

D_s到多体强子末态振幅分析和分支比测量及LHCb实验上半轻衰变动力学分辨的提升

报告人: 葛潘婷

2023年9月

,研究背景

→ D_s^+ →K⁻K⁺π⁺π⁺π⁻的振幅分析

→ $D_s^+ \rightarrow \omega \pi^+ \eta$ 的首次观测

»LHCb实验上半轻衰变动力学分辨提升的研究

在标准模型中,轻子普适性要求轻子(e、μ、τ)与规范玻色子的耦 合与其味道无关,即与其他粒子的相互作用是相同的。

HFLAV合作组对R(D*)=Br(B→D*τ+ν)/Br(B→D*l+ν)的测量结 果的平均值(0.284±0.013)□与标准模型预测的结果 (0.254±0.005)有2.15倍标准差的偏离。这标志着可能有 超出标准模型之外的新的物理出现。

[1]https://hflav-eos.web.cern.ch/hflav-eos/semi/winter23_prel/html/RDsDsstar/RDRDs.html

研究背景

其中,LHCb在对R(D*)进行测量 时,是基于pp对撞数据样本, τ 轻子 是由三个带电的 π 介子重建的,即 $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- X$,(X代表所有可能的 粒子组合)。主要的系统误差的来 源是本底 $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$ 。

Candidates / (0.25ps)

研究背景

- 研究D⁺_s到3个带电π末态如D⁺_s→K⁺K⁺π⁺π⁻和D⁺_s→ωπ⁺η, ω→π⁺π⁻ π⁰可以有效地控制R(D*)的系统误差。
- ◆ 基于北京正负电子对撞机的北京谱仪可以产生D_sD_s*对的数据样本用来研究D_s*强子衰变。
- ◆同时,底强子的半轻衰变还可以帮我们精确测量CKM矩阵元和 形状因子。

北京正负电子对撞机/北京谱仪

北京正负电子对撞机/北京谱仪(BEPCII/BESIII)是目前国际 上唯一工作在τ-粲能区的大型实验装置

BESIII物理目标:精确检验QCD和标准模型

数据和蒙特卡罗样本

数据:能量点@4130-4230 GeV 亮度: 7.33fb-1

样本	时间	运行号	亮度 (pb ⁻¹)	能量点 E_{cm} (MeV)
4130	2019	59163-59573	401.5	$4128.78 \pm 0.05 \pm 0.36$
4160	2019	59574-59896	408.7	$4157.83 \pm 0.05 \pm 0.34$
4180	2016	43716-45105	$3189.0 \pm 0.2 \pm 31.9$	4178.00 on average
<mark>418</mark> 0	2016	45418-47066	$3189.0 \pm 0.2 \pm 31.9$	4178.00 on average
4190	2017	47543-48170	$526.7 \pm 0.1 \pm 2.2$	$4189.12 \pm 0.05 \pm 0.34$
<mark>419</mark> 0	2012	30372-30437	$43.33 \pm 0.03 \pm 0.29$	$4188.59 \pm 0.15 \pm 0.68$
4200	2017	48172-48173	$526.0 \pm 0.1 \pm 2.1$	$4199.15 \pm 0.05 \pm 0.34$
4210	2017	4871 <mark>4-4923</mark> 9	$517.1 \pm 0.1 \pm 1.8$	$4209.39 \pm 0.06 \pm 0.34$
4210	2013	31983-32045	$54.95 \pm 0.03 \pm 0.36$	$4207.73 \pm 0.14 \pm 0.61$
4220	2017	49270-49787	$514.6 \pm 0.1 \pm 1.8$	$4218.93 \pm 0.06 \pm 0.32$
4220	2013	32046-32140	$54.60 \pm 0.03 \pm 0.36$	$4217.13 \pm 0.14 \pm 0.67$
4230	2012-2013	32239-32849	$1047.34 \pm 0.14 \pm 10.16$	$4320.34 - 2.87 \times 10^{-3} \times N_{run} \pm 0.05 \pm 0.60$
4230	2012-2013	32850-33484	$44.54 \pm 0.03 \pm 0.29$	$4225.54 \pm 0.05 \pm 0.65$
4230	2012-2013	30438-30491	$1047.34 \pm 0.14 \pm 10.16$	$4226.26 \pm 0.04 \pm 0.65$

数据和蒙特卡罗样本

蒙特卡罗样本(40倍的数据):能量点@4130-4230 GeV

	4130	4160	4180	4190	4200	4210	4220	4230
组分				大小	(M)			
$D^0 D^0$	4.16	2.73	22.88	3.63	3.11	3.19	3.03	5. <mark>6</mark> 8
D^+D^-	3.21	3.27	24.46	4.49	4.12	4.46	4.39	8.38
$D^{*0}D^{0}$	23.22	20.47	155.74	27.07	24.72	26.52	26.05	49.49
$D^{*+}D^{-}$	25.52	22.49	165.63	28.96	26.45	28.40	27.90	52.94
$D^{*0}D^{*0}$	35.75	41.95	277.71	48.16	39.03	34.12	24.95	38.40
$D^{*+}D^{*-}$	34.53	40.53	274.13	43.93	38.52	30.45	22.27	36.36
$D_s^+ D_s^-$	0.21	0.25	4.34	0.97	0.81	0.74	0.51	0.80
$D^{*+}D_s^-$	8.82	14.97	122.80	21.09	19.38	22.54	17.08	27.47
$D^{*+}D^{*-}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96
$DD^*\pi^+$	5.30	6.36	48.95	9.00	8.54	9. <mark>4</mark> 9	9.59	18.65
$DD^*\pi^0$	2.67	3.19	24.62	4.51	4.29	4.76	4.80	9.35
$DD\pi^+$	0.58	0.69	6.42	1.21	1.16	1.28	1.32	2.49
$DD\pi^0$	0.29	0.34	3.21	0.62	0.57	0.64	0.66	1.26
$q\bar{q}$	226.45	227.24	1763.64	288.63	286.14	311.19	307.36	589.61
$\gamma J/\psi$	6.58	6.54	51.12	8.90	8.21	8.70	8.43	16.16
$\gamma\psi(2S)$	6.91	6.87	53.68	9.12	8.251	8.70	8.43	16.16
$\gamma\psi(3770)$	0.96	0.98	7.67	1.36	1.26	1.37	1.37	2.62
au au	55.41	56.40	440.91	78.66	72.80	79.18	78.78	151.55
$\mu\mu$	86.08	86.48	670.12	119.02	109.20	118.07	117.03	224.05
ee	69.75	70.02	541.86	96.34	88.47	95.75	94.85	181.34
ee	68.55	68.80	541.86	94.50	86.66	93.81	92.96	177.70
$\gamma\gamma$	27.30	27.79	217.26	38.76	35.77	38.90	34.15	65.51
HCT	0.00	0.00	13.01	2.60	3.06	3.42	3.81	8.24

