

Partial Wave Analysis of $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \phi$

汇报人:兰文宁 指导老师:李惠静

Henan Normal University

HFPGroup Meeting, Sep.6th, 2023

- > Motivation
- > Data Samples
- > Event selection criteria
- > Background analysis
- >Partial Wave Analysis
- > Summary and Next to do

Motivation

• Search for possible intermediate resonances in the invariant mass of $\Lambda\overline{\Lambda}$, $\Lambda\phi$ or $\overline{\Lambda}\phi$.

- Charmonium mesons are a bridge between the light and heavy quarks, which will provide knowledge of its structure and may shed light on perturbative and nonperturbative strong interactions in this energy region.
- > Study the baryon excited states consist of $\Lambda \phi$ or $\overline{\Lambda} \phi$

Data Samples

Data set	Number of events	BOSS version	
09+12 ψ(3686) data	4.48×10^{8}		
2021 ψ(3686) data	~22.5× 10 ⁸ ~	2.7Billion	
$09+12 \psi(3686)$ inclusive MC	5.06×10^{8}	BOSS 7 0 9	
2021 ψ(3686) inclusive MC	$\sim 23 \times 10^{8}$		
Signal MC (PHSP)	1.2 million for (09+12) 5 million for (2021)		

Event Selection criteria

Charged tracks

- $|\cos \theta| < 0.93$
- Kaons: $|V_z| < 10$ cm, $|V_r| < 1$ cm
- $N_{\text{good}} > 5$, $N_{Kaon} > 1$

Particle identification

- For Kaons (dE/dx + TOF)Prob(K)>Prob(π), Prob(K) >Prob(p) N_{K+} = N_{K-} = 1
- For proton (dE/dx + TOF + EMC)Prob(p)>Prob(π), Prob(p) >Prob(K)
- Others are pions by default

 $\mathbf{N}_p \geq 1$, $\mathbf{N}_{\bar{p}} \geq 1$, $N_{\pi^+} \geq 1$, $N_{\pi^-} \geq 1$

$\Box \ \Lambda \& \overline{\Lambda} \ reconstruction$

- 1.05 $< M_{p\pi^-} < 1.15 \text{ GeV}/c^2$
- 1.05 $< M_{\bar{p}\pi^+} < 1.15 \text{ GeV}/c^2$
- $\Lambda \& \overline{\Lambda}$ come from secondary vertex
- $min(|M_{p\pi^{-}} m_{\Lambda}|^2 + |M_{\bar{p}\pi^{+}} m_{\bar{\Lambda}}|^2)$
- $\Lambda \& \overline{\Lambda} : \frac{L}{\sigma} > 0$

□ 4C-kinematic fit

- 4C-kinematic fit with $\Lambda, \overline{\Lambda}, K^+, K^-$
- $\chi^2_{4C} < 200$

Background analysis

> **Topology** The main background is $\psi(3686) \rightarrow \overline{\Omega}^+ \Omega^-$

Table 1: Event trees and their respective initial-final states.

