

The Status of NEON

Lili Yang SPA, Sun Yat-sen University On behalf of NEON group FCPPL 2023.11.9

Contents

• Scientific motivation and goal

• Deep-sea neutrino telescope design, and simulation

• Detector design and assemble

• Future plan

Neutrino Observatory in the Nanhai (NEON)

Array Design

type	$d_{\rm vertical}$	$d_{\rm horizontal}$	R	Ψ_{50}
STD	30 m	100 m	250 m	0.4
L ^{den} ver	10 m	100 m	250 m	0.3
L_{ver}^{spa}	50 m	100 m	250 m	0.4
L_{hor}^{den}	30 m	50 m	250 m	0.2
L_{hor}^{spa}	30 m	200 m	250 m	1.2
L ^{large}	30 m	100 m	500 m	0.2
L ^{small}	30 m	100 m	125 m	0.8

The simulation chain

- Neutrino interacts with water
- Secondaries propagating in water
- Photons are emitted secondary particles
- Propagation of photons, considering scattering and absorption

Neutrino interactions: NC, $v_e CC$, $v_\mu CC$, $v_\tau CC$

electromagnetic

w

hadronic

shower

shower

hadronic

shower

W

hadronic

shower

hadronic

shower

hadronic shower

w

Event generator:

- gSeaGen (Base on GENIE)
- High Energy Extension: APFEL

Energy range: 100keV - 100PeV Neutrino type: All type

The ⁴⁰K background study

Max opacity: 28m

$N_{photon}^{obs}(r) = A$	$\times \sum_{\lambda} (Q_{\lambda} \times \eta_{\lambda} \times e^{-\frac{r}{L'_{\lambda}}})$	Simulation parameters	The number of hited PMT in 10 ns	Event Count [%]
Obtaine simulati Geant4	ed with ion in (⁴⁰ K decay		1	97.16
near to	detector) The Energy spect	rum at different distances 30-40m(MC data) 30-40m(prediction) 40-50m(MC data)	2	2.79
(1) Reasonable and Effective	103	40-50m(prediction) 50-60m(MC data) 50-60m(prediction)	3	4.78×10 ⁻²
(2) Easily apply to other isotopes and detectors			4	4.93×10 ⁻⁴
	10 ⁰ 2.25 2.50 2.75 Phot	3.00 3.25 3.50 3.75 4.00		

Reconstructioin

$$|\Delta t| - \frac{\Delta r}{v} < 20$$
ns, $\left| |\Delta t| - \frac{\Delta r}{c} \right| < 500$ ns

- K40 decay (major noise).
- Light emitted by organic matter when it is disturbed, or by deep-sea fish as a biological response.
- PMT dark current.
 - 1. Linear fit (fastest)

$$\vec{d} = \sum_{i,j(t_j > t_i)} w_{ij} (\vec{P_j} - \vec{P_i})$$
, where $w_{i,j} = q_j + q_i$ and q is photon electron

2. Chi-square fit

$$\chi^2 = \sum_i (t_{\rm res}^i)^2$$

3. PDF fit (the most accurate)

$$L(t_{\text{res}}^1, t_{\text{res}}^2, \dots, t_{\text{res}}^n | \overrightarrow{P}, \overrightarrow{d}) = \sum_i f(t_{\text{res}}^i | \overrightarrow{P}, \overrightarrow{d})$$

Reconstructioin 10⁵ _____ $|\Delta t| - \frac{\Delta r}{-1} < 20$ ns, $||\Delta t| - \frac{\Delta r}{-1}| < 500$ ns All hits Selected hits 0.6 Preselected K40 K40 decay Postselected K40 • Light emitte 0.5 disturbed, c 0.4 response. • PMT dark cl $\widehat{\ }$ ★ **č** ^{0.3}] 400 600 t_{res}(nˈs̆) 1. Linear fi 🏹 * * 0.2 **Ω(Normalized)** $\vec{d} = \sum$ ★ Linear × * * $i,j(t_j>t)$ Chi-square photon el 0.1 PDF 2. Chi-squa 0.0 +---10³ $\chi^2 = \sum_{i}$ 10⁵ 104 10^{6} Energy (GeV) 3. PDF fit ($L(t_{\text{res}}^1, t_{\text{res}}^2, \dots, t_{\text{res}}^n | \overrightarrow{P}, \overrightarrow{d}) = \sum f(t_{\text{res}}^i | \overrightarrow{P}, \overrightarrow{d})$ $\Delta \Omega^{160}$ 80 100 120 60 140

Detector design and assemble

- Higher QE, SNR and PMT production consistency are important for NEON.
- Two types of PMTs are acceptable

459

526

360

437

633

912

OM Design and Assemble

Future Plan

- As one of the most important member in multi-messenger astronomy, neutrinos telescopes should be constructed with better resolution and sensitivity.
- As we had the first attempt last week, future improvement is planned and ongoing.
- GNN technique will be applied to shower/track identification and reconstruction.
- Upgrade the FPGA and lower the power consumption.
- The build and construction of deep-sea neutrino telescope is challenging, but super attractive.

Thank you!