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The expected QCD phase diagram

from GSI

Fundamental for particle-, nuclear-, astro- physics, future textbook knowledge! 

Non-perturbative nature/confinement prevents perturbative solution

“Sign problem” prevents Monte Carlo simulation (NP-hard problem?)                             



History: motivation for the critical endpoint

[Rajagopal 95, Halasz et al., PRD 98, Stephanov, Rajagopal, Shuryak PRL 98, 
 Rajagopal, Wilczek 00, Hatta, Ikeda, PRD 03,…]
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Model predictions, no QCD information

Model predictions, 
early lattice results

Breaking/restoration of exact chiral symmetry requires a (non-analytic) phase transition

Tricritical point + wing line
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Nf = 2 :



Other (mostly ignored) possibilities

The order of the chiral phase transition at               narrows down possibilities          
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[Pisarski, Wilczek, PRD 84]: 
(Linear sigma model in 3d) 
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06

triple points
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Nf = 2
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U(1)A
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Nf � 3 1st order
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Nf = 2 + 1



The Columbia plot with chemical potential
The thermal phase transition at imaginary µ
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Chiral critical surface goes smoothly from imag. to real      
[de Forcrand, O.P. JHEP 07]

Chiral+deconfinement transition weaken with real, strengthen with imag.  
 
Phys. point “deeper” in crossover region than for zero density 
 
 
 
 
 
 
 
 
 
 
 

First-order region in RW plane shrinks towards continuum  
 

µ
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[Wu, Meng PRD 17, Czaban et al., PRD 16,  O.P., Sciarra 19]
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Nf = 2 + 1

[Stephanov, Rajagopal, Shuryak PRL 98]:

“As        is reduced from infinity, the tricritical point … moves to lower    until it reaches
 the T-axis and can be identified with the tricritical point in the            -plane”
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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…is elusive, massless limit not simulable!

The nature of the QCD chiral transition at zero density

Coarse lattices or unimproved actions: 1st order for 

1st order region shrinks rapidly as                             

For fixed lattice spacing: apparent contradictions between different lattice actions    
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Nf = 2, 3

Details and references:   [O.P., Symmetry 13, 2021]



From the physical point to the chiral limit
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Cannot distinguish between Z(2) vs. O(4) exponents, need exponential accuracy!            
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Figure 3. Left: Pseudo-critical temperature of the crossover defined by the chiral
susceptibility ‰, the inflection point of the chiral condensate D or an additively
renormalised chiral condensate D3, for Nf “ 2 ` 1 ` 1 twisted mass Wilson fermions
close to the continuum. Lines represent chiral extrapolations according to the Op4q
second-order or finite critical Zp2q-mass scenario. From [30]. Right: Columbia plot
expressed in ÷, fi-masses in units of the Wilson flow parameter t0. Critical points
have been determined using an Opaq-improved Wilson action. The first-order region
includes the physical point on coarse lattices, but shrinks drastically as N· is increased.
From [31].

employing either Op4q exponents or Zp2q-exponents and a critical pseudo-scalar mass up
to mfi „ 100 MeV. Again, it is not possible to distunghuish between these scenarios. As
in the previous case, the extrapolated value of the critical temperature in the chiral limit
is therefore robust under changes of the critical exponents and quoted as

T 0
c “ 134`6

´4 MeV, (5)

in remarkable agreement with the staggered result.129

Fig. 3 (right) shows an investigation of sections of the chiral critical line using Opaq130

clover-improved Wilson fermions [31]. Starting point are the data for Nf “ 3 to be131

discussed separately below, and on N· “ 6 further points at larger strange quark masses132

have been added. The critical line is then fitted assuming a tricritical strange quark mass133

as explained in Section 2.5 plus polynomial corrections. Note that this discretisation134

features a much wider first-order region, which even contains the physical point on the135

coarser lattices. This must be a lattice artefact, and the first-order region rapidly shrinks136

as N· is increased.137

Several conclusions can be drawn from these results. Firstly, the width of a potential138

first-order region as in Fig. 1 (left) is bounded to a small fraction of the physical light quark139

(or pion) masses. Second, the numerical proximity of the critical exponent combinations140

1{p—”q for the 3D Op2q, Op4q and Zp2q universality classes appears to allow for a robust141

extrapolation of the chiral transition temperature to the massless limit with remarkably142

small uncertainties. Conversely this statement implies, however, that it is impossible143

to firmly identify the universality class in this way, which would require exponentially144

accurate data. This problem might be avoided by looking at the scaling of energy-like145

variables, which are governed by the critical exponent – that changes sign between the146

Op2q, Op4q and the Zp2q universality classes. It was shown that the Polyakov loop behaves147

as an energy-like observable, but unfortunately a firm distinction betweeen universality148

classes would require a further substantial reduction of the light quark mass [32]. Finally,149

note that the value of Tcpml “ 0q is „ 25 MeV lower than the pseudo-critical temperature150
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Figure 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to
those from the HotQCD collaboration [29]. The various dashed lines represent fits to the numerical data, see main text for
details. The estimates for the critical temperature Tc have been obtained from an extrapolation of the fits to m⇡ ! 0. The
temperatures T (l,s)

60 and T lattice
c are the extrapolated results for the chiral critical temperature obtained from a definition of

the pseudocritical temperature which does not involve the peak position of the susceptibility, see main text for details. Right
panel: Susceptibility as obtained from the reduced condensate as a function of the temperature. The normalisation �̄(l,s)

M is the
maximum of the susceptibility at the physical pion mass, see Eq. (5). The lattice QCD data has been taken from Refs. [29, 62].

pseudocritical temperature on the pion mass. For the
physical pion mass, m⇡ = 140 MeV, this ratio in our
present first-principles fRG study is about a factor of
three smaller than typical values for D(l) found in low-
energy QCD model studies [35, 36]. For example,

DQM
(l) (m⇡ =140 MeV) ⇡ 0.28 (9)

was reported in Ref. [36] for the quark-meson (QM)
model. In our present QCD study, we instead find

DQCD
(l) (m⇡ =140 MeV) ⇡ 0.10 , (10)

where we have employed the value for Tc obtained from

an extrapolation of the pseudocritical temperature T (l)
pc

to the limit m⇡ = 0.
Next, we turn to the reduced susceptibility �(l,s)

M as
defined in Eq. (4). In Fig. 2 (right panel), we show
a comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As ex-
pected, the qualitative behaviour of the reduced suscep-
tibility is the same as the one found for the light-quark
susceptibility. More specifically, the susceptibilities in-
crease for decreasing pion mass, indicating the approach
to a singularity in the chiral limit. Fitting the rela-

tion (7) to our numerical results for T (l,s)
pc (m⇡) for m⇡ =

30, 35, 40, . . . , 140 MeV, we obtain Tc ⇡ 141.6+0.3
�0.3 MeV,

c(l,s) ⇡ 0.17+0.03
�0.03 MeV1�p, and p ⇡ 0.91+0.03

�0.03. Thus, the
critical temperature Tc is in excellent agreement with the
one extracted from our analysis of the light-quark suscep-
tibilities, as it should be. With respect to the exponent p,
we note that it also deviates clearly from the expected

O(4) value. However, we observe that it is consistent
within fit errors with the value for p which we obtained
from our analysis of the light-quark susceptibility. Over-
all, we therefore cautiously conclude that QCD is not
within the scaling regime for the range of pion masses
considered here, providing us with m⇡ ⇡ 30 MeV as a
conservative estimate for the upper bound of this regime.
An actual determination of the size of the scaling regime
is beyond the scope of present work as it requires to study
very small pion masses.