数据和蒙特卡罗样本

>事例挑选

标记道:

- 》好的带电径迹(不包括来自K⁰_S的π) 》挑
- $|V_r| < 1.0 \text{ cm}, |V_z| < 10.0 \text{ cm}$
- |cosθ|<0.93
- > 粒子鉴别(不包括来自 K_S^0 的 π)
- 鉴别K[±]、π[±]
- > 好光子
- θ>20°
- 0<T<14
- 桶部:E_v>25 MeV
- 端盖:E_v>50 MeV

- > 挑选π⁰/η
 - 好光子
 - $\pi^0:115 < M_{\gamma\gamma} < 150 \text{ MeV/c}^2$
 - $\eta:490 < M_{\gamma\gamma} < 580 \text{ MeV/c}^2$
 - 不变质量拟合约束
 - 挑选η
 - 946 $< M_{\pi^+\pi^-\eta} < 970 \text{ MeV/c}^2$
 - ▶ 挑选*K*⁰_s
 - $487 < M_{\pi+\pi} < 511 \text{ MeV/c}^2$
 - 顶点拟合约束

>单标产额

拟合 M_{Ds} $\sqrt{s} = 4178$ MeV.

12

工作一: $D_s^+ \rightarrow K^-K^+\pi^+\pi^-$ 振幅分析

- ◆研究背景
- ◆ 事例挑选
- ◆ 分波分析
- ◆ 分支比测量

研究背景

- → PDG上, D介子衰变到a₁(1260)[±]X的分支比与衰变到π[±]X和ρ[±]X 的分支比相当,并且比所有其他衰变的分支比要大的多
- → D_s^+ → AV的二体衰变目前还没有文章对其进行研究, D_s^+ → $a_1(1260)^+$ φ是 D_s^+ → $K^-K^+\pi^+\pi^+\pi^-$ 衰变主要的过程

D ⁰ 介子	$a_1(1260)^+K^-$	$\rho^+ K^-$	$\pi^+ K^-$
分支比	$4.32\pm0.32\%$	$11.2\pm0.70\%$	$3.95\pm0.03\%$
D_s^+ 介子	$a_1(1260)^+\eta$	$ ho^+\eta$	$\pi^+\eta$
分支比	$1.98\pm0.18\%$	$8.9\pm0.8\%$	$1.68\pm0.09\%$
D_s^+ 介子	$a_1(1260)^+\phi$	$ ho^+\phi$	$\pi^+\phi$
分支比	$0.74\pm0.12\%$	$5.59\pm0.34\%$	$6.72 \pm 0.40\%$

A表示轴矢量,V表示矢量

- → D_s^+ →K⁺K⁺π⁺π⁺π⁻可以作为R(D^{*})的测量输入
- → D⁺_s→K⁻K⁺π⁺π⁺π⁻是BESIII首个五体衰变的振幅分析,其结果可 用于确定绝对分支比测量的双标效率
- → *D*⁺_s→K⁺K⁺π⁺π⁺π⁻之前分支比的测量,是FOCUS和E687于1997 年和2003年分别完成

事例挑选

信号道:

- ~好的带电径迹、粒子鉴别与单标记道一致
- ✓ 对于每一个候选者,标记侧和信号侧的所有径迹来自同一个顶
 点
- ✓ 6-C运动学拟合(末态粒子四动量、标记侧(D_s)和D_s质量限制), 要求具有最小的χ²
- ✓ 7-C为了保证所有的事例在相空间范围内,加上信号侧(D⁺_s)的 质量约束

工作一: $D_s^+ \rightarrow K^+ \pi^+ \pi^+ \pi^-$ 振幅分析

红色实线: 总的拟合 本底形状: 一阶多项式 信号形状: MC模拟的信号形状卷积高斯 灰色直方图: MC模拟的本底形状

拟合方法

- •极大似然拟合的方法确定中间共振态的振幅、质量和宽度。
- •用260万个相空间MC事件积分来归一化概率密度函数(PDF)。

极大似然PDG:
$$\ln \mathcal{L} = \sum_{i=1}^{3} \left[\sum_{k=1}^{N_{data}} \ln f_S(p_j^k) - \sum_{k'}^{N_{bkg}} w_{k'}^{bkg} \ln f_S(p_j^{k'}) \right]$$
(1)

i表示能量点,
$$N_{data}$$
表示数据的事例, $w_{k'}^{bkg}$ 表示权重, N_{bkg} 表示MC估计的本底的事例数
信号PDF: $f_S(p_j) = \frac{\epsilon(p_j)|M(p_j)|^2R_5(p_j)}{\int \epsilon(p_j)|M(p_j)|^2R_5(p_j)dp_j}$ (2)

 $\epsilon(p_i)$ 为用末态四动量 p_i 参数化的探测效率,j表示末态粒子, $R_5(p_i)$ 是五体相空间的标准元。

总振幅:
$$M(p_j) = \sum c_n A_n(p_j)$$
 $c_n = \rho_n e^{i\phi_n}$ (3)

$$A_n(p_j) = P_n^1(m_1)P_n^2(m_2)P_n^3(m_3)S_n(p_j)F_n^1(p_j)F_n^2(p_j)F_n^3(p_j)F_n^{D_s}(p_j)$$
(4)