· · · · · · · · · · · · · · · · · · ·					
index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
1	$e^+e^- ightarrow \psi', \psi' ightarrow \phi \Lambda \bar{\Lambda}, \phi ightarrow K^+K^-, \Lambda ightarrow \pi^- p, \bar{\Lambda} ightarrow \pi^+ ar{p} (e^+e^- ightarrow \pi^+ \pi^- K^+ K^- par{p})$	0	0	<mark>41</mark> 933	41933
2	Main background $e^+e^- \rightarrow \psi', \psi' \rightarrow \bar{\Omega}^+\Omega^-, \bar{\Omega}^+ \rightarrow K^+\bar{\Lambda}, \Omega^- \rightarrow K^-\Lambda, \bar{\Lambda} \rightarrow \pi^+\bar{p}, \Lambda \rightarrow \pi^- p$ $(e^+e^- \rightarrow \pi^+\pi^-K^+K^-p\bar{p})$	1	0	3253	45186
3	$e^+e^- \to \psi', \psi' \to \phi \Lambda\Lambda, \phi \to K^+K^-, \Lambda \to \pi^- p\gamma_{FSR}, \Lambda \to \pi^+\bar{p}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	2	1	37	45223
4	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^-p, \bar{\Lambda} \to \pi^+\bar{p}\gamma_{FSR}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	5	1	29	45252
5	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+\bar{p}\gamma \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma)$	6	2	17	45269
6	$e^+e^- o \psi', \psi' o \phi \Lambda \Lambda, \phi o K^+K^-, \Lambda o e^- ar{ u}_e p, \Lambda o \pi^+ ar{p} \ (e^+e^- o e^- ar{ u}_e \pi^+ K^+ K^- par{p})$	12	5	15	45284
7	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-\gamma_{FSR}, \Lambda \to \pi^-p, \bar{\Lambda} \to \pi^+\bar{p}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	8	1	14	45298
8	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^-p\gamma, \bar{\Lambda} \to \pi^+\bar{p}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma)$	11	2	13	4531 <mark>1</mark>
9	$e^+e^- o \psi', \psi' o \phi \Lambda \overline{\Lambda}, \phi o K^+ K^-, \Lambda o \pi^- p, \overline{\Lambda} o e^+ u_e \overline{p} \ (e^+e^- o e^+ u_e \pi^- K^+ K^- p \overline{p})$	25	6	10	45321

 \succ Reject $\psi(3686) \rightarrow \overline{\Omega}^+ \Omega^-$ events

• We reject the events in the range of $M_{p\pi K} \in (1.668, 1.674) \text{ GeV}/c^2$

• Topology after vetoing $\psi(3686) \rightarrow \overline{\Omega}^+ \Omega^-$ events.

Backgrounds are less than 0.5%.

