Lattice constraints on the QCD phase diagram

Owe Philipsen

Chiral phase transition in massless limit constrains the QCD phase diagram
-30+ years of common wisdom and inconclusive lattice results
Resolution by a new lattice approach + data [Cuteri, O.P., Sciarra JHEP 2I]
Bounds on the phase diagram at finite density

The expected QCD phase diagram

from GSI
O
Fundamental for particle-, nuclear-, astro- physics, future textbook knowledge!Non-perturbative nature/confinement prevents perturbative solution
-"Sign problem" prevents Monte Carlo simulation (NP-hard problem?)

History: motivation for the critical endpoint

[Rajagopal 95, Halasz et al., PRD 98, Stephanov, Rajagopal, Shuryak PRL 98, Rajagopal,Wilczek 00, Hatta, Ikeda, PRD 03,...]

Breaking/restoration of exact chiral symmetry requires a (non-analytic) phase transition

$$
N_{f}=2:
$$

Model predictions, \longrightarrow early lattice results

Model predictions, no QCD information

Other (mostly ignored) possibilities

The order of the chiral phase transition at $\mu_{B}=0$ narrows down possibilities

Nature of the QCD thermal transition at zero density

$N_{f}=2+1$
deconfinement p.t.:
breaking of global $Z(3)$ symmetry

$\uparrow_{\text {chiral p.t }}$
restoration of global symmetry in flavour space
$S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$

The Columbia plot with chemical potential

$N_{f}=2$
$N_{f}=2+1$

[Stephanov, Rajagopal, Shuryak PRL 98]: (based on models, early lattice)
"As m_{s} is reduced from infinity, the tricritical point ... moves to lower μ until it reaches the T -axis and can be identified with the tricritical point in the (T, m_{s})-plane"

The nature of the QCD chiral transition at zero density

...is elusive, massless limit not simulable!

- Coarse lattices or unimproved actions: Ist order for $N_{f}=2,3$
- Ist order region shrinks rapidly as $a \rightarrow 0$

For fixed lattice spacing: apparent contradictions between different lattice actions

Details and references: [O.P., Symmetry 13, 202I]

From the physical point to the chiral limit

[HotQCD, PRL I9] HISQ (staggered)

[Kotov, Lombardo,Trunin, PLB 2I] Wilson twisted mass

$$
T_{c}^{0}=132_{-6}^{+3} \mathrm{MeV} \quad T_{p c}\left(m_{l}\right)=T_{c}^{0}+K m_{l}^{1 / \beta \delta} \quad T_{c}^{0}=134_{-4}^{+6} \mathrm{MeV}
$$

- Strange quark mass fixed, crossover sharpens as chiral limit approached, no Ist o. seen

Cannot distinguish between $\mathbf{Z}(2)$ vs. $\mathrm{O}(4)$ exponents, need exponential accuracy!

- Comparison with fRG: $T_{c}^{0} \approx 142 \mathrm{MeV}$

Scaling window tiny $m_{\pi} \leq 5 \mathrm{MeV}$ (!!) [Braun et al., PRD 21]
[Braun et al., arXiv:23 I O. 19853]

The nature of the QCD chiral transition, $\mathrm{Nf}=3$

...has enormously large cut-off effects!

O(a)-improved Wilson:
Ist order region shrinks for $a \rightarrow 0$

$$
m_{\pi}^{c} \leq 110 \mathrm{MeV} \quad N_{\tau}=4,6,8,10,12
$$

The nature of the QCD chiral transition, $\mathrm{Nf}=3,4$

...has enormously large cut-off effects!

Unimproved staggered:
Ist order region shrinks for $a \rightarrow 0$, both for $N_{f}=3,4$
[de Forcrand, D’Elia, PoS LAT I7]

Different view point: mass degenerate quarks

$$
\begin{aligned}
& Z\left(N_{\mathrm{f}}, g, m\right)=\int \mathcal{D} A_{\mu}\left(\operatorname{det} M\left[A_{\mu}, m\right]\right)^{N_{\mathrm{f}}} e^{-\mathcal{S}_{\mathrm{YM}}\left[A_{\mu}\right]} \\
& N_{\mathrm{f}}^{c}(a m)=N_{\mathrm{f}}^{\text {tric }}+\mathcal{B}_{1} \cdot(a m)^{2 / 5}+\mathcal{O}\left((a m)^{4 / 5}\right)
\end{aligned}
$$

- Consider analytic continuation to continuous N_{f}
- Tricritical point guaranteed to exist if there is Ist order at any N_{f}
- Known exponents for critical line entering tric. point!