自旋因子

Decay chain	Spin Factor
$D_s[S] \rightarrow AV_1, A[S] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$P^{\mu u}_{(1)}(A) ilde{t}_{(1)\mu}(V_1) ilde{t}_{(1) u}(V_2)$
$D_s[S] \rightarrow AV_1, A[D] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$\tilde{t}_{(2)}^{\mu u}(A)\tilde{t}_{(1)\mu}(V_1)\tilde{t}_{(1) u}(V_2)$
$D_s[P] \rightarrow AV_1, A[S] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$\epsilon_{\mu\nu\lambda\sigma}p^{\mu}(D)\tilde{T}^{(1)\nu}(D)P^{\beta\lambda}_{(1)}(A)\tilde{t}_{(1)\beta}(V_2)\tilde{t}^{(1)\sigma}(V_1)$
$D_s[P] \rightarrow AV_1, A[D] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$\epsilon_{\mu\nu\lambda\sigma}p^{\mu}(D)\tilde{T}^{(1)\nu}(D)\tilde{t}^{\beta\lambda}_{(2)}(A)\tilde{t}_{(1)\beta}(V_2)\tilde{t}^{(1)\sigma}(V_1)$
$D_s[D] \rightarrow AV_1, A[S] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$ ilde{T}_{(2)\mu u}(D)P^{\mueta}_{(1)}(A) ilde{t}_{(1)eta}(V_2) ilde{t}^{(1) u}(V_1)$
$D_s[D] \rightarrow AV_1, A[D] \rightarrow V_2P_1, V_1 \rightarrow P_2P_3, V_2 \rightarrow P_4P_5$	$ ilde{T}_{(2)\mu u}(D) ilde{t}_{(2)}^{\mueta}(A) ilde{t}_{(1)eta}(V_2) ilde{t}^{(1) u}(V_1)$
$D_s[S] \to AV, A[P] \to SP_1, V \to P_2P_3, S \to P_4P_5$	$\widetilde{t}^{\mu}_{(1)}(A)\widetilde{t}_{(1)\mu}(V)$
$D_s[P] \to AV, A[P] \to SP_1, V \to P_2P_3, S \to P_4P_5$	$\epsilon_{\mu u\lambda\sigma}p^{\mu}(D) ilde{T}^{(1) u}(D) ilde{t}^{\lambda}_{(1)}(A) ilde{t}^{(1)\sigma}(V)$
$D_s[D] \to AV, A[P] \to SP_1, V \to P_2P_3, S \to P_4P_5$	$ ilde{T}_{(2)\mu u}(D) ilde{t}^{(1)\mu}(A) ilde{t}^{(1) u}(V)$
$D_{s}[P] \rightarrow AS, A[S] \rightarrow VP_{1}, S \rightarrow P_{2}P_{3}, V \rightarrow P_{4}P_{5}$	$ ilde{T}_{(1)eta}(D)P^{eta u}_{(1)}(A) ilde{t}_{(1) u}V$
$D_{s}[P] \rightarrow AS, A[D] \rightarrow VP_{1}, S \rightarrow P_{2}P_{3}, V \rightarrow P_{4}P_{5}$	$ ilde{T}_{(1)eta}(D) ilde{t}^{eta u}_{(2)}(A) ilde{t}_{(1) u}V$

A表示轴矢量,V表示矢量,P表示赝标量,S表示标量

拟合结果

Intermediate process	BF (10^{-3})	PDG (10^{-3})
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$4.82 \pm 0.40 \pm 0.29$	
$D_s^+[P] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$0.34 \pm 0.11 \pm 0.05$	
$D_s^+ \to a_1(1260)^+ \phi$	$5.15 \pm 0.41 \pm 0.32$	7.4 ± 1.2
$D_s^+ \to (K^- K^+ \pi^+ \pi^+ \pi^-)_{\rm NR}$	$1.44 \pm 0.22 \pm 0.10$	0.9 ± 0.7
Tested Amplitude		Significance(σ)
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[D] \to \rho \pi^+, \phi \to K$	T^-K^+	2.7
$D_s^+[P] {\to} a_1(1260)^+ \phi, a_1(1260)^+[D] {\to} \rho \pi^+, \phi {\to} K^+, \phi {\to} K^$	K^-K^+	< 1
$D_s^+[D] \to a_1(1260)^+\phi, a_1(1260)^+[S] \to \rho \pi^+, \phi \to K$	T^-K^+	1.5
$D_s^+[D] \to a_1(1260)^+\phi, a_1(1260)^+[D] \to \rho \pi^+, \phi \to F$	K^-K^+	1.5
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[P] \to f_0(500)\pi^+,$	$\phi \rightarrow K^- K^+$	< 1
$D_s^+[P] \to a_1(1260)^+ \phi, a_1(1260)^+[P] \to f_0(500)\pi^+,$	$\phi \rightarrow K^- K^+$	< 1
$D_s^+[D] \to a_1(1260)^+ \phi, a_1(1260)^+[P] \to f_0(500)\pi^+,$	$\phi \! \rightarrow \! K^- K^+$	1.5
$D_s^+[P] \to a_1(1260)^+ a_0(980), a_1(1260)^+[S] \to \rho^0 \pi^+$	$, a_0(980) \to K^- K^+$	< 1
$D_s^+[P] \to a_1(1260)^+ a_0(980), a_1(1260)^+[D] \to \rho^0 \pi^+$	$f, a_0(980) \to K^- K^+$	3.6
$D_s^+[S] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[S] \to \rho K^*$	$^{+}, K^{*0}(892) \rightarrow K^{-}\pi^{+}$	< 1
$D_s^+[S] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[D] \to \rho K$	$K^+, K^{*0}(892) \to K^- \pi^+$	< 1
$D_s^+[P] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[S] \to \rho K$	$^{+}, K^{*0}(892) \rightarrow K^{-}\pi^{+}$	< 1
$D_s^+[P] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[D] \to \rho K_1(1270)[D]$	$K^+, K^{*0}(892) \to K^- \pi^+$	<1
$D_s^+[D] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[S] \to \rho K$	$K^+, K^{*0}(892) \to K^- \pi^+$	1.5
$D_s^+[D] \to K_1(1270)^+ K^{*0}(892), K_1(1270)[D] \to \rho K_1(1270)[D] \to 0$	$K^+, K^{*0}(892) \to K^- \pi^+$	1.5
$D^+_s[S] \mathop{\rightarrow} \pi^+\pi^+\pi^-\phi, \phi \mathop{\rightarrow} K^-K^+$		<1

