Shadows and optical appearance of BH surrounded by dark fluid with Chaplygin-like equation of state

李向前

太原理工大学物理学院

2023.12.03

2023年黑洞图像学术研讨会,北京

- Motivation-BHs surrounded by quintessence DE
- BH solutions with surrounding Chaplygin gas
- Phase structures of asymptotic AdS BHs & Shadow radius
- Optical appearance of asymptotic dS BHs
- Summary and discussion

Motivation-BHs surrounded by quintessence DE

Quintessence and black holes, V.V.Kiselev, arXiv:gr-qc/0210040. 523 citations.

• EoS of quintessence:

$$p_q = \omega_q \rho_q$$

• General static spherically symmetric spacetime:

$$ds^2=-f(r)dt^2+rac{1}{f(r)}dr^2+r^2d\Omega^2$$

- $T_t^{\ t} = \chi(r), \ T_t^{\ i} = 0, \ T_i^{\ j} = \xi(r)r_ir^j + \eta(r)\delta_i^{\ j}$
- Taking isotropic average over the angles:

$$\langle T_i^j \rangle = p_q(r) \delta_i^j$$

Motivation-BHs surrounded by quintessence DE

• Stress-energy tensor tensor:

$$T_t^{\ t} = T_r^{\ r} = \rho_q, T_\theta^{\ \theta} = T_\phi^{\ \phi} = -\frac{1}{2}\rho_q(3\omega_q + 1).$$

• Energy density:

$$\rho_q = -\frac{a}{2} \frac{3\omega}{r^{3(\omega+1)}}$$

• Spacetime solutions:

$$f(r)=1-\frac{\mu}{r}+\frac{a}{r^{3\omega_q+1}},$$

where μ and b are normalized factors.

Considering a dark fluid with Chaplygin-like EoS $\rho = -\frac{B}{\rho}$ (CDF), surrounding a BH, what would the situation be?

Shadows and optical appearance of BH surrounded by dark fluid with Chaplygin-like equation of state

 The CDF is anisotropic and its stress-energy tensor can be written as

$$T_{\mu\nu} = \rho u_{\mu}u_{\nu} + p_r k_{\mu}k_{\nu} + p_t \Pi_{\mu\nu},$$

with $\Pi_{\mu\nu} = g_{\mu\nu} + u_{\mu}u_{\nu} - k_{\mu}k_{\nu}$.

• Working in the comoving frame of the fluid

$$u_{\mu} = (-\sqrt{f}, 0, 0, 0), k_{\mu} = (0, 1/\sqrt{f}, 0, 0),$$

one obtains

$$T_{\mu}{}^{\nu} = -(
ho +
ho_t)\delta_{\mu}{}^0\delta^{
u}{}_0 +
ho_t\delta_{\mu}{}^{
u} + (
ho_r -
ho_t)\delta_{\mu}{}^1\delta^{
u}{}_1.$$

李向前

• Taking isotropic average over the angles and requiring $\langle T_i^j \rangle = p(\rho) \delta_i^j$, we have

$$p_t+\frac{1}{3}(p_r-p_t)=p(\rho).$$

• The gravitational equations

$$\frac{1}{r^2}(f + rf' - 1) + \Lambda = -\rho$$
$$\frac{1}{2r}(2f' + rf'') + \Lambda = \frac{1}{2}\rho - \frac{3B}{2\rho}$$

• The energy density of CDF

李向前

$$\rho(r)=\sqrt{B+\frac{q^2}{r^6}},$$

where q > 0 is a normalization factor.

Figure: The variation of $\rho + p_{\theta,\phi}$, $\rho - |p_{\theta,\phi}|$ and $\rho + p_r + p_{\theta} + p_{\phi}$ versus r for the CDF taking q = 1.0 and B = 0.2.