In analogy to the definition (8), we can also define
the relative dependence D(l,s)(m⇡) of the pseudocritical
temperature on the pion mass in case of the reduced sus-
ceptibility. For m⇡ = 140MeV, we then find that this
quantity is only slightly smaller than the corresponding
quantity associated with the light-quark susceptibility.

In Fig. 3 (right panel), we finally compare our fRG
results for the reduced susceptibility to very recent re-
sults from the HotQCD collaboration [29]. We observe
excellent agreement between the results from the two ap-
proaches for pion masses m⇡ & 100 MeV. The deviations
of the results from the two approaches for smaller pion
masses may at least partially be attributed to cuto↵ arte-
facts in the lattice data. Note that cuto↵ e↵ects are ex-
pected to shift the maxima to smaller temperatures. We
refer to Ref. [18] for a respective discussion.

It is also worthwhile to compare the peak positions
of the reduced susceptibilities extracted from the lattice
QCD data with those from our fRG study, see Tab. I
and Fig. 3 (left panel). As discussed above, the peak
position can be used to define a pseudocritical tem-
perature. For the presently available pion masses on
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The nature of the QCD chiral transition, Nf=3

…has enormously large cut-off effects!

⇠ a2

O(a)-improved Wilson:
1st order region shrinks for             
 

<latexit sha1_base64="kis3nQTcYByKCGapxEuyeC9CyMg=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquFBVPBS8eK9gPaJeSTbNtaDZZklmlLv0lXjwo4tWf4s1/Y9ruQVsfDDzem2FmXpgIbsDzvp3C2vrG5lZxu7Szu7dfdg8OW0almrImVULpTkgME1yyJnAQrJNoRuJQsHY4vpn57QemDVfyHiYJC2IylDzilICV+m6Z4J7mwxEQrdUj9vpuxat6c+BV4uekgnI0+u5Xb6BoGjMJVBBjur6XQJARDZwKNi31UsMSQsdkyLqWShIzE2Tzw6f41CoDHCltSwKeq78nMhIbM4lD2xkTGJllbyb+53VTiK6CjMskBSbpYlGUCgwKz1LAA64ZBTGxhFDN7a2YjogmFGxWJRuCv/zyKmmdV/2Lau2uVqlf53EU0TE6QWfIR5eojm5RAzURRSl6Rq/ozXlyXpx352PRWnDymSP0B87nDxwrkrg=</latexit>

a ! 0

O(a) improved Wilson  [Kuramashi et al. PRD 20]  

0

1

2

3

4

5

0 0.005 0.01 0.015 0.02 0.025 0.03

crossover

1st order
𝑚 PS,

E⁄𝑇 E

1⁄𝑁 2t

fit: 𝑎0 + 𝑎1⁄𝑁 2t
fit: 𝑎0 + 𝑎1⁄𝑁t + 𝑎2⁄𝑁 2t
solve: 𝑎0 + 𝑎1⁄𝑁 2t
solve: 𝑎0 + 𝑎1⁄𝑁t + 𝑎2⁄𝑁 2t

<latexit sha1_base64="YxeCsed4Vs+63Zgwdqd/8tvYPMA="></latexit>

mc
⇡  110 MeV N⌧ = 4, 6, 8, 10, 12



The nature of the QCD chiral transition, Nf=3,4

…has enormously large cut-off effects!

⇠ a2

Unimproved staggered:
1st order region shrinks for            , both for  
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Different view point: mass degenerate quarks

Consider analytic continuation to continuous 

Tricritical point guaranteed to exist if there is 1st order at any 

Known exponents for critical line entering tric. point!

Continuation to            :  Z(2) surface ends in tricritical line

   [Cuteri, O.P., Sciarra  PRD 18]

and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.
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a 6= 0

and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.
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and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.
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and hence reproduces a possible triple line and tricritical point also at finite lattice spacing.
In a first attempt with Nf “ 2 ` 1 on coarse N· “ 4 lattices, the chiral critical line was
found to be consistent with tricritical scaling [24]. Unfortunately, this is inconclusive for
the same reasons as described in the last section: a finite portion of the critical line can
always be fitted in terms of di�erent polynomial forms, so that a presently impossible
accuracy would be required close to the chiral limit in order to get a compelling distinction
between the left and right versions of figure 1.

2.3 The chiral phase transition for Nf mass-degenerate flavours
The way out is to exploit tricritical scaling in a setup, where a tricritical point is guaranteed
to exist. In such a case the scaling form and its exponents are fixed, and one is only
concerned about the location of the tricritical point. Such a situation emerges from a
slight change of perspective and variables, as we suggested previously [17]. We now consider
degenerate quark masses only, with continuum partition function

ZpNf, g, mq “
ª

DAµ pdet M rAµ, msqNf e
´SYMrAµs

. (2.3)

Instead of tuning the strange quark mass, an alternative interpolation between Nf P t2, 3u,
which generalises to larger Nf, is achieved by an analytic continuation of Nf to continu-
ous, non-integer values. In the lattice formulation with rooted staggered fermions, whose
determinant is raised to the power Nf{4 in order to describe Nf mass-degenerate quarks,
this is implemented straightforwardly. The Columbia plot scenario figure 1 (right) then
translates to the version shown in figure 3 (left), where the tricritical strange quark mass
is replaced by a tricritical number of flavours, 2 † N

tric
f † 3, and the Nf-axis to the right

of it corresponds to the new triple line. The crucial advantage in this modified parameter
space is that, since there is no chiral transition for Nf “ 1, a tricritical point N

tric
f ° 1 is

guaranteed to exist as soon as there is a first-order region for any Nf ° 1. In particular, the
first-order scenario from figure 1 (left) now also features a tricritical point, 1 † N

tric
f † 2.

When a third axis for finite lattice spacing a is added to this picture, there must be a tricrit-
ical line N

tric
f paq in the plane m “ 0, which represents the chiral limit of the Z2-critical

surface separating lattice parameter regions with first-order transitions from crossover.
The principle of the analysis is now clear: Starting with the already known first-order

transitions for Nf P t3, 4u on N· “ 4 lattices, map out the Z2 boundary lines until the
tricritical scaling region is reached and extrapolate to the chiral limit,

N
c
f pamq “ N

tric
f ` B1 ¨ pamq2{5 ` O

`
pamq4{5˘

, (2.4)

In this way, N
tric
f « 1.8 was obtained on N· “ 4 lattices [17], implying the first-order

scenario for Nf “ 2. As a powerful check of the continuation of Nf as well tricritical
scaling, the same critical quark mass for Nf “ 2, N· “ 4 is obtained when keeping Nf
fixed and varying (imaginary) chemical potential instead [16]. The quark mass is again the
symmetry breaking scaling field, but with Nf Ñ pµ{T q2 in equation (2.4). In the present
work, we systematically extend our study from [17] to larger numbers of flavours and finer
lattices.