工作一: $D_s^+ \rightarrow K^+ \pi^+ \pi^+ \pi^-$ 振幅分析

拟合结果

投影图

拟合结果

角分布: 在K-K+质心系下K-的三动量与在D*质心系下K-K+三动量方向之间的夹角

系统误差

Amplitudes		Source						
		i	ii	iii	iv	V	vi	Total
$D_s^+[S] \to a_1(1260)^+ \phi, a_1^+[S] \to \rho \pi^+$	\mathbf{FF}	0.17	0.14	0.18	0.40	0.00	0.06	0.49
$D^{+}[D] = (1000) + (-^{+}[0]) + (-^{+}[0])$		0.02	0.14	0.06	0.01	0.06	0.07	0.18
$D_s[\Gamma] \to u_1(1200) \phi, u_1[S] \to \rho\pi$	\mathbf{FF}	0.05	0.07	0.12	0.40	0.02	0.06	0.43
$D_s^+ \to a_1(1260)^+ \phi$	\mathbf{FF}	0.17	0.15	0.20	0.44	0.02	0.07	0.54
$D^+ (K^- K^+ \pi^+ \pi^+ \pi^-)$	Φ	0.33	0.23	0.08	0.04	0.04	1.34	1.40
$D_s \rightarrow (K \ K \ M \ M \ M \ M)$ NR	\mathbf{FF}	0.04	0.10	0.15	0.20	0.01	0.10	0.29

i表示质量和宽度,ii表示有效半径,iii表示拟合偏差, iv表示本底的影响,v表示ρ介子的形状,vi表示a₁介子的线性形状

事例挑选

标记侧:

✓ 好的径迹、粒子鉴别、 π^0 、 η 、 η [·] 和 K_s^0 的重建与分波一致 ✓ P_{π} >0.1GeV/*c*去压低D*的本底

信号侧:

- ·好的径迹、粒子鉴别与单标记一致
- ✓ P_π>0.1GeV/c去压低D*的本底
- ✓ 在多个候选者中,选择组合的平均质量 $aM(aM = [M(D_s^+) + M(D_s^-)]/2)$ 最靠近 $M(D_s^+)$ 的组合。