• Standard energy conditions

NEC:
$$\rho + p_i \ge 0 \ (i = r, \theta, \phi);$$

WEC: $\rho \ge 0 \ \& \ \rho + p_i \ge 0 \ (i = r, \theta, \phi);$
SEC: $\rho + \sum_i p_i \ge 0 \ \& \ \rho + p_i \ge 0 \ (i = r, \theta, \phi);$
DEC: $\rho \ge 0 \ \& \ |p_i| \le \rho \ (i = r, \theta, \phi).$

• The analytical solution for f(r)[PRD 107, 104055 (2023)]

$$f(r) = 1 - \frac{2M}{r} - \frac{r^2}{3}\sqrt{B + \frac{q^2}{r^6}} + \frac{q}{3r}\operatorname{ArcSinh}\frac{q}{\sqrt{B}r^3} - \frac{r^2}{3}\Lambda.$$

For MCG[Annals of Physics 446 (2022) 169125],

$$f(r) = 1 - rac{2M}{r} - rac{r^2}{3} \Big(rac{B}{1+A}\Big)^{rac{1}{1+eta}} \mathcal{F}(r) - rac{r^2}{3}\Lambda,$$

with

٠

$$\mathcal{F}(r) = {}_{2}F_{1}\left(\left[-\frac{1}{1+\beta},-\frac{1}{w}\right],1-\frac{1}{w},-\frac{1}{B}\left(\frac{Q}{r^{3}}\right)^{w}\right),$$

$$w = (1+A)(1+\beta).$$

Phase structures of asymptotic AdS BHs & Shadow radius Thermodynamics

• The mass of the BH

$$M = \frac{r_h}{2} - \frac{r_h^3}{6}\Lambda - \frac{r_h^3}{6}\sqrt{B + \frac{q^2}{r_h^6}} + \frac{q}{6}\operatorname{ArcSinh}\frac{q}{\sqrt{B}r_h^3}$$

The Hawking temperature

$$T=\frac{f'(r_h)}{4\pi}=\frac{1}{4\pi}\left(\frac{1}{r_h}-r_h\sqrt{B+\frac{q^2}{r_h^6}}-r_h\Lambda\right)$$

• The entropy

$$S = \int_0^{r_h} \frac{1}{T} \left(\frac{\partial M}{\partial r_h} \right) dr_h = \pi r_h^2$$

Phase structures of asymptotic AdS BHs & Shadow radius Thermodynamics

• In the extended phase space

$$P = -\Lambda,$$

$$V = \left(\frac{\partial M}{\partial P}\right)_{S,q} = \frac{r_h^3}{6}.$$

• Treating q as a variable, the conjugated physical quantity

$$\Phi = \left(\frac{\partial M}{\partial q}\right)_{S,P} = \frac{1}{6} \operatorname{ArcSinh} \frac{q}{\sqrt{B}r_h^3}$$

• The first law of BH thermodynamics

$$dM = TdS + VdP + \Phi dq$$

• The Smarr relation: $M = 2TS - 2VP + \Phi q$.

Table: Numerical solutions for the critical physical quantities in P - V criticality.

В	q	r _c	P _c	T _c	$\frac{P_c r_c}{T_c}$	
0.2	1.0	1.98018	0.61349	0.06353	19.1236	
0.3	1.0	1.88657	0.73135	0.06676	20.6663	
0.4	1.0	1.82257	0.82950	0.06916	21.8586	
0.2	0.8	1.76045	0.65626	0.07121	16.2247	
0.2	1.2	2.17761	0.58527	0.05789	22.0144	

• Critical exponents for P - V criticality

Introduce the following notations

$$t=rac{T}{T_c}-1, \ \ \epsilon=rac{V}{V_c}-1.$$

• Rewrite the relation of temperature

$$T = \frac{1}{4\pi} \left(\frac{Pq^{1/3}}{\Xi(\Phi)} + \frac{\Xi(\Phi)}{q^{1/3}} - \frac{q^{1/3}\sqrt{B + \Xi(\Phi)^6}}{\Xi(\Phi)} \right),$$

with $\Xi(\Phi) \equiv B^{1/6}(\sinh 6\Phi)^{1/3}$.

• Solving *q*, we obtain two solutions for the BH equation of state

$$q_1 = \left(\frac{-\sqrt{64\pi^2 T^2 + 8\Upsilon(\Phi)} - 8\pi T}{2\Upsilon(\Phi)}\Xi(\Phi)\right)^3,$$

$$q_2 = \left(\frac{\sqrt{64\pi^2 T^2 + 8\Upsilon(\Phi)} - 8\pi T}{2\Upsilon(\Phi)}\Xi(\Phi)\right)^3,$$

with $\Upsilon(\Phi) \equiv -2P + 2\sqrt{B} \text{Cosh6}\Phi$.

Table: Numerical solutions for the critical physical quantities in P - V criticality.