– 6 –



Methodology to determine order of transition
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Finite size scaling of generalised 
cumulants

(Pseudo-critical) phase boundary:                                 3d manifold                    
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B3 = 0

Standard staggered fermions, bare parameters:       
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�, am,Nf , N⌧

Second-order 3d Ising:                              

2d chiral critical surface
separates 1st order  
from crossover                    

3 Lattice simulations and analysis

For our numerical investigation, we work with the standard unimproved Wilson gauge
and staggered fermion actions. All numerical simulations have been performed using the
publicly available OpenCL-based code CL

2
QCD, which is optimised to run e�ciently on AMD

GPUs and contains an implementation of the RHMC algorithm for unimproved rooted
staggered fermions. In particular, version v1.0 [34] has been employed for simulations on
smaller N· on the L-CSC supercomputer, while version v1.1 [35] has been run on the newer
Goethe HLR supercomputer to run the most costly simulations. To e�ectively handle the
thousands of necessary simulations, the BaHaMAS software [36] has been extensively used.

Our goal is to determine the location and order of chiral phase transitions in the
four-dimensional space spanned by the dimensionless parameters of our lattice action: the
lattice gauge coupling —, the bare quark mass in lattice units am, the number of degenerate
quark flavours Nf, and the number of time-slices N· . For any fixed value of N· and Nf, we
achieve this by making use of two particular standardised moments,

Bnp—, am, N‡q “ xpO ´ xOyqny
A

pO ´ xOyq2
En{2 , (3.1)

where the chiral condensate has been chosen as observable, O “ Â̄Â, as it becomes
the order parameter of the thermal phase transition in the chiral limit. In particu-
lar, to extract the order of the transition as a function of the quark mass, we evalu-
ate the kurtosis B4p—c, am, N‡q [37] of the sampled xÂ̄Ây distribution, where —c denotes
the (pseudo-) critical coupling of the phase boundary, for which the zero-skewness con-
dition B3p— “ —c, am, N‡q “ 0 holds. In the thermodynamic limit N‡ Ñ 8, the kurtosis
B4p—c, am, N‡q takes the values of 1 for a first order transition and 3 for an analytic cros-
sover, respectively, with a discontinuity when passing from a first order region to a crossover
region via a second order point; for the 3D Ising universality class of interest here, it takes
the value 1.604 [38]. On finite, increasing volumes this discontinuity is smoothed out and
approached gradually with a rate characteristic of the universality class in question,

B4p—c, am, N‡q « 1.604 ` c pam ´ amcq N
1{0.6301
‡ with c P R . (3.2)

Data have been analysed in a completely analogous way to that explained in Refs. 18, 39
and, in particular, the critical mass amc has been extracted at fixed N· and Nf by fitting
the kurtosis data according to this finite size scaling formula.

The outcome of all fits can be found in Table 1, where also the simulated mass range
has been included. In appendix A a detailed overview of the simulations can be found.
To give an idea of the numerical e�ort: over 400 values of — have been simulated in total,
producing about 60 millions of trajectories.

There is a new aspect of the data analysis, which is worth mentioning here. Since the
subsequent analysis presented in section 4 heavily relies on the outcome of the B4-fits , we
decided to cross-check the error estimate on amc using a more accurate procedure. Values
of B4p—c, am, N‡q are obtained using the multiple-histogram method [40], and their error
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Bare parameter space of unimproved staggered LQCD

Tricritical scaling observed in different variable pairings
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Bare parameter space of unimproved staggered LQCD

Data points implicitly labeled by Nf

Tricritical scaling observed in lattice bare parameter space

 Tricritical extrapolation always possible!        

[Cuteri, O.P., Sciarra JHEP 21]
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Bare parameter space of unimproved staggered LQCD

Tricritical scaling observed also in plane of mass vs. lattice spacing

Allows extrapolation to lattice chiral limit, tricritical points 

1st order scenario:                                                                                                                                         
  
Incompatible with data!                                                            
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Implications for the continuum

Finite                   implies that 1st order transition is not connected to continuum                                 

Approaching continuum first, then chiral limit:   
Continuum chiral phase transition second-order!
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Nf=3 O(a)-improved Wilson fermions

[Kuramashi et al. PRD 20]  
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mc
⇡  110 MeV N⌧ = 4, 6, 8, 10, 12

Re-analysis using:

1st

with fipxq an interpolating operator for the pseudoscalar meson and a renormalisation
factor Z. Approaching the chiral limit, the pseudoscalar meson mass and the quark mass
are related as in the continuum,

am
2
P S 9 amq . (5.4)

It is therefore customary to define Ÿcp—q by the vanishing of the pseudoscalar meson mass in
the vacuum, i.e., amP SpŸcp—q, —q “ 0 at N· “ 8. This is shown schematically as a dashed
line in figure 9 (left). Towards the strong coupling region, this line meets the parity-flavour
violating Aoki phase [40, 41], which ends in a cusp [42, 43] whose location depends on
the lattice action and the value of N· . Around Ÿcp—q, Wilson chiral perturbation for the
theory predicts a metastability region corresponding to a first-order bulk transition between
positive and negative quark mass, while the meson mass stays finite everywhere, both for
untwisted and twisted mass [44, 45]. A metastability region has been identified numerically
at zero temperature [46] as well as at finite temperature [47, 48], but its location and extent
depend strongly on the chosen action and N· [49].

The series of Nf “ 3 data [15, 20, 21], which we re-analyse below, is based on the
RG-improved Iwasaki gauge action [50] and a non-perturbatively Opaq-improved Wilson
clover fermion action [51]. We are not aware of a dedicated study of the bare phase diagram
pertaining to the precise action and parameter tunings used in those simulations, besides
determining the line Ÿcp—, N· “ 8q. However, a previous study using the same action with
a mean-field tuning of the clover coe�cient [52] reports a phase diagram as sketched by the
dashed lines in figure 9, with no additional structures besides an Aoki phase in the strong
coupling region, so we will base our discussion on this situation.

First, it has to be emphasised that for studies of the thermal phase transition we need
the lines Ÿcp—, N· q for the finite N· under consideration, and not Ÿcp—, N· “ 8q, which is
only needed to set the scale. The former marks the vanishing of the pseudoscalar screening
mass in the low temperature phase, and is related to the latter by an expansion in powers
of N

´1
· “ aT ,

Ÿcp—, N· q “ Ÿcp—, 8q ` G1p—q N
´1
· ` G2p—q N

´2
· ` O

`
N

´3
·

˘
. (5.5)

In the literature the di�erence between the two is often dismissed, being of Opaq, whereas
in fact it is qualitatively crucial. The partition function at finite N· has no singularities on
the line Ÿcp—, 8q (except at its crossings with the thermal transition). Furthermore, the
subtracted chiral condensate has finite values with di�erent signs across Ÿcp—, N· q, which
should therefore mark a first-order transition2. Following this line with increasing — at fixed
N· , the thermal chiral phase transition is reached at some critical coupling. From this point
the thermal transition lines Ÿtp—, N· q branch o� into the positve and negative quark mass
directions, respectively, along which the chiral transition weakens to end in a critical point.
At the branching point the line Ÿcp—, N· q should terminate, since on the large-—-side of
the thermal transition the Matsubara modes „ 2fiT produce an always non-zero screening
mass and the subtracted chiral condensate can pass through zero smoothly. The branching

2
For the order of this transition it is immaterial whether the pseudoscalar screening mass is actually

zero on the line, or whether it jumps between finite values.
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                                                                           Tricritical scaling! 