	Table 1: Event trees and their respective initial-final states.				
index	event tree (event initial-final states)	iEvtTr	iEvtIFSts	nEvts	nCmltEvts
1	$e^+e^- \to \psi', \psi' \to \phi\Lambda\Lambda, \phi \to K^+K^-, \Lambda \to \pi^-p, \Lambda \to \pi^+\bar{p} \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p})$	0	0	34344	34344
2	$\begin{array}{c} e^+e^- \to \psi', \psi' \to \bar{\Omega}^+\Omega^-, \bar{\Omega}^+ \to K^+\bar{\Lambda}, \Omega^- \to K^-\Lambda, \bar{\Lambda} \to \pi^+\bar{p}, \Lambda \to \pi^-p \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}) \end{array}$	2	0	59	34403
3	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^- p\gamma_{FSR}, \bar{\Lambda} \to \pi^+\bar{p} \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	1	1	26	34429
4	$e^+e^- \to \psi', \psi' \to \phi\Lambda\Lambda, \phi \to K^+K^-, \Lambda \to \pi^- p, \Lambda \to \pi^+ \bar{p}\gamma_{FSR} \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	3	1	24	34453
5	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+\bar{p}\gamma \\ (e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma)$	4	2	14	<mark>34467</mark>
6	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to e^-\bar{\nu}_e p, \bar{\Lambda} \to \pi^+\bar{p} \\ (e^+e^- \to e^-\bar{\nu}_e\pi^+K^+K^-p\bar{p})$	7	4	12	34479
7	$e^+e^- \to \psi', \psi' \to \phi\Lambda\Lambda, \phi \to K^+K^-\gamma_{FSR}, \Lambda \to \pi^-p, \Lambda \to \pi^+\bar{p}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma_{FSR})$	6	1	11	34490
8	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \bar{\Lambda} \to \pi^- p, \bar{\Lambda} \to e^+\nu_e\bar{p}$ $(e^+e^- \to e^+\nu_e\pi^-K^+K^-p\bar{p})$	11	5	8	34498
9	$e^+e^- ightarrow \psi', \psi' ightarrow \phi \Lambda \Lambda, \phi ightarrow K^+K^-, \Lambda ightarrow \pi^- p\gamma, \Lambda ightarrow \pi^+ ar p (e^+e^- ightarrow \pi^+ \pi^- K^+ K^- par p\gamma)$	10	2	7	34505
10	$e^+e^- \to \psi', \psi' \to \phi\Lambda\bar{\Lambda}, \phi \to K^+K^-, \Lambda \to \pi^- p, \bar{\Lambda} \to \mu^+\nu_{\mu}\bar{p}$ $(e^+e^- \to \mu^+\nu_{\mu}\pi^-K^+K^-p\bar{p})$	5	3	4	34509
11	$e^+e^- \to \psi', \psi' \to \phi\Lambda\Lambda, \phi \to f_0(980)\gamma, \Lambda \to \pi^-p, \Lambda \to \pi^+\bar{p}, f_0(980) \to K^+K^-$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma)$	8	2	2	34511
12	$e^+e^- \to \psi', \psi' \to \phi \bar{\Lambda} \Sigma^0, \phi \to K^+ K^-, \bar{\Lambda} \to \pi^+ \bar{p}, \Sigma^0 \to \Lambda \gamma, \Lambda \to \pi^- p$ $(e^+e^- \to \pi^+ \pi^- K^+ K^- p \bar{p} \gamma)$	12	2	2	34513
13	$e^+e^- \to \psi', \psi' \to \Lambda\bar{\Lambda}a^0_0, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}, a^0_0 \to K^+ K^- (e^+e^- \to \pi^+\pi^- K^+ K^- p\bar{p})$	9	0	1	34514
14	$e^+e^- \to \psi', \psi' \to \stackrel{??}{\to} \gamma, \stackrel{??}{\to} K^+K^-\Lambda\Lambda, \Lambda \to \pi^-p, \Lambda \to \pi^+\tilde{p}$ $(e^+e^- \to \pi^+\pi^-K^+K^-p\bar{p}\gamma)$	13	2	1	34515
15	$e^+e^- \to \psi', \psi' \to \phi\Lambda\Sigma^0, \phi \to K^+K^-, \Lambda \to \pi^- p, \Sigma^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \pi^+ \bar{p} \\ (e^+e^- \to \pi^+\pi^- K^+ K^- p\bar{p}\gamma)$	14	2	1	34516
16	$e^+e^- o \psi', \psi' o \phi \Lambda \Lambda, \phi o K^+K^-, \Lambda o \pi^0 n, \Lambda o \pi^+ \bar{p}\gamma$ $(e^+e^- o \pi^+K^+K^-n\bar{p}\gamma\gamma\gamma)$	15	6	1	34517
17	$e^+e^- o \psi', \psi' o \phi\Lambda\Lambda, \phi o K^+K^-, \Lambda o e^-\bar{\nu}_e p\gamma_{FSR}, \Lambda o \pi^+\bar{p}$ $(e^+e^- o e^-\bar{\nu}_e\pi^+K^+K^-p\bar{p}\gamma_{FSR})$	16	7	1	34518

> Signal regions of Λ , $\overline{\Lambda}$ peaks

In the fit to $M(p\pi)$

- Signal shape: signal MC sample
- Bkg shape: Chebychev function

 $\Lambda / \overline{\Lambda}$ mass region: (1.109,1.123) GeV/ c^2

Signal regions

\succ Signal region of ϕ peak

In the fit to $M(K^+K^-)$

- Signal shape: signal MC sample
- Bkg shape: reverse Argus

- ϕ mass region: (1.003,1.036) GeV/ c^2
- ϕ sideband region: (1.042,1.075) GeV/ c^2

Comparisons of some distributions

- The distributions from data are not consistent with those in signal MC (PHSP) and inclusive MC.
- There may be some intermediate structures, which can be extracted by the Partial wave analysis (PWA).