В	Ρ	Φ_c	q_c	T_c	
0.2	1.0	0.09751	0.31829	0.11548	
0.3	1.0	0.07481	0.41852	0.10462	
0.4	1.0	0.06074	0.54486	0.09439	
0.2	0.9	0.08513	0.38250	0.10461	
0.2	1.1	0.11035	0.27410	0.12536	

• Critical exponents for $q - \Phi$ criticality

$$C_{\Phi} = T \frac{\partial S}{\partial T} \Big|_{\Phi} \propto |t|^{-\lambda}$$

$$\vartheta = \Phi_{H} - \Phi_{L} \propto |t|^{\chi}$$

$$\kappa_{T @ \langle q - \Phi \rangle} = -\frac{1}{\Phi} \frac{\partial \Phi}{\partial q_{2}} \Big|_{\Phi_{c}} \propto |t|^{-\sigma}$$

$$|q_{2} - q_{c}| \propto |\Phi - \Phi_{c}|^{\iota}$$

$$\lambda = 0$$

$$\Rightarrow \chi = 1/2$$

$$\sigma = 1$$

$$\iota = 3$$

• The photon sphere radius r_p satisfies

$$6M - 2r_p - q\operatorname{ArcSinh}\frac{q}{\sqrt{B}r_p^3} = 0$$

• The turning point of the photon orbit

$$\left.\frac{dr}{d\phi}\right|_{r=R} = 0$$

• The orbit equation for the photon

$$\frac{dr}{d\phi} = \pm r \sqrt{f(r) \left[\frac{r^2 f(R)}{R^2 f(r)} - 1\right]}$$

 Considering a light ray sending from a static observer placed at r_o and transmitting into the past with an angle α with respect to the radial direction

$$\cot \alpha = \frac{\sqrt{g_{rr}}}{g_{\phi\phi}} \frac{dr}{d\phi} \bigg|_{r=r_o}$$

Shadow radius of the BH

$$r_s = r_o \tan \alpha \approx r_o \sin \alpha = R \sqrt{rac{f(r_o)}{f(R)}} \bigg|_{R \to r_p}$$

The approximation is valid only for small value of $\boldsymbol{\alpha}.$

李向前

Figure: The variation of shadow radius r_s in terms of the event horizon radius r_h . The extremal point corresponds to the horizon radius at which the inner and outer horizons coincide.

Figure: Hawking temperature (left panel) and the heat capacity (right panel) with respect to the BH shadow radius r_s for an observer at $r_o = 100$. The blue, orange and red curves correspond to the curves with $P = 0.98P_c$, $P = 1.00P_c$, and $P = 1.02P_c$. T^* represents the coexistence temperature.

• The geometry of the black hole

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}(d\theta^{2} + sin^{2}\theta d\psi^{2}),$$

with

$$f(r) = 1 - \frac{2M}{r} - \frac{r^2}{3}\sqrt{B + \frac{q^2}{r^6}} + \frac{q}{3r}\operatorname{ArcSinh}\frac{q}{\sqrt{Br^3}}.$$

The time, azimuthal and radial four-velocity components

$$\begin{split} \dot{t} &= \frac{1}{bf(r)}, \\ \dot{\psi} &= \pm \frac{1}{r^2}, \\ \dot{r}^2 + V(r) &= \frac{1}{b^2}, \end{split}$$

where $V(r) = \frac{1}{r^2} f(r)$ and b = |L|/E is the impact parameter.

Shadows and optical appearance of BH surrounded by dark fluid with Chaplygin-like equation of state

• The radius of photon sphere satisfies

$$V(r_{ph}) = \frac{1}{b^2}, V'(r_{ph}) = 0.$$

Optical appearance of asymptotic dS BHs Orbits of the timelike particles

• The effective potential of the timelike particles

$$U_{eff} = f(r) \left(1 + \frac{L^2}{r^2} \right)$$

Optical appearance of asymptotic dS BHs

Table: The values of radius $r_{\rm ph}$ and impact parameter $b_{\rm ph}$ of the photon sphere, the event horizon $r_{\rm h}$ and cosmological horizon $r_{\rm c}$, the radius $r_{\rm ISCO}$ of the innermost stable circular orbit, as well as the rays classification parameters b_m^{\pm} with varying *B* and *q* for M = 1.0.