Continuation to $a \neq 0: \mathbf{Z}(2)$ surface ends in tricritical line
[Cuteri, O.P., Sciarra PRD 18]

Different view point: mass degenerate quarks

- Consider analytic continuation to continuous N_{f}
- Tricritical point guaranteed to exist if there is Ist order at any N_{f}
- Known exponents for critical line entering tric. point!
- Continuation to $a \neq 0: \mathbf{Z}(2)$ surface ends in tricritical line
[Cuteri, O.P., Sciarra PRD 18]

Methodology to determine order of transition

Finite size scaling of generalised cumulants

$$
B_{n}=\frac{\left\langle(\bar{\psi} \psi-\langle\bar{\psi} \psi\rangle)^{n}\right\rangle}{\left\langle(\bar{\psi} \psi-\langle\bar{\psi} \psi\rangle)^{2}\right\rangle^{n / 2}}
$$

Standard staggered fermions, bare parameters:
$\beta, a m, N_{f}, N_{\tau}$
(Pseudo-critical) phase boundary: $B_{3}=0 \quad$ 3d manifold

Second-order 3d Ising:
2d chiral critical surface
separates Ist order
from crossover

$B_{4}\left(\beta_{c}, a m, N_{\sigma}\right) \approx 1.604+c\left(a m-a m_{c}\right) N_{\sigma}^{1 / 0.6301}$

Machines and computing approach

Goethe-HLR (Goethe U.) and VIRGO cluster (GSI), AMD-GPU cluster
Scans of parameter space parallel, one lattice per GPU, strictly zero communication overhead

Search for phase boundary:
3-4 coupling values with multiple simulation chains

Good control over autocorrelation; merge independent chains

Repeat for different masses
Repeat for different volumes

Raw data from multiple chains
Raw (merged) and reweighted data

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra 21] ~I20 M Monte Carlo trajectories with light fermions, aspect ratios 3,4,5

Tricritical scaling observed in different variable pairings
[Bonati et al. PRD |4]
Old question: $m_{c} / T=0$ or $\neq 0$? Answered for $N_{f}=2$
New question: will $N_{f}^{\text {tric }}$ slide beyond $N_{f}=3$?

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra JHEP 2I] ~I20 M Monte Carlo trajectories with light fermions, aspect ratios 3,4,5

- Data points implicitly labeled by Nf
- Tricritical scaling observed in lattice bare parameter space
- Tricritical extrapolation always possible!

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra 2 1]

Ist order scenario does not fit!

- Tricritical scaling observed also in plane of mass vs. lattice spacing
- Allows extrapolation to lattice chiral limit, tricritical points $N_{\tau}^{\text {tric }}\left(N_{f}\right)$

Ist order scenario: $\quad m_{c}(a)=m_{c}(0)+c_{1}(a T)+c_{2}(a T)^{2}+\ldots$
Incompatible with data! $\chi_{\text {dof }}^{2}>10$

Implications for the continuum

- Finite $N_{\tau}^{\text {tric }}\left(N_{f}\right)$ implies that Ist order transition is not connected to continuum
- Approaching continuum first, then chiral limit: Continuum chiral phase transition second-order!

Ist order scenario
2nd order scenario

$\mathrm{Nf}=3 \mathrm{O}(\mathrm{a})$-improved Wilson fermions

[Kuramashi et al. PRD 20]

$$
m_{\pi}^{c} \leq 110 \mathrm{MeV} \quad N_{\tau}=4,6,8,10,12
$$

[Cuteri, O.P., Sciarra, JHEP 2I]
Tricritical scaling!
Nf=3 consistent with staggered, 2nd order in chiral continuum limit!