Nf=3 consistent with staggered, 2nd order in chiral continuum limit!

0

1

2

3

4

5

0 0.005 0.01 0.015 0.02 0.025 0.03

crossover

1st order

𝑚 PS,
E⁄𝑇 E

1⁄𝑁 2t

fit: 𝑎0 + 𝑎1⁄𝑁 2t
fit: 𝑎0 + 𝑎1⁄𝑁t + 𝑎2⁄𝑁 2t
solve: 𝑎0 + 𝑎1⁄𝑁 2t
solve: 𝑎0 + 𝑎1⁄𝑁t + 𝑎2⁄𝑁 2t

[Cuteri, O.P., Sciarra, JHEP 21]
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Digression: tricritical points as function of Nf
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                  increasing function                                  

Tricritical line in the plane of the lattice chiral limit, separates 1st from 2nd 

Is there a tricritical point in the continuum?

<latexit sha1_base64="i7PQcwW5LP8OPC8PsmGKkiJuyGo=">AAACAnicbVBNS8NAEN34WetX1JN4CRahXkoiRT0WvXgqFewHNDVstpt26WYTdidCCcWLf8WLB0W8+iu8+W/ctDlo64OBx3szzMzzY84U2Pa3sbS8srq2Xtgobm5t7+yae/stFSWS0CaJeCQ7PlaUM0GbwIDTTiwpDn1O2/7oOvPbD1QqFok7GMe0F+KBYAEjGLTkmYd1zwWc3LshhqEMU5CMTMp1Lzj1zJJdsaewFomTkxLK0fDML7cfkSSkAgjHSnUdO4ZeiiUwwumk6CaKxpiM8IB2NRU4pKqXTl+YWCda6VtBJHUJsKbq74kUh0qNQ193ZpeqeS8T//O6CQSXvZSJOAEqyGxRkHALIivLw+ozSQnwsSaYSKZvtcgQS0xAp1bUITjzLy+S1lnFOa9Ub6ul2lUeRwEdoWNURg66QDV0gxqoiQh6RM/oFb0ZT8aL8W58zFqXjHzmAP2B8fkDOI+XUg==</latexit>

N tric
⌧ (Nf )

<latexit sha1_base64="ZTKylXHjCC1mb+bLETAN3p9DJcE=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqAhCwYvHCvYD2lA22027dHcTdjdCCf0LXjwo4tU/5M1/4ybNQVsfDDzem2FmXhBzpo3rfjultfWNza3ydmVnd2//oHp41NFRoghtk4hHqhdgTTmTtG2Y4bQXK4pFwGk3mN5lfveJKs0i+WhmMfUFHksWMoJNJmFx6w6rNbfu5kCrxCtIDQq0htWvwSgiiaDSEI617ntubPwUK8MIp/PKINE0xmSKx7RvqcSCaj/Nb52jM6uMUBgpW9KgXP09kWKh9UwEtlNgM9HLXib+5/UTE177KZNxYqgki0VhwpGJUPY4GjFFieEzSzBRzN6KyAQrTIyNp2JD8JZfXiWdi7p3WW88NGrNmyKOMpzAKZyDB1fQhHtoQRsITOAZXuHNEc6L8+58LFpLTjFzDH/gfP4Af1WN3g==</latexit>

am = 0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

aT

pa
m

q2{
5

Nf “ 3 Nf “ 4 Nf “ 5
Nf “ 6 Nf “ 7 Nf “ 8



The chiral phase transition for different 
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Nf

[Cuteri, O.P., Sciarra, JHEP 21]

The chiral phase transition in the massless limit is likely second-order for all 
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Temperature dependence:

For lattice, see  [Miura, Lombardo, NPB 13]

checked unknown
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Nf = 7
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Nf = 2



The Columbia plot in the continuum
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Tpc = 156(3)MeV

Universality class?

[Cuteri, O.P., Sciarra JHEP 21]
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U(3)L ⇥ U(3)R



What about Pisarski, Wilczek 1984?

3d        - Ginzburg-Landau-Wilson theory for chiral condensate plus t’Hooft term

Epsilon expansion about

All conclusions confirmed by [Butti, Pelisetto, Vicari, JHEP 03]  
(High order perturbative expansion in fixed d)

Support also from simulation of 3d sigma model [Gausterer, Sanielovici, PLB 88]                                                                                                                                         
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✏ = 1
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Suggested resolution: term, in 3d renormalisable; even higher powers…..?  
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[Fejos, PRD 22]  3d      with t’Hooft term, functional RG study:
                         IR-stable fixed point, 2nd order transition for restored anomaly
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�6

[Kousvos, Stergiou, SciPost 23]  Numerical conformal bootstrap:  
                                               U(3)xU(3) displays IR stable fixed point

No contradictions!



Meanwhile in Frankfurt…
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N⌧ = 10

   New                result on predicted scaling curve!
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[preliminary]

progressing to finer lattices



The Columbia plot in the continuum
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T 0
c = 135(8)MeV
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T 0
c = 98(6)MeV
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Tpc = 156(3)MeV

[HotQCD PRD 22]

Universality class(es)?

[HotQCD PRL 19]

[Cuteri, O.P., Sciarra JHEP 21]

HISQ, crossover 
down to 
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m⇡ ⇡ 45MeV

[Zhang et al., PoS LAT22]Crossover for DW fermions, Nf=3,  
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U(3)L ⇥ U(3)R



QCD with imaginary chemical potential

Motivation: no sign problem!

QCD at imaginary chemical potential

Roberge-Weiss (center) symmetry:CP symmetry Z(µ) = Z(�µ)
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56 Chapter 2. QCD phase diagram from the lattice

(a) mq “ 0 (b) 0 † mq † mc
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(c) mc
1 † mq † mtric
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(e) mtric
1 † mq † mtric

2 (f) mq “ mtric
2
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light or heavy quarks intermediate quark masses

unimproved staggered      [de Forcrand, O.P., PRL 10, Bonati et al., PRD 11]  
unimproved Wilson          [O.P., Pinke, PRD 14]  
 

Phase of Polyakov loop

Z(2)

boundary:
tricritical

10

Results from coarse lattices:

2nd 3d Ising

mu,d ms

1
1st tr.

1st tr.
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N
f = 2
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�
�
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�2

� µ
T
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tric

tri
c

1st

Z(2)
Z(2)

1st

phys. point

Nf = 3 crossover

Details and reference list:   
[O.P., Symmetry 13, 2021]

Chiral critical surface analytic
around              , negative curvature
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µB = 0

[de Forcrand, O.P.  07]
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N⌧ = 4
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Imaginary chemical potential: cutoff effects

[D’Ambrosio, Fromm, Kaiser, O.P., in progress]

Repeat study of Columbia plot with
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1st-order region not connected 
to continuum limit!
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Same situation as
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Imaginary chemical potential, improved actions

[Bonati et al., PRD 19]  
stout-smeared staggered 
 
 
 
 

[Bielefeld+Frankfurt, PRD 22]    
HISQ      
 
 

No sign of 1st-order phase transition!  