В	q	$r_{ m h}$	$r_{ m c}$	$r_{\rm ph}$	b_{ph}	$r_{\rm ISCO}$	b_1^-	b_2^-	b_2^+	b_3^-	b_3^+
10^{-3}	10^{-3}	2.09723	8.52058	3.00000	6.14340	-	3.77645	6.00058	6.48810	6.13704	6.15765
	10^{-2}	2.09717	8.52058	2.99994	6.14332	_	3.77632	6.00048	6.48803	6.13696	6.15757
	0.2	2.07073	8.52084	2.97623	6.10951	_	3.72433	5.95982	6.46324	6.10259	6.12466
	0.4	1.99026	8.52163	2.90048	6.00309	_	3.56588	5.83074	6.38686	5.99411	6.02145
10^{-4}		1.95737	16.21750	2.92692	5.37247	-	3.09929	5.20594	5.88608	5.36413	5.39462
10^{-5}	0.2	1.86928	29.74730	2.82444	5.08701	_	2.81652	4.90003	5.79038	5.07696	5.11743
10^{-6}		1.78290	53.74350	2.69841	4.85819	5.84933	2.62476	4.66285	5.71446	4.84741	4.89368
10-7	10^{-3}	2.00078	96.38450	2.99994	5.20351	6.25941	2.89373	5.03064	6.03561	5.19558	5.23211
	10^{-2}	1.99648	96.38450	2.99499	5.19888	6.25026	2.88805	5.02500	6.03334	5.19085	5.22773
	0.2	1.69616	96.38460	2.56873	4.63326	5.00492	2.46830	4.43750	5.57041	4.62230	4.67088
	0.4	1.14147	96.38460	1.77817	3.49840	3.30513	1.68256	3.25723	4.60648	3.47784	3.55956

李向前

Optical appearance of asymptotic dS BHs Thin disk accretion

The observed intensity

$$I(r) = \sum_{m} f(r)^{2} I_{em}(r) |_{r=r_{m}(b)},$$

with $I_{em}(r)$ is the total emitted specific intensity near the accretion.

Optical appearance of asymptotic dS BHs Thin disk accretion

Three toy-model functions which may emit by some thin matters

$$\begin{array}{ll} \text{Model 1:} & I_{\text{em}}(r) = \begin{cases} I_0 \left(\frac{1}{r - (r_{\text{ISCO}} - 1)}\right)^2, & r > r_{\text{ISCO}} \\ 0, & r \le r_{\text{ISCO}} \end{cases}, \\ \text{Model 2:} & I_{\text{em}}(r) = \begin{cases} I_0 \left[\frac{1}{r - (r_{\text{ph}} - 1)}\right]^3, & r > r_{\text{ph}} \\ 0, & r \le r_{\text{ph}} \end{cases}, \\ 0, & r \le r_{\text{ph}} \end{cases}, \\ \text{Model 3:} & I_{\text{em}}(r) = \begin{cases} I_0 \left[\frac{\pi}{2} - \tan^{-1}[r - (r_{\text{ISCO}} - 1)]}, & r > r_{\text{h}} \\ 0, & r \le r_{\text{h}} \end{cases}. \end{cases}$$

Optical appearance of asymptotic dS BHs Thin disk accretion

Figure: Observational appearances of a geometrically and optically thin disk with Model 2 profile, M = 1, $B = 10^{-3}$.

Shadows and optical appearance of BH surrounded by dark fluid with Chaplygin-like equation of state 33 / 38

Optical appearance of asymptotic dS BHs

Optical appearance of asymptotic dS BHs Spherical accretions

Static observer

$$I_{obs} = \int_{\gamma} \frac{f(r)^{3/2}}{r^2} \sqrt{f(r)^{-1} + r^2 \left(\frac{d\psi}{dr}\right)^2} dr$$

Infalling observer

$$I_{obs} \propto \int_{\gamma} rac{g^3 k_t dr}{r^2 |k_r|},$$

with

$$g=\frac{1}{u_e^t+k_r/k_tu_e^r},$$

and

 $\frac{k_r}{k_r} = \pm \frac{1}{f(r)} \sqrt{1 - \frac{b^2 f(r)}{r^2}}.$

Optical appearance of asymptotic dS BHs

36 / 38

李向前 🖡

Shadows and optical appearance of BH surrounded by dark fluid with Chaplygin-like equation of state

Optical appearance of asymptotic dS BHs

37 / 38

Summary and discussion

- BH solutions with surrounding Chaplygin gas
- Phase structures of asymptotic AdS BHs & Shadow radius
 - P V criticality
 - $q \Phi$ criticality
 - Phase structures using shadow analysis
- Optical appearance of asymptotic dS BHs
 - Thin disk accretion
 - Spherical accretions
- Rotating BH solutions?