Digression: tricritical points as function of Nf

- $N_{\tau}^{\text {tric }}\left(N_{f}\right)$ increasing function
- Tricritical line in the plane of the lattice chiral limit, separates Ist from 2nd
- Is there a tricritical point in the continuum?

The chiral phase transition for different N_{f}

Temperature dependence:

For lattice, see [Miura, Lombardo, NPB I3]

Order of the transition:

[Cuteri, O.P., Sciarra, JHEP 2I]

The chiral phase transition in the massless limit is likely second-order for all N_{f}

The Columbia plot in the continuum

[Cuteri, O.P., Sciarra JHEP 2I]

What about Pisarski,Wilczek I 984 ?

- 3d ϕ^{4} - Ginzburg-Landau-Wilson theory for chiral condensate plus t'Hooft term
- Epsilon expansion about $\epsilon=1$
- All conclusions confirmed by [Butti, Pelisetto,Vicari, JHEP 03] (High order perturbative expansion in fixed d)
- Support also from simulation of 3d sigma model [Gausterer, Sanielovici, PLB 88]

Suggested resolution: ϕ^{6} term, in 3d renormalisable; even higher powers.....?
[Fejos, PRD 22] 3d ϕ^{6} with t'Hooft term, functional RG study:
IR-stable fixed point, 2nd order transition for restored anomaly
[Kousvos, Stergiou, SciPost 23] Numerical conformal bootstrap: $U(3) \times U(3)$ displays IR stable fixed point

No contradictions!

Meanwhile in Frankfurt...

progressing to finer lattices

New $N_{\tau}=10$ result on predicted scaling curve!

The Columbia plot in the continuum

[Cuteri, O.P., Sciarra JHEP 2I]

Crossover for DW fermions, $\mathrm{Nf}=3, m_{q} \sim m_{\text {phys }} \quad$ [Zhang et al., PoS LAT22]

QCD with imaginary chemical potential

Motivation: no sign problem!
Roberge-Weiss (center) symmetry: $\quad Z\left(T, i \frac{\mu_{i}}{T}\right)=Z\left(T, i \frac{\mu_{i}}{T}+i \frac{2 n \pi}{N_{c}}\right)$

Results from coarse lattices: $N_{\tau}=4$
Chiral critical surface analytic around $\mu_{B}=0$, negative curvature [de Forcrand, O.P. 07]

Details and reference list: [O.P., Symmetry I3, 202I]

Imaginary chemical potential: cutoff effects

[D’Ambrosio, Fromm, Kaiser, O.P., in progress]

Repeat study of Columbia plot with $\quad \mu=i 0.81 \pi T / 3$

$$
\bullet N_{\mathrm{f}}=4 \quad \bullet N_{\mathrm{f}}=5 \quad \bullet N_{\mathrm{f}}=6
$$

Imaginary chemical potential, improved actions

$\mu=i \pi T / 3 \quad$ Roberge-Weiss boundary

- [Bonati et al., PRD 19] stout-smeared staggered $N_{\tau}=4$
quark mass scan down to $m_{\pi} \approx 50 \mathrm{MeV}$ fixed $m_{u d} / m_{s}$
- [Bielefeld+Frankfurt, PRD 22]

HISQ $N_{\tau}=4$
quark mass scan down to $m_{\pi} \approx 55 \mathrm{MeV}$ fixed m_{s}

No sign of Ist-order phase transition!

Entire chiral critical surface moves to massless limit

Columbia plot with chemical potential, continuum

[Bernhardt, Fischer, arXiv:2309.06737]
Dyson-Schwinger eqs. $|\mu| \leq 30 \mathrm{MeV}$ Same picture

Columbia plot analytic around $\mu=0$

Columbia plot with chemical potential, continuum

Critical point not ruled out
But requires additional critical surface

Class of low energy models now ruled out

No tuning of parameters in $N_{f}=2+1$ theory with critical point at $\mu=0$

From the chiral limit back to the physical point

The "standard scenario":

$$
T_{p c}>T_{c}>T_{\text {tric }}>T_{\text {cep }} \quad \Rightarrow \quad \mu_{B}^{\mathrm{cep}}>3.1 T_{p c}(0) \approx 485 \mathrm{MeV}
$$