Entire chiral critical surface moves to massless limit                                                                                                                                
  
                                                            

The physical point at imaginary µ
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 Roberge-Weiss plane with improved actions:

[Bonati et al., PRD 19]:  
staggered, stout smearing,  
 
quark mass scan down to                         ,                 
fixed

[HotQCD, PoS CORFU 18] and ongoing:  
HISQ,  
 
quark mass scan down to  
fixed 

No sign of crossing into first order region 

N⌧ = 4
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m⇡ ⇡ 50 MeV
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Entire chiral critical surface shifts towards the chiral limit (vanishes?) in the continuum ….   any first-order region would be tiny!

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-15 -10 -5  0  5  10  15

line: Z(2) scaling curve
Tc = 200.6(1) MeV

ml = ms/27

MNσ
β/ν

zf=z0 Nσ
1/ν (T-Tc)/Tc

Nσ = 32
 24
16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-15 -10 -5  0  5  10  15

6

ν γ γ/ν 1/ν
3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
Tricritical 1/2 1 2 2
1st Order 1/3 1 3 3

TABLE III: Critical exponents relevant to our finite size scal-
ing analysis (see, e.g., Refs. [81–83]).

should lie on a universal scaling curve when plotted as a

function of (β − βRW )L1/ν
s .

The critical exponents which are relevant to our anal-
ysis are reported in Table III. Apart from first order and
3D-Ising exponents, we also report tricritical indexes:
they are expected to describe the critical behavior ex-
actly at the separation point between the first order and
the second order region, however, before the thermody-
namic limit is really approached, they could describe the
critical behavior in a finite neighborhood of the tricritical
point [84].

A plot of χL/L
γ/ν
s vs. (β − βRW )L1/ν

s for the three
different masses is reported in Figs. 3, 4 and 5, respec-
tively for first order, 3D-Ising and tricritical indexes. It
clearly appears that a first order transition is excluded for
all masses, while a reasonable scaling is obtained when
considering both the 3D-Ising and the tricritical critical
behavior.
As a further confirmation of the absence of a first order

transition for all explored masses, in Fig. 6 we report, just
for the lowest quark mass, aml = 0.00075, the probability
distribution of the plaquette and of the unrenormalized
quark condensate at the critical point for the different
lattice sizes. A vague double peak structure is visible only
in the distribution of the chiral condensate and for small
Ls, however it tends to disappear as the thermodynamic
limit is approached.
Therefore, our results suggest that a chiral first order

region, if any, is limited to a region of pion masses be-
low 50 MeV. There are of course many systematics that
should be considered before drawing a definite conclu-
sions. First of all, as we have already discussed, our
approach to the chiral limit actually means that just one
pion becomes massless, while all other pion masses stay
above 400 MeV. Therefore one should repeat this study
with significantly larger values ofNt (smaller lattice spac-
ings), so that also the other pions become lighter. In prin-
ciple, additional chiral degrees of freedom could change
the scenario and make the first order region larger, even
if this is at odds with the common experience of shrink-
ing of first order regions as the continuum limit is ap-
proached. Unfortunately, going to significantly larger
values of Nt is not feasible with our present computa-
tional resources, so this is left for future work.
A second remark regards the lattice sizes that we have

adopted in our study, in particular the maximum values
of aLsmπ that we have reached are 2, 3, and 4 respec-
tively for aml = 0.00075, aml = 0.0015 and aml = 0.003.
The values are not particularly large, especially for the
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FIG. 4: Finite size scaling for the susceptibility of the
Polyakov loop according to 3D-Ising critical indexes. From
top to bottom: aml = 0.003, aml = 0.0015 and aml =
0.00075.

lowest explored quark mass. However, we have seen no
significant deviation from a second order scaling, and no
signal for the development of a double peak structure
as the volume is increased; on the contrary, some weak
double peak signals visible in the chiral condensate distri-
bution for small Ls have shown a tendency to disappear
when going to larger volumes.

N⌧ = 4
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The physical point at imaginary µ
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 Roberge-Weiss plane with improved actions:

[Bonati et al., PRD 19]:  
staggered, stout smearing,  
 
quark mass scan down to                         ,                 
fixed

[HotQCD, PoS CORFU 18] and ongoing:  
HISQ,  
 
quark mass scan down to  
fixed 

No sign of crossing into first order region 

N⌧ = 4
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Entire chiral critical surface shifts towards the chiral limit (vanishes?) in the continuum ….   any first-order region would be tiny!
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ν γ γ/ν 1/ν
3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
Tricritical 1/2 1 2 2
1st Order 1/3 1 3 3

TABLE III: Critical exponents relevant to our finite size scal-
ing analysis (see, e.g., Refs. [81–83]).

should lie on a universal scaling curve when plotted as a

function of (β − βRW )L1/ν
s .

The critical exponents which are relevant to our anal-
ysis are reported in Table III. Apart from first order and
3D-Ising exponents, we also report tricritical indexes:
they are expected to describe the critical behavior ex-
actly at the separation point between the first order and
the second order region, however, before the thermody-
namic limit is really approached, they could describe the
critical behavior in a finite neighborhood of the tricritical
point [84].

A plot of χL/L
γ/ν
s vs. (β − βRW )L1/ν

s for the three
different masses is reported in Figs. 3, 4 and 5, respec-
tively for first order, 3D-Ising and tricritical indexes. It
clearly appears that a first order transition is excluded for
all masses, while a reasonable scaling is obtained when
considering both the 3D-Ising and the tricritical critical
behavior.
As a further confirmation of the absence of a first order

transition for all explored masses, in Fig. 6 we report, just
for the lowest quark mass, aml = 0.00075, the probability
distribution of the plaquette and of the unrenormalized
quark condensate at the critical point for the different
lattice sizes. A vague double peak structure is visible only
in the distribution of the chiral condensate and for small
Ls, however it tends to disappear as the thermodynamic
limit is approached.
Therefore, our results suggest that a chiral first order

region, if any, is limited to a region of pion masses be-
low 50 MeV. There are of course many systematics that
should be considered before drawing a definite conclu-
sions. First of all, as we have already discussed, our
approach to the chiral limit actually means that just one
pion becomes massless, while all other pion masses stay
above 400 MeV. Therefore one should repeat this study
with significantly larger values ofNt (smaller lattice spac-
ings), so that also the other pions become lighter. In prin-
ciple, additional chiral degrees of freedom could change
the scenario and make the first order region larger, even
if this is at odds with the common experience of shrink-
ing of first order regions as the continuum limit is ap-
proached. Unfortunately, going to significantly larger
values of Nt is not feasible with our present computa-
tional resources, so this is left for future work.
A second remark regards the lattice sizes that we have

adopted in our study, in particular the maximum values
of aLsmπ that we have reached are 2, 3, and 4 respec-
tively for aml = 0.00075, aml = 0.0015 and aml = 0.003.
The values are not particularly large, especially for the
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FIG. 4: Finite size scaling for the susceptibility of the
Polyakov loop according to 3D-Ising critical indexes. From
top to bottom: aml = 0.003, aml = 0.0015 and aml =
0.00075.

lowest explored quark mass. However, we have seen no
significant deviation from a second order scaling, and no
signal for the development of a double peak structure
as the volume is increased; on the contrary, some weak
double peak signals visible in the chiral condensate distri-
bution for small Ls have shown a tendency to disappear
when going to larger volumes.

