The Expected Performance of the High-energy Underwater Neutrino Telescope (HUNT)

Speaker: Tian-Qi Huang^{1,2}

¹ Institute of High Energy Physics, Chinese Academy of Sciences

² Tianfu Cosmic Ray Research Center

the 14th Workshop of France China Particle Physics Laboratory @ SYSU Zhuhai Campus

Scientific Goals

High-energy Underwater Neutrino Telescope (HUNT)

- Identifying the **hadronic PeVatrons** in our Galaxy
- Resolving the high energy neutrino sky above 100 TeV
- Understanding the origin, acceleration and propagation of high energy cosmic-rays

PeVatrons: accelerator of PeV cosmic-rays (e.g., electrons, protons) 1LHAASO: 43 sources (>4σ); 22 sources (>7σ)

Detector Design

Requirements for HUNT

- Angular resolution: ~0.1° (tracks),
 <3°(cascades)
- Energy resolution: $\Delta \log E \sim 0.3$ (tracks), $\Delta E \sim 10-30\%$ (cascades)
- Discovering the neutrino sources (>100 TeV)

Detector Design

20 inch PMT

- Large photosensitive area
- Excellent time performance: TTS~7 ns
- High quantum efficiency: QE>30%

Detector Simulation

- Cylinder array
 - Lake Baikal
 - South China Sea
- Earth Model (a)
- vN cross section (b)
- Inelasticity (c, d)
- Lepton energy loss (e)

Effective Area (muon neutrino)

Reconstructed Energy (muon track)

Detector Simulation

Simulation toolkits

- Geant4: simulating particle interactions inside the array
- Opticks: an open source project that accelerates Geant4 based optical photon simulations
 - at least **11 times** faster than using Geant4 only
- CRMC: hadronic interactions above 100 TeV

Morphology

Left: Cascade event induced by an 1 PeV electron; Right: Track event induced by an 100 TeV muon

Detection Efficiency (muon-tracks)

The detection efficiency for up-going muon-tracks. We adopt the following **event selection criteria**:

- number of PMT hit $(N_{hit}) \ge 7$
- number of photoelectrons $(N_{PE}) \ge 1$ for each hit
- total $N_{PE} \ge 21$
- track length > 250 m

Upgoing Tracks

Upgoing Tracks

Through-going muon-tracks

Event selection criteria:

- number of PMT hit $(N_{hit}) \ge 7$
- $N_{PE} \ge 1$ for each hit
- total $N_{PE} \ge 21$
- zenith > 80 degree
- track length > 250 m

Effective Area

Reconstructed Energy

Upgoing Tracks

Starting muon-tracks

Event selection criteria:

- number of PMT hit $(N_{hit}) \ge 7$
- $N_{PE} \ge 1$ for each hit
- total $N_{PE} \ge 21$
- zenith > 80 degree
- track length > 250 m
- veto region: **not considered yet**

Reconstructed Energy

Lake Baikal vs. South China Sea

Lake Baikal

- Depth: 500-1360 m
- Larger effective area for the sources with declination angles from -50 degree to 5 degree, especially for the Galactic center.

South China Sea

- Depth: 2560-3420 m
- Larger effective area for the sources with declination angles above 20 degree.
- The observable region (for up-going events) covers most of LHAASO field of view.

Lake Baikal vs. South China Sea

Lake Baikal

- Depth: 500-1360 m
- Larger effective area for the sources with declination angles from -50 degree to 5 degree, especially for the Galactic center.

South China Sea

- Depth: 2560-3420 m
- Larger effective area for the sources with declination angles above 20 degree.
- The observable region (for up-going events) covers most of LHAASO field of view.

Prospects for Detecting Diffuse Neutrinos

Background

Atmospheric muon neutrinos (MCEq)

Signal

Diffuse astrophysical muon neutrinos

Binned Likelihood

- $L = \prod e^{-n_s S_i n_b B_i} (n_s S_i + n_b B_i)^{n_i} / n_i!$
- We approximate the median significance by replacing the data by the corresponding expectation values.

We anticipate detecting the diffuse neutrino flux above 100 TeV at 5σ level in **3 months**.