Partial Wave Analysis

> Introduction[1] [1] Jiangyi: https://github.com/jiangyi15/tf-pwa $F_{\lambda_1,\lambda_2} D_{\lambda_0,\lambda_1-\lambda_2}^{j_0\star}(\varphi,\theta,0)$ Wigner-D matrix Decay Α $R(M) = \frac{1}{m_0^2 - M^2 - im_0\Gamma}, \cdots$ Particle 1 $A^R_{\lambda_A,\lambda_B',\lambda_C',\lambda_D'}$ $D^{J_1*}_{\lambda_1,\lambda_1},(\alpha,\beta,\gamma)$ $\sum_{\lambda} F_{\lambda_R \lambda_B} D_{\lambda_A, \lambda_R - \lambda_B}^{j_A \star}(\varphi_1, \theta_1, 0) R(M) F_{\lambda_C, \lambda_D} D_{\lambda_R, \lambda_C - \lambda_D}^{j_R \star}(\varphi_2, \theta_2, 0)$ $D_{\lambda_B, \lambda_B}^{j_B \star}(\alpha_B, \beta_B, \gamma_B) D_{\lambda_C, \lambda_C}^{j_C \star}(\alpha_C, \beta_C, \gamma_C) D_{\lambda_D, \lambda_D}^{j_D \star}(\alpha_D, \beta_D, \gamma_D)$ alignment probability: |A|^2 Decay Group: $\mathcal{A} = \tilde{A}_1 + \tilde{A}_2 + \cdots$ $\frac{d\sigma}{d\Phi} \propto \sum_{\lambda} \sum_{\lambda = \lambda = \lambda} \left| \sum_{P} A^{R}_{\lambda_{A},\lambda_{B},\lambda_{C},\lambda_{D}} \right|^{2}$ Decay Chain: $\tilde{A} = A_1 R A_2 \cdots$ Decay: Wigner D-matrix, $A = FD^{*J}(\phi, \theta, 0)$ Particle: Breit-Wigner: R(m), user defined Automatically calculated from decay structure

Possibly known resonances

➢ Possibly known resonances in ψ(3686) → ΛΛφ

Final particles	Possibly known resonances	Quark components	$\mathrm{I}^{G}(J^{PC})$	<i>m</i> ₀ (GeV/ <i>c</i> ²)	Γ ₀ (GeV/ <i>c</i>)
	$f_0(2200)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.187	0.207
$\Lambda\Lambda$	$\eta(2225)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{-+})$	2.221	0.185
(uas,uas)	$f_0(2330)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.312	0.065
	$f_0(2470)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.470	0.075
$\Lambda \phi$	Λ(2325)	uds	$0(\frac{3}{2}^{-})$	2.342	0.177
(uds,ss̄)	Σ(2230)	uds	$i + d\bar{d}$ $i + c_2(s\bar{s})$ $0^+(0^+)$ 2.187 $\bar{i} + d\bar{d}$ $+ c_2(s\bar{s})$ $0^+(0^{-+})$ 2.221 $\bar{i} + d\bar{d}$ $+ c_2(s\bar{s})$ $0^+(0^{++})$ 2.312 $\bar{i} + d\bar{d}$ $+ c_2(s\bar{s})$ $0^+(0^{++})$ 2.312 $\bar{i} + d\bar{d}$ $+ c_2(s\bar{s})$ $0^+(0^{++})$ 2.470 uds $0(\frac{3}{2}^-)$ 2.342 $1(\frac{3}{2}^-)$ uds $1(\frac{3}{2}^+)$ 2.240 $\bar{u}d\bar{s}$ $0(\frac{3^+}{2})$ 2.342 $\bar{u}d\bar{s}$ $1(\frac{3}{2}^-)$ 2.240	0.345	
$\frac{\overline{\Lambda}\phi}{(\overline{u}\overline{d}\overline{s},s\overline{s})}$	Ā(2325)	$\bar{u} \bar{d} \bar{s}$	$0(\frac{3}{2}^{+})$	2.342	0.177
	Σ(2230)	ūd̄s	$1(\frac{3}{2})$	2.240	0.345

PWA results with known states

> The projections of the PWA results with possibly known resonances

- It has been subtracted for the background events, which are described with the normalized events in ϕ sideband regions
- There are two missing pieces in $M_{\Lambda\phi}$ and $M_{\overline{\Lambda}\phi}$, and we try to add other particles.