分支比测量

单标产额和效率

Tag mode	Mass windo	ow (GeV/ c^2)	(I) Y_{ST}	(I) ϵ_{ST} (%)
$D_s^- \to K_s^0 K^-$	[1.948,	1.991]	31941 ± 312	47.36±0.07
$D_s^- \to K^+ K^- \pi^-$	[1.950,	1.986]	137240 ± 614	39.47 ± 0.03
$D_s^- \to K_s^0 K^- \pi^0$	[1.946,	1.987]	11385 ± 529	16.12 ± 0.11
$D_s^- \to K^+ K^- \pi^- \pi^0$	[1.947,	1.982]	39306±799	10.50 ± 0.03
$D_s^- \rightarrow K_s^0 K^- \pi^- \pi^+$	[1.958,	1.980]	8093±326	20.40 ± 0.12
$D_s^- \rightarrow K_S^{0} K^+ \pi^- \pi^-$	[1.953,	1.983]	15719 ± 289	21.83 ± 0.06
$D_s^- \to \pi^- \pi^- \pi^+$	[1.952,	1.982]	37977±859	51.43 ± 0.15
$D_s^- o \pi^- \eta_{\gamma\gamma}$	[1.930,	2.000]	17940 ± 402	43.58 ± 0.05
$D_s^- \to \pi^- \eta'_{\pi^+\pi^- \eta_{\gamma\gamma}}$	[1.940,	1.996]	7759 ± 141	19.12 ± 0.06
$D_s^- \to K^- \pi^- \pi^+$	[1.953,	1.983]	17423±666	47.46±0.22
				a Maria Marina ana Sala Antonia.
Tag mode	$(II)Y_{ST}$	$(II)\epsilon_{ST}\%$	$(III)Y_{ST}$	$(III)\epsilon_{ST}\%$
Tag mode $D_s^- \to K_S^0 K^-$	(II) Y_{ST} 18559±261	$(\text{II})\epsilon_{ST}\%$ 47.26 ± 0.09	$\frac{(\text{III})Y_{ST}}{6582\pm160}$	$\frac{\text{(III)}\epsilon_{ST}\%}{46.37\pm0.16}$
Tag mode $D_s^- \to K_S^0 K^-$ $D_s^- \to K^+ K^- \pi^-$	(II) Y_{ST} 18559±261 81286±505	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04	$(\text{III})Y_{ST} = 6582 \pm 160 \\ 28439 \pm 327$	$\frac{(\text{III})\epsilon_{ST}\%}{46.37 \pm 0.16}$ 38.38 ± 0.07
Tag mode $D_s^- \to K_S^0 K^-$ $D_s^- \to K^+ K^- \pi^-$ $D_s^- \to K_S^0 K^- \pi^0$	$(II) Y_{ST} = 18559 \pm 261 \\ 81286 \pm 505 \\ 6832 \pm 457 \\ (III) F_{ST} = 1000 \\ (IIII) F_{ST} = 1000 \\ $	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16	$(\text{III})Y_{ST} = \frac{1}{6582 \pm 160} \\ 28439 \pm 327 \\ 2227 \pm 220 \\ \end{array}$	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29
Tag mode $D_s^- \to K_S^0 K^-$ $D_s^- \to K^+ K^- \pi^-$ $D_s^- \to K_S^0 K^- \pi^0$ $D_s^- \to K^+ K^- \pi^- \pi^0$	$(II) Y_{ST}$ 18559 ± 261 81286 ± 505 6832 ± 457 23311 ± 659	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05	$(III)Y_{ST} \\ 6582 \pm 160 \\ 28439 \pm 327 \\ 2227 \pm 220 \\ 7785 \pm 453 $	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08
Tag mode $D_s^- \to K_S^0 K^-$ $D_s^- \to K^+ K^- \pi^-$ $D_s^- \to K_S^0 K^- \pi^0$ $D_s^- \to K_S^0 K^- \pi^- \pi^0$ $D_s^- \to K_S^0 K^- \pi^- \pi^+$	$(II) Y_{ST}$ 18559 ± 261 81286 ± 505 6832 ± 457 23311 ± 659 5269 ± 282	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05 20.19 ± 0.17	$(III) Y_{ST} 6582 \pm 160 28439 \pm 327 2227 \pm 220 7785 \pm 453 1662 \pm 217$	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08 19.50 ± 0.31
Tag mode $ \begin{array}{c} D_s^- \to K_S^0 K^- \\ D_s^- \to K^+ K^- \pi^- \\ D_s^- \to K_S^0 K^- \pi^0 \\ D_s^- \to K^+ K^- \pi^- \pi^0 \\ D_s^- \to K_S^0 K^- \pi^- \pi^+ \\ D_s^- \to K_S^0 K^+ \pi^- \pi^- \end{array} $	$(II) Y_{ST}$ 18559 ± 261 81286 ± 505 6832 ± 457 23311 ± 659 5269 ± 282 8948 ± 231	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05 20.19 ± 0.17 21.63 ± 0.09	$(III) Y_{ST} 6582 \pm 160 28439 \pm 327 2227 \pm 220 7785 \pm 453 1662 \pm 217 3262 \pm 172 \\$	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08 19.50 ± 0.31 21.29 ± 0.15
Tag mode $D_s^- \to K_S^0 K^-$ $D_s^- \to K^+ K^- \pi^-$ $D_s^- \to K_S^0 K^- \pi^0$ $D_s^- \to K_S^0 K^- \pi^- \pi^0$ $D_s^- \to K_S^0 K^- \pi^- \pi^+$ $D_s^- \to K_S^0 K^+ \pi^- \pi^-$ $D_s^- \to \pi^- \pi^- \pi^+$	(II) Y_{ST} 18559±261 81286±505 6832±457 23311±659 5269±282 8948±231 21909±776	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05 20.19 ± 0.17 21.63 ± 0.09 50.35 ± 0.22	$(III) Y_{ST} \\ 6582\pm160 \\ 28439\pm327 \\ 2227\pm220 \\ 7785\pm453 \\ 1662\pm217 \\ 3262\pm172 \\ 7511\pm393 \\ (III) Y_{ST} \\ ($	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08 19.50 ± 0.31 21.29 ± 0.15 49.32 ± 0.41
Tag mode $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}$ $D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}\pi^{0}$ $D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-}\pi^{0}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}\pi^{-}\pi^{+}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{+}\pi^{-}\pi^{-}$ $D_{s}^{-} \rightarrow \pi^{-}\pi^{+}$ $D_{s}^{-} \rightarrow \pi^{-}\eta_{\gamma\gamma}$	(II) Y_{ST} 18559±261 81286±505 6832±457 23311±659 5269±282 8948±231 21909±776 10025±339	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05 20.19 ± 0.17 21.63 ± 0.09 50.35 ± 0.22 43.00 ± 0.22	$(III) Y_{ST} 6582\pm160 28439\pm327 2227\pm220 7785\pm453 1662\pm217 3262\pm172 7511\pm393 3725\pm252 \\$	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08 19.50 ± 0.31 21.29 ± 0.15 49.32 ± 0.41 41.83 ± 0.41
Tag mode $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}$ $D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}\pi^{0}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}\pi^{-}\pi^{0}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{-}\pi^{-}\pi^{+}$ $D_{s}^{-} \rightarrow K_{S}^{0}K^{+}\pi^{-}\pi^{-}$ $D_{s}^{-} \rightarrow \pi^{-}\pi^{-}\pi^{+}$ $D_{s}^{-} \rightarrow \pi^{-}\eta_{\gamma\gamma}$ $D_{s}^{-} \rightarrow \pi^{-}\eta_{\pi^{+}\pi^{-}\pi^{-}}$	(II) Y_{ST} 18559±261 81286±505 6832±457 23311±659 5269±282 8948±231 21909±776 10025±339 4428±111	$(II)\epsilon_{ST}\%$ 47.26 ± 0.09 39.32 ± 0.04 15.72 ± 0.16 10.58 ± 0.05 20.19 ± 0.17 21.63 ± 0.09 50.35 ± 0.22 43.00 ± 0.22 19.00 ± 0.08	$(III) Y_{ST} \\ 6582 \pm 160 \\ 28439 \pm 327 \\ 2227 \pm 220 \\ 7785 \pm 453 \\ 1662 \pm 217 \\ 3262 \pm 172 \\ 7511 \pm 393 \\ 3725 \pm 252 \\ 1648 \pm 74 \\ \end{cases}$	$(III)\epsilon_{ST}\%$ 46.37 ± 0.16 38.38 ± 0.07 15.93 ± 0.29 10.39 ± 0.08 19.50 ± 0.31 21.29 ± 0.15 49.32 ± 0.41 41.83 ± 0.41 18.56 ± 0.13