Physical point: modelling lattice fluctuations

$$
\frac{p\left(T, \mu_{B}\right)}{T^{4}}=\frac{p(T, 0)}{T^{4}}+\sum_{n=1}^{\infty} \frac{1}{2 n!} \chi_{2 n}^{B}(T)\left(\frac{\mu_{B}}{T}\right)^{2 n} \quad \text { search for radius of convergence }
$$

Example: baryon number density at imag. $\left.\mu_{B} \quad \frac{\rho_{B}\left(T, \mu_{B}\right)}{T^{3}}\right|_{\mu_{B}=i \theta_{B} T}=i \sum_{k=0}^{\infty} b_{k}(T) \sin \left(\frac{k \mu_{B}}{T}\right)$
Coefficients computable on the lattice
[Wuppertal-Budapest, Vovchenko et al., PLB 20I7]

$$
b_{k}(T)=\frac{2}{\pi} \int_{0}^{\pi} \operatorname{Im}\left[\frac{\rho_{B}\left(T, i \theta_{B} T\right)}{T^{3}}\right] \sin \left(k \theta_{B}\right) d \theta_{B}
$$

Cluster expansion model (CEM) [Vovchenko et al., PRD 2018]:

$$
b_{k}(T)=\alpha_{k}^{\mathrm{SB}} \frac{\left[b_{2}(T)\right]^{k-1}}{\left[b_{1}(T)\right]^{k-2}}, \quad k=3,4, \ldots
$$

b_{1}, b_{2} input from the WB-lattice data, α_{k}^{SB} fixed to Stefan-Boltzmann, all higher coefficients are model predictions

Physical point: modelling fluctuations

CEM prediction: [Vovchenko et al. PRD 18]
Closest singularity in complex plane is Roberge-Weiss transition

$$
\mu_{B}^{\mathrm{cep}}>\pi T
$$

[Vovchenko et al., PoS Corfu 2018; NPA 2018]

Search for Lee-Yang zeroes

LY zeros (in infinite volume) at real parameter values signal non-analytic phase transition

From lattice coeffs up to μ_{B}^{8}, Pade resummation

$$
\mu_{B}^{\mathrm{cep}}>2.5 T, T<125 \mathrm{MeV}
$$

Physical point: reweighting LQCD revisited

[Borsanyi et al., PRD 22]

New treatment: rooted determinant + reweighting in sign only [Giordano et al. JHEP 20]
Simulation with stout-sm. staggered action, $N_{\tau}=6:$ no sign of criticality for $\mu_{B}<2.5 T$

Summary: constraints on the critical point

- Ordering of critical temperatures
$\mu_{B}^{\mathrm{cep}}>3.1 T_{p c}(0) \approx 485 \mathrm{MeV}$
[O.P. Symmetry 21]
- Cluster expansion model of lattice fluctuations $\mu_{B}^{\text {cep }}>\pi T$
[Vovchenko et al. PRD 18]
- Singularities, Pade-approx. fluctuations
$\mu_{B}^{\text {cep }}>2.5 T, T<125 \mathrm{MeV}$ [Bollweg et al. PRD 21]
- Direct simulations with refined reweighting

$$
\mu_{B}^{\text {cep }}>2.5 T \quad[\text { Wuppertal-Budpest collaboration, PRD 21] }
$$

- Consistent with DSE, fRG
[Fischer PPNP 19; Fu, Pawlowski, Rennecke PRD 20; Gao, Pawlowski PRD 21] CEP seen at larger density, but "not yet controlled" $\left(T_{\mathrm{CEP}}, \mu_{B_{\mathrm{CEP}}}\right)=(98,643) \mathrm{MeV}$

Conclusions

- Chiral transition at zero density is second order for $\mathrm{Nf}=2,3$ massless quark flavours

So far consistent between all lattice discretisations + DSE

O Imaginary chemical potential has no effect on the order of the chiral transition

Lesson from cutoff effects:
Correct UV sector of a theory is crucial for its phase diagram!
"Low energy effective models" can be deceiving