14

Add an unknown resonance

Final particles	Possibly known resonances	Quark components	$\mathrm{I}^{G}(J^{PC})$	m_0 (GeV/ c^2)	Γ ₀ (GeV/ <i>c</i>)
$\Lambda \overline{\Lambda}$	$f_0(2200)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	0+(0++)	2.187	0.207
$(uds, \bar{u}\bar{d}\bar{s})$	$\eta(2225)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^{+}(0^{-+})$	2.221	0.185
Λφ (uds,ss̄)	Λ(2325)	ūd̄s	$0(\frac{3}{2})$	2.342	0.177
	X(2450)	Not found in PDG	$(\frac{1}{2}^{+})$	2.45	0.05
$\frac{\overline{\Lambda}\phi}{(\overline{u}\overline{d}\overline{s},s\overline{s})}$	<u>Λ</u> (2325)	$\bar{u} \bar{d} \bar{s}$	$0(\frac{3}{2}^{+})$	2.342	0.177
	<i>X</i> (2450)	Not found in PDG	$(\frac{1}{2})$	2.45	0.05

PWA results with the unknown state

> The projections of the PWA results with an additional unknown state.

• We can see that the projections of the PWA results are consistent with those in data, after considering the other unkown states.

Summary

- □ Using about 2.7 billion $\psi(3686)$ events collected by BESIII in 2009,2012 and 2021, a partial wave analysis is performed for $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \phi$ decay.
 - > Some known intermediate resonances are considered:
 - $\Lambda\overline{\Lambda}$ resonances: $\eta(2225), f_0(2200)$.
 - $\overline{\Lambda}\phi$ resonances: $\overline{\Lambda}(2325)$.
 - > In order to fit data well, we tried to add an unknow state "X / $\overline{X}(2450)$ " in $M(\Lambda/\overline{\Lambda}\phi)$ distribution, and the projections are consistent with those in data.

Next to do

 \square Next to do:

- Check the significances of the intermediate resonances.
- More checks on the unknown "X $/\overline{X}(2450)$ " state.
- Search for other intermediate resonances states.

Back up

Choose cut : (1.668,1.674)

> The invariant mass of Λ , $\overline{\Lambda}$ and ϕ

Good photon:

- $0 \le TDC \le 14$
- Barrel : E > 0.025 GeV

 $|\cos\theta| < 0.8$

• End cap : E > 0.050 GeV

 $0.86 < |\cos\theta| < 0.92$

> Possibly known resonances in $\psi(3686) \rightarrow \Lambda \overline{\Lambda} \phi$

Final particles	Possibly known resonances	Quark components	$\mathrm{I}^{G}(J^{PC})$	<i>m</i> ₀ (GeV/ <i>c</i> ²)	Γ ₀ (GeV/ <i>c</i>)
	$f_0(2200)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.187	0.207
$\bigwedge \bigwedge$	$\eta(2225)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{-+})$	2.221	0.185
(uas,uas)	$f_0(2330)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.312	0.065
	$f_0(2470)$	$c_1(u\bar{u}+d\bar{d})+c_2(s\bar{s})$	$0^+(0^{++})$	2.470	0.075
$\Lambda \phi$	Λ(2325)	uds	$0(\frac{3}{2}^{-})$	2.342	0.177
(uds, ss̄)	Σ(2230)	uds	$1(\frac{3}{2}^{+})$	2.240	0.345
$\overline{\Lambda}\phi$	Ā(2325)	$\bar{u} \bar{d} \bar{s}$	$0(\frac{3}{2}^{+})$	2.342	0.177
$(\bar{u}\bar{d}\bar{s},s\bar{s})$	Σ(2230)	ūd̄s	$1(\frac{3}{2})$	2.240	0.345

Σ BARYONS (S = -1 , I = 1) Σ^+ = u u s , Σ^0 = u d s , Σ	C ⁻ = d d s			PDGID:8053 JSON (beta)	INSPIRE Q
$\varSigma(2455)$ Bum	ps $I(J^P) = 1(?^?)$				
There is also some sligh	it evidence for Y^st states in this ma	ss region fro	m the reactio	on $\gamma p { o} K^+ X -$ see GREENBERG 1968 .	
Σ(2455) MASS				$pprox 2455~{ m MeV}$	~
$\varSigma(2455)$ WIDTH					~
Σ(2455) WIDTH					~
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
140	ABRAMS	1970	ONTR	K^-p , K^-d total	
100 ±20	BUGG	1968	CNTR		