N⌧ = 4
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µ = i⇡T/3 Roberge-Weiss boundary



Columbia plot with chemical potential, continuum

[Bernhardt, Fischer, arXiv:2309.06737]

Dyson-Schwinger eqs.  
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|µ|  30MeV

Columbia plot analytic around 
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µ = 0

Same picture   
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Columbia plot with chemical potential, continuum

The thermal phase transition at imaginary µ
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Chiral critical surface goes smoothly from imag. to real      
[de Forcrand, O.P. JHEP 07]

Chiral+deconfinement transition weaken with real, strengthen with imag.  
 
Phys. point “deeper” in crossover region than for zero density 
 
 
 
 
 
 
 
 
 
 
 

First-order region in RW plane shrinks towards continuum  
 

µ
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From the chiral limit back to the physical point

The “standard scenario’’:
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read
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Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B
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B
2 , �B
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2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B
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3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B
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8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)
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8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
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Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B
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B
2 , �B

6 /�
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2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B
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Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23)

[Bellwied et al, PLB 15]
[Bonati et al, NPA 19]
[Bonati et al, PRD 18]
[HotQCD, PLB 19]
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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QCD EoS with fugacity expansion Volodymyr Vovchenko

1. Introduction

The equation of state of hot QCD matter is available for µB = 0 from first-principle lattice
QCD simulations [1, 2]. Finite µB simulations, on the other hand, are hindered by the sign problem.
All the available lattice methods here are indirect and restricted to small values of µB/T . These
methods include the analytic continuation from imaginary chemical potential [3, 4], the Taylor
expansion around µB = 0 [5, 6], the reweighing technique [7, 8], and the canonical approach [9, 10].
At larger baryon density the equation of state is usually described by effective models.

Recent advances in lattice QCD simulations at zero and imaginary chemical potential include
the evaluation of higher-order baryon number susceptibilities at µB = 0 [11, 12, 13] and the Fourier
coefficients of net baryon density at imaginary µB [14], which put stringent constraints on effective
models for the QCD equation of state at finite baryon density. Here we construct a model for the
QCD equation of state at finite baryon density which incorporates all of the above-mentioned con-
straints. Our considerations are based on the recently developed cluster expansion model (CEM)
formalism [15, 16]. It uses the cluster expansion in baryonic fugacity,

p(T,µB)

T 4 =
1
2

•

Â
k=�•

p|k|(T )ek µB/T , (1.1)

which represents the pressure as a Laurent series in lB ⌘ eµB/T . This expansion incorporates
two important QCD symmetries: the CP-symmetry (µB !�µB) and the Roberge-Weiss periodic-
ity (µB ! µB + i2pT ) of the partition function. The net baryon density reads

rB(T,µB)

T 3 =
1
2

•

Â
k=1

bk(T )
h
ek µB/T � e�k µB/T

i
(1.2)

=
•

Â
k=1

bk(T ) sinh
✓

kµB

T

◆
, bk ⌘ k pk. (1.3)

At purely imaginary baryochemical potential the net baryon density has the form of a trigono-
metric Fourier series expansion

rB(T,µB)

T 3

����
µB=iqB T

= i
•

Â
k=0

bk(T ) sin
✓

kµB

T

◆
. (1.4)

The expansion coefficients bk become Fourier expansion coefficients which can be extracted through
the standard Fourier analysis:

bk(T ) =
2
p

Z p

0
Im


rB(T, iqB T )

T 3

�
sin(k qB)dqB . (1.5)

These Fourier coefficients can be evaluated in lattice QCD simulations at imaginary chemical po-
tential [17, 18]. The four leading coefficients were evaluated at the physical point in Ref. [14] in
the temperature range 135 < T < 230 MeV.

2. Cluster expansion model

2.1 Formulation

The CEM [15, 16] is a model for the QCD equation of state at finite baryon density which
makes use of the expansion in fugacities (1.2). It is based on an empirical observation of tempera-
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1

Cluster expansion model (CEM) [Vovchenko et al., PRD 2018]: 

QCD EoS with fugacity expansion Volodymyr Vovchenko

ture independent Fourier coefficient ratios

ak =
[b1(T )]k�2

[b2(T )]k�1 bk(T ), k = 3,4, . . . (2.1)

as observed in the lattice data of Ref. [14] for k = 3,4. The available lattice data are consistent
with a temperature independent a3,4 values, as evaluated in the Stefan-Boltzmann limit of massless
quarks:

bSB
k =

(�1)k�1

k
4 [3+4(pk)2]

27(pk)2 , (2.2)

aSB
k = 8k�1 (3+4p2)k�2

(3+16p2)k�1
3+4p2k2

k3 , k = 3,4, . . . (2.3)

The comparison of the lattice data for a3 and a4 with Eq. (2.3) is shown in Fig. 1.
The CEM assumes ak = aSB

k for all k � 3. This implies that all higher-order Fourier coeffi-
cients are given in the CEM in terms of the two leading ones:

bk(T ) = aSB
k

[b2(T )]k�1

[b1(T )]k�2 , k = 3,4, . . . (2.4)

The expansion in Eq. (1.2) can be analytically summed in the CEM (2.4). The result is

rB(T,µB)

T 3 =� 2
27p2

b̂2
1

b̂2

�
4p2 [Li1 (x+)�Li1 (x�)]+3 [Li3 (x+)�Li3 (x�)]

 
. (2.5)

Here b̂k =
bk(T )
bSB

k
, x± =� b̂2

b̂1
e±µB/T , and Lis(z) =

•

Â
k=1

zk

ks is the polylogarithm.

2.2 Comparison with the rational function model

In general, a determination of the higher-order Fourier coefficients from the two leading ones
is not unique. Functional forms different from (2.4) can be considered. This point has been raised
in Ref. [19], where a rational function model (RFM) has been introduced. The Fourier coefficients
in the RFM are given as follows:

b̂RFM
k (T ) =

c(T )
1+ k/k0(T )

, k = 3,4, . . . (2.6)

with

k0(T ) = [b̂1/b̂2 �1]�1 �1, (2.7)

c(T ) = b̂1(T ) [1+1/k0(T )]. (2.8)

The coefficients in the RFM exhibit a different asymptotic behavior in the temperature range
considered: a power-law damping at large k instead of an exponential damping in the CEM. The
RFM gives a similarly good description of the lattice data for the coefficients b3(T ) and b4(T ) as
the CEM when these are viewed on the linear scale (see Ref. [19]). However, significant differences
can be seen by considering the a3 and a4 ratios [Eq. (2.1)], which are plotted for the CEM and the

2
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Physical picture: baryon (hadron resonance) gas at low T, free quarks in SB-limit

all higher coefficients are model predictions

Alternative: Rational function model (RFM) [Almasi et al., PLB 19] 
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1. Introduction

The equation of state of hot QCD matter is available for µB = 0 from first-principle lattice
QCD simulations [1, 2]. Finite µB simulations, on the other hand, are hindered by the sign problem.
All the available lattice methods here are indirect and restricted to small values of µB/T . These
methods include the analytic continuation from imaginary chemical potential [3, 4], the Taylor
expansion around µB = 0 [5, 6], the reweighing technique [7, 8], and the canonical approach [9, 10].
At larger baryon density the equation of state is usually described by effective models.

