C^2 \mu_N + \mu_N \sigma_C^2$$
 (2)

N is estimated as $\hat{N} = \frac{C}{\mu_c}$ and E is estimated as $\hat{E} = \frac{\hat{N}}{k}$. The reconstructed energy resolution

$$\frac{\sqrt{\operatorname{Var}[\hat{E}]}}{\operatorname{E}[\hat{E}]} = \frac{\sqrt{\mu_c^2 \mu_N + \mu_N \sigma_c^2}}{\mu_N \mu_c} = \frac{\sqrt{1 + (\frac{\sigma_c}{\mu_c})^2}}{\sqrt{\mu_N}} = \frac{\sqrt{1 + (\frac{\sigma_c}{\mu_c})^2}}{\sqrt{\operatorname{kn}E}}$$

Dark count rate

$$\mathrm{DCR/kHz} = \frac{N_{\mathrm{noise}}}{N_{\mathrm{trig}}} \frac{1}{T_{\mathrm{DCR}}/\mathrm{ns}} \times 10^{6} \tag{3}$$

- [-200, -150] ns relative to main pulse
- $T_{\rm DCR}$ is 50 ns

うせん 見聞 ふぼやえぼやえ ロ・

Relative PDE

1 total light intensity I_n for nth run, jth splitter ratio α_j , kth PMT PDE η_k

- 2 Expected photon number $p_{njk} = I_n \alpha_j \eta_k$
- 3 Observed trigger rate $R_{njk} = 1 e^{-p_{njk}}$

Oth PMT is the only one reference PMT. $\alpha_j^0 = \frac{\alpha_j}{\alpha_0}$, $\eta_k^0 = \frac{\eta_k}{\eta_0}$, $l_n^0 = l_n \alpha_0 \eta_0$, $i \equiv njk$

$$\log(p_i) = \log(I_0\alpha_0\eta_0) + \log(I_n^0) + \log(\alpha_j^0) + \log(\eta_k^0)$$
(4)

$$R_{i} = 1 - e^{-e^{\log(l_{0}\alpha_{0}\eta_{0}) + \log(l_{n}^{0}) + \log(\alpha_{j}^{0}) + \log(\eta_{k}^{0})}}$$
(5)

The trigger number N_{trig_i} of kth PMT in nth run with jth splitter obey Binomial distribution $B(R_i, N_{t_i})$, in which N_{t_i} is total number of waveforms.

$$\mathcal{L} = \prod_{i} R_{i}^{N_{\mathrm{trig}_{i}}} (1 - R_{i})^{N_{t_{i}} - N_{\mathrm{trig}_{i}}}$$
(6)

4/9

General linear model of Binomial exponential family distribution with Cloglog link function

Aiqiang Zhang, Jun Weng, Benda Xu	
Performance evaluation of 20cm MCP-PMTs	

• Cathode, focus dynode, MCP

ション 「山下 ・ 山下 ・ 山下 ・ 小口 >

• CST studio: electric field and trajectory simulation

- The drift times of the electrons at the top of PMT with 0 eV and 3 eV are respectively about 21 ns and 18 ns
- The electrons hitting on the surface of MCP generate the secondary electrons (including a single elastic scattering electron)

- Multiple secondary electrons with different kinetic energy may cause two or more pulses
- Elastic scattering electrons: The sharp difference between them at about 40 ns after the main peak, twice times drift time of electrons from the cathode to the MCP

•
$$B + N_t G(\mu_{\rm TT}, \sigma_{\rm TT}^2) + N_K G(\mu_K, \sigma_K^2) + H(\mu_{\rm TT} + 2\sigma_{\rm TT}) \left(b_S + N_S e^{-\frac{t - (\mu_{\rm TT} + 2\sigma_{\rm TT})}{\tau_S}} \right)$$

ション 「山下 ・ 山下 ・ 山下 ・ 小口 >

- TTS is defined as FWHM: $2\sqrt{2\ln(2)}\sigma_{TT}$
- The long tail in charge distribution

After pulse categories

- Pre-pulses: photons hitting on the MCP or the first dynode directly rather than the photocathode; 10 ns scale
- After-pulses: the ionization of gaseous impurities between the cathode and first dynode or MCP when photoelectrons go through;100 ns scale
- After-pulses: the relation between time and ions ($_{\rm M}^{\rm Z}{\rm X}$) is $\sqrt{\frac{M}{Z}}$
- Search window: <-10 ns; >200 ns
- The peak position t_p and equivalent charge $C_{\rm equ}$ of the after-pulse and pre-pulse are calculated

クタウ 正面 スポッスポッス 手 くしゃ

Parameterization

- The relative t: the difference between t_p of pre/after-pulse and t_r^{10} of main pulse
- around 300 ns, 550 ns, 1200 ns and 1700 ns, $1:\sqrt{3}:\sqrt{16}:\sqrt{32}$
- Assumption: H^+ , He^+ or other unknown ions, O^+ or CH_4^+ , and O_2^+ or other unknown ions
- Substracting dark noise rate $N_{\rm DCR} = N_{\rm trig} \cdot {\rm DCR} \cdot T_{\rm bin}$, in which $N_{\rm trig}$ is the number of triggered waveforms

•
$$\sum_{i=1}^{4} A_i G(t_i, \sigma_i^2)$$

• $[-150, -10] \operatorname{ns} [200, 9800] \operatorname{ns}$

クタウ 正面 スポッスポッス 手 くしゃ