I表示4180能量点,II表示4190-4220能量点,III表示4230能量点

双标效率

		U U	
Tag mode	(I) ϵ_{DT} (%)	(II) ϵ_{DT} (%)	(III) ϵ_{DT} (%)
$D_s^- \to K_S^0 K^-$	4.10 ± 0.10	4.57 ± 0.14	4.36 ± 0.22
$D_s^- \to K^+ K^- \pi^-$	3.15 ± 0.04	3.38 ± 0.05	3.47 ± 0.09
$D_s^- \rightarrow K_s^0 K^- \pi^0$	1.76 ± 0.06	1.92 ± 0.09	1.70 ± 0.13
$D_s^- \to K^+ K^- \pi^- \pi^0$	0.83 ± 0.02	0.93 ± 0.03	0.88 ± 0.04
$D_s^- \to K_s^0 K^- \pi^- \pi^+$	1.16 ± 0.07	1.14 ± 0.09	1.01 ± 0.13
$D_s^- \to K_s^0 K^+ \pi^- \pi^-$	1.22 ± 0.05	1.34 ± 0.07	1.41 ± 0.12
$D_s^- \rightarrow \pi^- \pi^- \pi^+$	4.77 ± 0.11	5.09 ± 0.14	5.09 ± 0.23
$D_s^- o \pi^- \eta_{\gamma\gamma}$	3.99 ± 0.12	4.41 ± 0.17	3.97 ± 0.26
$D_s^- o \pi^- \eta'_{\pi^+\pi^-\eta_{\gamma\gamma}}$	1.52 ± 0.07	1.66 ± 0.10	1.53 ± 0.16
$D_s^- \to K^- \pi^- \pi^+$	4.32 ± 0.12	4.45 ± 0.17	4.34 ± 0.28

I表示4180能量点,II表示4190-4220能量点,III表示4230能量点

分析策略

能量点: 4178-4226 GeV

$$\mathcal{B}_{sig} = \frac{N_{total}^{DT}}{\sum_{\alpha,i} N_{\alpha,i}^{ST} \epsilon_{\alpha,sig,i}^{DT} / \epsilon_{\alpha,i}^{ST}} \quad (1)$$

*N^{DT}*表示总的事例数,*NST*表示单标的产额, ε^{DT}表示双标效率,εST表示单标效率,α表示 不同的标记道,i表示不同的能量点

 $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-) = (6.60 \pm 0.47 (stat.) \pm 0.35 (syst.)) \times 10^{-3}$

- 总的拟合
- 本底形状: 一阶多项式
- 信号形状: MC模拟的信号形状卷积高斯
- 灰色直方图: MC模拟的本底形状

输入输出检查

- 使用01-40 round DIY MC进行输入输出检查估计可能的偏差。
- 在该分支比测量中没有显著的拟合偏差,相对偏差可忽略。

系统误差

系统误差的来源

来源	系统误差 (%)
单标 $M_{D_s^+}$	0.39
径迹	4.20
粒子鉴别	1.00
信号形状	0.58
本底形状	1.89
MC 统计量	0.63
振幅分析模型	2.41
总的	5.40

最大的系统误差来源于带电径迹的鉴别

总结

- $D_s^+ \rightarrow K^+ K^+ \pi^+ \pi^-$ 衰变是BSEIII首个五体振幅分析
- 中间过程的分支比

中间过程	分支比 (10-3)	$PDG(10^{-3})$
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$4.8\pm0.4\pm0.3$	7.4 ± 1.9
$D_s^+[P] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$0.3\pm0.1\pm0.1$	1.4 ± 1.2
$D_s^+ \to (K^- K^+ \pi^+ \pi^+ \pi^-)_{NR}$	$1.4\pm0.2\pm0.1$	0.9 ± 0.7

• $D_s^+ \rightarrow K^- K^+ \pi^+ \pi^-$ 衰变的分支比:

 $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-) = (6.60 \pm 0.47 (\text{stat.}) \pm 0.38 (\text{syst.})) \times 10^{-3}$

• 该结果已被PDG收录

▶工作二: $D_s^+ \rightarrow \omega \pi^+ \eta$ 首次观测

- ◆ 研究背景
- ◆ 分析策略
- ◆ 事例挑选
- ◆ 绝对分支比的测量
- ◆系统误差

- → 在 $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$ 的 3π 质量谱($M_{\pi^+\pi^+\pi^-}$)中即含有 ω 又含有 η , 推测作为卡比伯允许的 $D_s^+ \rightarrow \omega \pi^+ \eta$ 是可观测的
- → *D*⁺_s→ωπ⁺η的迹象是CLEO基于(4.9±2.9)的信号,其分支 比为(0.85±0.54±0.06)%
- →寻找可能的中间过程 $D_s^+ \rightarrow a_0(980)^+ \omega$
- →检验B介子轻子普适性提供重要的输入

分析策略

工作二:
$$D_s^+ \rightarrow \omega \pi^+ \eta$$
首次观测

单标记道的产额: $N_{tag} = 2N_{D_s^+ D_s^-} \mathcal{B}_{tag} \epsilon_{tag} \quad (1)$ 双标记道的产额: $N_{tag,sig} = 2N_{D_s^+ D_s^-} \mathcal{B}_{tag} \mathcal{B}_{sig} \epsilon_{tag,sig} \quad (2)$ 结合公式(1)和(2),得到分支比公式: $\mathcal{B}_{sig} = \frac{N_{total}}{\mathcal{B}_{\pi^0 \to \gamma\gamma} \mathcal{B}_{\eta \to \gamma\gamma} \mathcal{B}_{\omega \to \pi^+ \pi^- \pi^0} \sum_{\alpha, i} N_{\alpha, i} \epsilon_{\alpha, sig, i} / \epsilon_{\alpha, i}}$ (3) $B_{\pi 0 \to \nu \nu}$ 、 $B_{\eta \to \nu \nu}$ 和 $B_{\omega \to \pi^+ \pi^- \pi^0}$ 分别表示 $\pi^0 \to \gamma \gamma$ 、 $\eta \to \gamma \gamma \pi \omega \to \pi^+ \pi^- \pi^0$ 的分支比