Recent advances in lattice QCD simulations at zero and imaginary chemical potential include
the evaluation of higher-order baryon number susceptibilities at µB = 0 [11, 12, 13] and the Fourier
coefficients of net baryon density at imaginary µB [14], which put stringent constraints on effective
models for the QCD equation of state at finite baryon density. Here we construct a model for the
QCD equation of state at finite baryon density which incorporates all of the above-mentioned con-
straints. Our considerations are based on the recently developed cluster expansion model (CEM)
formalism [15, 16]. It uses the cluster expansion in baryonic fugacity,

p(T,µB)

T 4 =
1
2

•

Â
k=�•

p|k|(T )ek µB/T , (1.1)

which represents the pressure as a Laurent series in lB ⌘ eµB/T . This expansion incorporates
two important QCD symmetries: the CP-symmetry (µB !�µB) and the Roberge-Weiss periodic-
ity (µB ! µB + i2pT ) of the partition function. The net baryon density reads

rB(T,µB)

T 3 =
1
2

•

Â
k=1

bk(T )
h
ek µB/T � e�k µB/T

i
(1.2)

=
•

Â
k=1

bk(T ) sinh
✓

kµB

T

◆
, bk ⌘ k pk. (1.3)

At purely imaginary baryochemical potential the net baryon density has the form of a trigono-
metric Fourier series expansion

rB(T,µB)

T 3

����
µB=iqB T

= i
•

Â
k=0

bk(T ) sin
✓

kµB

T

◆
. (1.4)

The expansion coefficients bk become Fourier expansion coefficients which can be extracted through
the standard Fourier analysis:

bk(T ) =
2
p

Z p

0
Im


rB(T, iqB T )

T 3

�
sin(k qB)dqB . (1.5)

These Fourier coefficients can be evaluated in lattice QCD simulations at imaginary chemical po-
tential [17, 18]. The four leading coefficients were evaluated at the physical point in Ref. [14] in
the temperature range 135 < T < 230 MeV.

2. Cluster expansion model

2.1 Formulation

The CEM [15, 16] is a model for the QCD equation of state at finite baryon density which
makes use of the expansion in fugacities (1.2). It is based on an empirical observation of tempera-
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ture independent Fourier coefficient ratios
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as observed in the lattice data of Ref. [14] for k = 3,4. The available lattice data are consistent
with a temperature independent a3,4 values, as evaluated in the Stefan-Boltzmann limit of massless
quarks:
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The comparison of the lattice data for a3 and a4 with Eq. (2.3) is shown in Fig. 1.
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ks is the polylogarithm.

2.2 Comparison with the rational function model

In general, a determination of the higher-order Fourier coefficients from the two leading ones
is not unique. Functional forms different from (2.4) can be considered. This point has been raised
in Ref. [19], where a rational function model (RFM) has been introduced. The Fourier coefficients
in the RFM are given as follows:
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Physical picture: baryon (hadron resonance) gas at low T, free quarks in SB-limit

all higher coefficients are model predictions

Alternative: Rational function model (RFM) [Almasi et al., PLB 19] 
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Coefficients computable on the lattice   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QCD EoS with fugacity expansion Volodymyr Vovchenko

1. Introduction

The equation of state of hot QCD matter is available for µB = 0 from first-principle lattice
QCD simulations [1, 2]. Finite µB simulations, on the other hand, are hindered by the sign problem.
All the available lattice methods here are indirect and restricted to small values of µB/T . These
methods include the analytic continuation from imaginary chemical potential [3, 4], the Taylor
expansion around µB = 0 [5, 6], the reweighing technique [7, 8], and the canonical approach [9, 10].
At larger baryon density the equation of state is usually described by effective models.

Recent advances in lattice QCD simulations at zero and imaginary chemical potential include
the evaluation of higher-order baryon number susceptibilities at µB = 0 [11, 12, 13] and the Fourier
coefficients of net baryon density at imaginary µB [14], which put stringent constraints on effective
models for the QCD equation of state at finite baryon density. Here we construct a model for the
QCD equation of state at finite baryon density which incorporates all of the above-mentioned con-
straints. Our considerations are based on the recently developed cluster expansion model (CEM)
formalism [15, 16]. It uses the cluster expansion in baryonic fugacity,

p(T,µB)

T 4 =
1
2

•

Â
k=�•

p|k|(T )ek µB/T , (1.1)

which represents the pressure as a Laurent series in lB ⌘ eµB/T . This expansion incorporates
two important QCD symmetries: the CP-symmetry (µB !�µB) and the Roberge-Weiss periodic-
ity (µB ! µB + i2pT ) of the partition function. The net baryon density reads

rB(T,µB)

T 3 =
1
2

•

Â
k=1

bk(T )
h
ek µB/T � e�k µB/T

i
(1.2)

=
•

Â
k=1

bk(T ) sinh
✓

kµB

T

◆
, bk ⌘ k pk. (1.3)

At purely imaginary baryochemical potential the net baryon density has the form of a trigono-
metric Fourier series expansion

rB(T,µB)

T 3

����
µB=iqB T

= i
•

Â
k=0

bk(T ) sin
✓

kµB

T

◆
. (1.4)

The expansion coefficients bk become Fourier expansion coefficients which can be extracted through
the standard Fourier analysis:

bk(T ) =
2
p

Z p

0
Im


rB(T, iqB T )

T 3

�
sin(k qB)dqB . (1.5)

These Fourier coefficients can be evaluated in lattice QCD simulations at imaginary chemical po-
tential [17, 18]. The four leading coefficients were evaluated at the physical point in Ref. [14] in
the temperature range 135 < T < 230 MeV.

2. Cluster expansion model

2.1 Formulation

The CEM [15, 16] is a model for the QCD equation of state at finite baryon density which
makes use of the expansion in fugacities (1.2). It is based on an empirical observation of tempera-
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ture independent Fourier coefficient ratios

ak =
[b1(T )]k�2

[b2(T )]k�1 bk(T ), k = 3,4, . . . (2.1)

as observed in the lattice data of Ref. [14] for k = 3,4. The available lattice data are consistent
with a temperature independent a3,4 values, as evaluated in the Stefan-Boltzmann limit of massless
quarks:

bSB
k =

(�1)k�1

k
4 [3+4(pk)2]

27(pk)2 , (2.2)

aSB
k = 8k�1 (3+4p2)k�2

(3+16p2)k�1
3+4p2k2

k3 , k = 3,4, . . . (2.3)

The comparison of the lattice data for a3 and a4 with Eq. (2.3) is shown in Fig. 1.
The CEM assumes ak = aSB

k for all k � 3. This implies that all higher-order Fourier coeffi-
cients are given in the CEM in terms of the two leading ones:

bk(T ) = aSB
k

[b2(T )]k�1

[b1(T )]k�2 , k = 3,4, . . . (2.4)

The expansion in Eq. (1.2) can be analytically summed in the CEM (2.4). The result is

rB(T,µB)

T 3 =� 2
27p2

b̂2
1

b̂2

�
4p2 [Li1 (x+)�Li1 (x�)]+3 [Li3 (x+)�Li3 (x�)]

 
. (2.5)

Here b̂k =
bk(T )
bSB

k
, x± =� b̂2

b̂1
e±µB/T , and Lis(z) =

•

Â
k=1

zk

ks is the polylogarithm.