Prospects for Detecting Galactic Sources

Background

- Atmospheric muon neutrinos (MCEq)
- Diffuse astrophysical muon neutrinos (9.5 yr, tracks)

Signal (HESS J1702-420A)

- Neutrino energy 50 TeV 2 PeV
- 2d Gaussian distribution $\sigma = (\sigma_s^2 + \sigma_d^2)^{0.5}$
- Intrinsic extension $\sigma_s = 0.06 \text{ deg}$

We anticipate detecting the neutrinos (50 TeV - 2 PeV) from HESS J1702-420A at 5σ level with 10 years of operation at Lake Baikal

- if **63%** of gamma-rays (> 100 TeV) are from π^0 decay **South China Sea**
- if **80%** of gamma-rays (> 100 TeV) are from π^0 decay

Detector angular resolution σ_d is assumed to be

- > 0.2 deg for through-going tracks
- > 0.4 deg for starting tracks

Pathfinder Experiment

Experimental Site

• The water of Xisha Islands in South China Sea

Experimental Objectives

- Test of long-distance LED calibration system
 - ✓ Time resolution 0.4 ns for bright pulses
- Pressure resistance test of 23-inch glass sphere
- In-situ measurement of gamma ray background
 - ✓ The radioactivity for ⁴⁰K and ²¹²Pb

Scintillation Crystal Gamma Spectrometer				
Depth [m]	Radionuclide	Channel 0 [Bq/L]	Channel 6 [Bq/L]	
1800	⁴⁰ K(1460 keV)	15.1 ± 1.3	17.1 ± 0.1	
1100		14.8 ± 2.8	19.4 ± 2.3	
CZT Gamma-ray Spectrometer				
Depth [m]	Radionuclide	Channel 0 [Bq/L]	Channel 2 [Bq/L]	
1800	²¹² Pb(238.6 keV)	1.2 ± 0.2	0.9 ± 0.2	
1100		0.97 ± 0.4	1.02 ± 0.3	

| Pathfinder Experiment Apparatus

Summary

- LHAASO has discovered tens of PeVatron candidates waiting for the identification by high energy neutrino observations.
- **HUNT** will realize unprecedented potential in discovering single neutrino sources and precise measurement of the spectrum of the diffuse flux of astrophysical neutrinos.
- In the upcoming research, we will consider more details (e.g., noises) in the simulation and optimize the reconstruction algorithm for better performance (e.g., angular resolution).
- In the upcoming phase of the experiment, we will deploy a prototype string into the array of Baikal-GVD.

Welcome to join our simulation and hardware groups! huangtq@ihep.ac.cn

postdoc_HUNT.d ocx

Back Up

Strings uniformly distribute on the Fibonacci lattices in a circular area (36 km²).

Muon energy loss

Medium	α , [10 ⁻³ GeV cm ² g ⁻¹]	β , [10 ⁻⁶ cm ² g ⁻¹]
Air	2.81	3.58
Water	2.49	4.22
Rock	2.21	5.31

 Table 1: The parameters for muon energy loss in different media.

Fig. 40. Fit to the average range of a muon in ice. The range is calculated with PROPOSAL with the initial energy of the particle between 10^{-1} GeV and 10^{11} GeV.

Effective area

- Simulate IceCbe effective area for through-going track events
- > 100% trigger rate

Detection efficiency

Reconstruction

Through-going track events (θ >80 deg)

Weighted time-residual method.

$$\chi^2_{\text{WTR}} = \sum_{i}^{N} w_i \left(\frac{t_i(X, \theta) - T_i}{\sigma_i} \right)^2$$

- \succ σ_i is the time detection error of the i-th OM;
- w_i=q_i/Σq_j is the fraction of charge number in the i-th OM;
- t_i-T_i is the time residual between the theoretical expectation and the detection.

Reconstruction

Through-going track events (θ >80 deg)

Weighted time-residual method.

$$\chi^{2}_{\text{WTR}} = \sum_{i}^{N} w_{i} \left(\frac{t_{i}(X, \theta) - T_{i}}{\sigma_{i}} \right)^{2}$$

- \succ σ_i is the time detection error of the i-th OM;
- w_i=q_i/Σq_j is the fraction of charge number in the i-th OM;
- t_i-T_i is the time residual between the theoretical expectation and the detection.

Reconstruction

Weighted time-residual method.

$$\chi^2_{\text{WTR}} = \sum_i^N w_i \left(\frac{t_i(X,\theta) - T_i}{\sigma_i}\right)^2$$

- \succ σ_i is the time detection error of the i-th OM;
- w_i=q_i/Σq_j is the fraction of charge number in the i-th OM;
- t_i-T_i is the time residual between the theoretical expectation and the detection.

Previous results

Previous results