工作二: $D_s^+ \rightarrow \omega \pi^+ \eta$ 首次观测

事例挑选

单标记侧和信号侧的事例挑选与*D*⁺→K⁺K⁺π⁺π⁺π⁻分支比测量部 分的事例挑选一<u>致</u>

本底分析

单标产额和效率

单标记道	质量窗 (Ge	eV/c^2) (1	(Y_{ST})	$(I)\epsilon$	$_{ST}$ (%)	(I	$I)Y_{ST}$
$D_s^- \to K_S^0 K^-$	[1.948, 1.948]	991] 672	28 ± 144	47.6	3 ± 0.16	319	057 ± 314
$D^s \to K^+ K^- \pi^-$	[1.950, 1.950]	986] 234-	43 ± 202	33.6	6 ± 0.05	1148	386 ± 447
$D_s^- \to K^+ K^- \pi^- \pi$	0 [1.947, 1.5	982] 24	14 ± 102	3.3	9 ± 0.02	133	303 ± 269
单标记道	(II) ϵ_{ST} (%)	$(III)Y_{ST}$	$(III)\epsilon_S$	_T %	(IV)Y	ST	$(IV)\epsilon_{ST}\%$
$D_s^- \to K_S^0 K^-$	$47.86 {\pm} 0.07$	19960 ± 270	$47.22\pm$	0.09	$6837 \pm$	163	$47.91{\pm}0.18$
$D^s \to K^+ K^- \pi^-$	$32.88 {\pm} 0.02$	72825 ± 369	$32.68\pm$	0.02	$24861 \pm$	227	$33.04 {\pm} 0.05$
$D^s \to K^+ K^- \pi^- \pi^0$	$3.59{\pm}0.01$	$8586{\pm}227$	$3.70\pm$	0.02	3171±	146	$3.84{\pm}0.03$

I表示4130和4160能量点,II表示4180能量点,III表示4190-4220能量点,IV表示4230能量点

双标效率

单标记道	(I) ϵ_{DT} (%)	(II) ϵ_{DT} (%)	(III) ϵ_{DT} (%)	(IV) ϵ_{DT} (%)
$D^s \to K^0_S K^-$	5.71 ± 0.80	5.68 ± 0.36	5.37 ± 0.43	5.97 ± 0.77
$D^s \to K^+ K^- \pi^-$	4.17 ± 0.31	4.22 ± 0.14	4.00 ± 0.17	3.94 ± 0.28
$D^s \to K^+ K^- \pi^- \pi^0$	0.41 ± 0.10	0.50 ± 0.05	0.40 ± 0.05	0.49 ± 0.09

I表示4130和4160能量点,II表示4180能量点,III表示4190-4220能量点,IV表示4230能量点

绝对分支比的测量

- 总的拟合
- 信号形状: MC模拟的信号形状卷积高斯(均有信号峰)
- 来自 $\eta \rightarrow \gamma \gamma$ 本底: MC模拟的本底形状(在 M_{sig} 是平本底在 M_{η} 是峰状本底)
- 本底(除了 $\eta \rightarrow \gamma \gamma \eta D_{s}^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+} \pi^{+} \pi^{-}$): MC模拟的本底形状(均为平本底)

$$\mathcal{B}_{sig} = \frac{N_{total}^{DT}}{\mathcal{B}_{\eta \to \gamma\gamma} \mathcal{B}_{\omega \to \pi^+\pi^-\pi^0} \sum_{\alpha,i} N_{\alpha,i}^{ST} \epsilon_{\alpha,sig,i}^{DT} / \epsilon_{\alpha,i}^{ST}} \qquad \mathcal{B}(D_s^+ \to \omega \pi^+ \eta) = (0.54 \pm 0.12 (\text{stat.}) \pm 0.04 (\text{syst.}))\%$$

- 使用01-40 round DIY MC进行输入输出检查估计可能的偏差。
- 在该分支比测量中没有显著的拟合偏差,相对偏差可忽略。

系统误差

工作二: $D_s^+ \rightarrow \omega \pi^+ \eta$ 首次观测

系统误差的来源

来源	系统误差 (%)
单标 $M_{D_s^-}$	0.9
MC 模型	1.0
2D 拟合	2.1
径迹	3.0
粒子鉴别	3.0
MC 统计量	0.6
π^0 和 η 重建	4.0
$\mathcal{B}(\eta \to \gamma \gamma)$	0.5
$\mathcal{B}(\omega \to \pi^+ \pi^- \pi^0)$	0.8
ω的质量窗	1.2
总的	6.6

最大的系统误差来源于π0和η的重建

- 使用双标的方法, 首次观测到衰变 $D_s^+ \rightarrow \omega \pi^+ \eta$
- 通过拟合 $\omega\pi^+\eta$ 的不变质量谱,确定衰变 $D_s^+ \rightarrow \omega\pi^+\eta$ 的显著性是 6.2 σ
- 衰变 $D_s^+ \rightarrow \omega \pi^+ \eta$ 的分支比:

 $\mathcal{B}(D_s^+ \to \omega \pi^+ \eta) = (0.52 \pm 0.12 (\text{stat.}) \pm 0.03 (\text{syst.}))\%$

 与CELO合作组的测量结果(0.85±0.54(stat.)±0.06(syst.))%在0.6σ范 围内一致,但是精度有明显的改善

、工作三: 提升强子对撞机半轻衰变动力学分辨

- ◆研究背景
- ◆ 中微子动量的理论推导
- ◆ 模拟半轻衰变过程
- ◆ 确定输入变量与回归
- ◆ MLP模型的回归

研究背景

工作三: LHCb实验上半轻衰变动力学分辨的提升

- →底强子半轻衰变的精确测量可以有效的改善R(D*)的系统误差
- →同时,底强子的半轻衰变还可以帮我们精确测量CKM矩阵元和 形状因子。
- →由于中微子重建方法的是基于二次方程得出,存在双解问题。文献^[1]提出了线性回归,并在文献^[2]中得到了非常好地应用。

[1]10.1007/JHEP02(2017)021 [2]10.1103/PhysRevLett.126.081804

工作三: LHCb实验上半轻衰变动力学分辨的提升

→飞行矢量与b强子动量的相关系数为0.54。目标对线性回归无 法捕捉到的特征存在潜在的非线性依赖。

中微子动量的理论推导 工作三: LHCb实验上半轻衰变动力学分辨的提升

由对称性可知:

$$\begin{array}{ll} p_{\parallel} &= p \cdot \vec{F}, \\ p_{\perp} &= |p - p_{\parallel}| = p \times \vec{F}, \\ p_{\perp}(K\mu) &= -p_{\perp}(\nu). \end{array}$$

中微子动量的理论推导 工作三: LHCb实验上半轻衰变动力学分辨的提升

根据动量守恒和能量守恒,得到:

$$p(B_s^0) = p_{\parallel}(K\mu) + p_{\parallel}(\nu)$$

 $E(B_s^0) = E(K\mu) + E(\nu).$

接下来,利用母粒子 B_s^0 质量的约束来推导动量 $p_{\parallel}(\nu)$,

$$m_{B_s^0}^2 = E_{B_s^0}^2 - p_{B_s^0}^2$$

= $E_{K\mu}^2 + 2 \cdot E_{K\mu} \cdot E_{\nu} + E_{\nu}^2 - p_{\parallel}^2(K\mu) - p_{\parallel}^2(\nu) - 2 \cdot p_{\parallel}(K\mu) \cdot p_{\parallel}(\nu)$
= $m_{K\mu}^2 + 2 \cdot p_{\perp}^2(K\mu) + 2 \cdot E_{K\mu} \cdot E_{\nu} - 2 \cdot p_{\parallel}(K\mu) \cdot p_{\parallel}(\nu).$

得到关于中微子动量平行方向的二次方程:
$$\alpha p_{\parallel}^2(\nu) + \beta p_{\parallel}(\nu) + \gamma = 0$$

- •利用RapidSim^[1]软件模拟四种半轻衰变过程: $B_s^0 \rightarrow K\mu\nu$ 、 $B_s^0 \rightarrow D_s\mu\nu$ 、 $\Lambda_b^0 \rightarrow p\mu\nu$ 、 $\Lambda_b^0 \rightarrow \Lambda_c^0\mu\nu$
- •对于重夸克强子事例的信号, 要求在 2 < η < 5 范围内
- 产生了100000的蒙特卡罗事例,并使用scikit-learn^[2]随机 选择将数据集分为训练集和测试集
- •其中训练集和测试集的事例数分别为20000和50000

[1]10.1016/j.cpc.2017.01.029 [2]arXiv:1201.0490 [cs.LG]

确定输入变量和回归 工作三: LHCb实验上半轻衰变动力学分辨的提升

五种特征变量集和三种回归集

Description	特征变量集	回归集	
标记 A	$ ec{F} $ 和 $1/{ m sin}(heta_{ m flight})$	ш.	
标记 B	F_x , F_y 和 F_z	. 	
标记 C	$F_x, F_y, F_z \notin 1/\sin(\theta_{\text{flight}})$	-	
标记 D	标记 A + $p_{\parallel}(K\mu)$ 和 $p_{\perp}^2(K\mu)$	-	
标记 E	标记 C + $p_{\parallel}(K\mu)$ 和 $p_{\perp}^2(K\mu)$	-	
回归 A		Linear Regressor	
回归 B		GradientBoosting Regressor	
回归 C	-	MLP Regressor	

[1]10.1007/JHEP02(2017)021

用MLP回归来研究不同特征变量的性能

选择"标记C"作为本次研究的特征变量

用"标记 C"变量来研究不同回归的性能

选择MLP回归算法作为本次研究的回归算法

工作三: LHCb实验上半轻衰变动力学分辨的提升

MLP回归算法与特征变量"标记C"

Solution RMS (GeV^2/c^4) Improvement (%)				
Correct	1.2	-5		
Best	3.02	40%		
Random	4.23	-		

重建的lv系统不变质量平方的分辨率与随机选择相比,平均提高了40%左右

- 当以半轻衰变B_s⁰→Kµν作为测试道时,使用特征变量"标记C"和 MLP回归模型算法,重建的lv系统不变质量平方的分辨率与随机选 择相比,平均提高了40%左右
- 在其他的半轻衰变过程如: $B_s^0 \rightarrow D_s \mu v$ 、 $\Lambda_b^0 \rightarrow p \mu v$ 、 $\Lambda_b^0 \rightarrow \Lambda_c^0 \mu v$,该 方法对于重建的lv系统不变质量平方的分辨率性能的提升也有类似 的效果
- 该方法可以间接地提升强子对撞机实验中半轻底强子衰变的测量 精度
- •研究对象以LHCb实验为例,但这些想法可以适用于当前和未来的 任何其他的强子对撞机实验

谢谢您的聆听!

> 事例挑选

双标记

标记道的质量窗

质量窗 (GeV/ c^2)
[1.948, 1.991]
[1.950, 1.986]
[1.946, 1.987]
[1.947, 1.982]
[1.958, 1.980]
[1.953, 1.983]
[1.940, 1.996]
[1.930, 2.000]

- 拟合M_{Ds}
- •本底形状 二阶多项式
- •信号形状
- MC模拟的信号形 状卷积高斯

同时有助于理解 $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$ 反冲质量分布在0.8-1.0 GeV数据和 MC之间的不一致性。

工作一: $D_s^+ \rightarrow K^-K^+\pi^+\pi^-$ 振幅分析

中间过程	分支比 (10-3)	$PDG(10^{-3})$
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$4.8\pm0.4\pm0.3$	
$D_s^+[P] \to a_1(1260)^+\phi, a_1(1260)^+[S] \to \rho^0\pi^+$	$0.3\pm0.1\pm0.1$	7.4 ± 1.2
$D_s^+ \to a_1(1260)^+ \phi$	$5.2\pm0.4\pm0.3$	
$D_s^+ \to (K^- K^+ \pi^+ \pi^+ \pi^-)_{NR}$	$1.4\pm0.2\pm0.1$	0.9 ± 0.7

 $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-) = (6.60 \pm 0.47 (\text{stat.}) \pm 0.38 (\text{syst.})) \times 10^{-3}$

工作二: $D_s^+ \rightarrow \omega \pi^+ \eta$ 首次观测

 $\mathcal{B}(D_s^+ \to \omega \pi^+ \eta) = (0.52 \pm 0.12 (\text{stat.}) \pm 0.03 (\text{syst.}))\%$

工作三:LHCb实验上半轻衰变动力学分辨的提升 使用特征变量"标记C"和MLP回归模型算法,重建的lv系统不 变质量平方的分辨率与随机选择相比,平均提高了40%左右