2.2 Comparison with the rational function model

In general, a determination of the higher-order Fourier coefficients from the two leading ones
is not unique. Functional forms different from (2.4) can be considered. This point has been raised
in Ref. [19], where a rational function model (RFM) has been introduced. The Fourier coefficients
in the RFM are given as follows:

b̂RFM
k (T ) =

c(T )
1+ k/k0(T )

, k = 3,4, . . . (2.6)

with

k0(T ) = [b̂1/b̂2 �1]�1 �1, (2.7)

c(T ) = b̂1(T ) [1+1/k0(T )]. (2.8)

The coefficients in the RFM exhibit a different asymptotic behavior in the temperature range
considered: a power-law damping at large k instead of an exponential damping in the CEM. The
RFM gives a similarly good description of the lattice data for the coefficients b3(T ) and b4(T ) as
the CEM when these are viewed on the linear scale (see Ref. [19]). However, significant differences
can be seen by considering the a3 and a4 ratios [Eq. (2.1)], which are plotted for the CEM and the

2

Two-body interactions only (NLO in virial expansion), good at suffiently high T or low density

b1, b2
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Physical picture: baryon (hadron resonance) gas at low T, free quarks in SB-limit

all higher coefficients are model predictions

Alternative: Rational function model (RFM) [Almasi et al., PLB 19] 
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B

2 , (b) �B

4 /�
B

2 , (c) �B

6 /�
B

2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities

The baryon number susceptibilities �B

k
= @k�1(⇢B/T 3)/@(µB/T )k�1 in the CEM read

�B

k
(T, µB) = � 2

27⇡2

b̂
2
1

b̂2

n
4⇡2
h
Li2�k (x+) + (�1)k Li2�k (x�)

i
+ 3
h
Li4�k (x+) + (�1)k Li4�k (x�)

io
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B

2 , �B

4 /�
B

2 , �B

6 /�
B

2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B

4 /�
B

2 .
The CEM is also consistent with the lattice data for �B

6 /�
B

2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B

2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].
Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B

2 cannot be considered as an unambiguous signal of chiral
criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities

All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters
– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B

4 /�
B

2 . The temperature
dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue
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Figure 2: Temperature dependence of the baryon number susceptibility ratios cB
4 /cB

2 (left panel) and
cB

6 /cB
2 (right panel), as calculated within the CEM (black stars) and the rational function model of

Ref. [19] (dashed red lines). Lattice data of the Wuppertal-Budapest [13] and HotQCD collaborations [12]
are depicted by the blue and green bands, respectively.

3. The CEM equation of state

The CEM pressure is obtained by integrating the net baryon density (2.5) over µB:

p(T,µB)

T 4 =
p0(T )

2
� 2

27p2
b̂2

1

b̂2

�
4p2 [Li2 (x+)�Li2 (x�)]+3 [Li4 (x+)�Li4 (x�)]

 
,

=
p0(T )

2
+

Dp(T,µB)

T 4 . (3.1)

The CEM input parameters are the temperature-dependent coefficients p0(T ), b1(T ), and b2(T ).
At high temperatures (T & 130 MeV) these can be extracted from the available lattice data. At
low temperatures they can be matched to the equation of state of the hadron resonance gas (HRG)
model. This matching is achieved through a smooth switching function [20].

The first Fourier coefficient, b1(T ), is parameterized as follows:

b1(T ) = [1�S(T )] bhrg
1 (T )+S(T )blat

1 (T ), (3.2)

S(T ) = exp

"✓
� T

T0

◆�r
#
. (3.3)

Here bhrg
1 is the partial pressure of baryons and antibaryons at µB = 0 in the ideal hadron resonance

gas (HRG) model. We evaluate it using the HRG model of Ref. [14]. blat
1 corresponds to the

lattice data of the Wuppertal-Budapest collaboration [14] at sufficiently high temperatures. We
parametrize blat

1 (T ) as

blat
1 (T ) =

bsb
1 +an/tb +bn/t2

b
1+ad/tb +bd/t2

b
, tb = T/T0 , (3.4)

with the following parameter values:

an =�0.940, bn = 0.345, ad =�1.336, bd = 0.502. (3.5)
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Fig. 3. Temperature dependence of the leading two Fourier coe�cients b1(T ) and b2(T ), calculated in lattice QCD simulations by
the Wuppertal-Budapest collaboration [11], and reconstructed from the lattice data of the HotQCD collaboration [18, 19] for �B

2 and
�B

4 /�
B

2 using CEM [Eq. (6)].

symbols. This agreement can be regarded as a possible implicit evidence for both, the consistency between
the lattice results of the Wuppertal-Budapest and HotQCD collaborations, and that the CEM ansatz provides
an accurate description for all observables considered here.

4. Summary

We presented the Cluster Expansion Model for the QCD equation of state at finite baryon density, which
is based on the relation (4) between higher-order and the leading two Fourier coe�cients of the net baryon
density, suggested by the recent lattice data at imaginary µB. The analytic structure of the CEM has no criti-
cal point, therefore unambiguous signals of the hypothetical QCD critical point in various observables must
show up as deviations from CEM predictions. The presently available lattice data on Fourier coe�cients
and baryon number susceptibilities do not show such deviations. Given its simplicity and consistency with
the lattice data, the CEM based equation of state can be useful for hydrodynamic simulations of heavy-ion
collisions at finite baryon density.
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Interpretation of lattice data: modelling

QCD EoS with fugacity expansion Volodymyr Vovchenko

Figure 2: Temperature dependence of the baryon number susceptibility ratios cB
4 /cB

2 (left panel) and
cB

6 /cB
2 (right panel), as calculated within the CEM (black stars) and the rational function model of

Ref. [19] (dashed red lines). Lattice data of the Wuppertal-Budapest [13] and HotQCD collaborations [12]
are depicted by the blue and green bands, respectively.

3. The CEM equation of state

The CEM pressure is obtained by integrating the net baryon density (2.5) over µB:

p(T,µB)

T 4 =
p0(T )

2
� 2

27p2
b̂2

1

b̂2

�
4p2 [Li2 (x+)�Li2 (x�)]+3 [Li4 (x+)�Li4 (x�)]

 
,

=
p0(T )

2
+

Dp(T,µB)

T 4 . (3.1)

The CEM input parameters are the temperature-dependent coefficients p0(T ), b1(T ), and b2(T ).
At high temperatures (T & 130 MeV) these can be extracted from the available lattice data. At
low temperatures they can be matched to the equation of state of the hadron resonance gas (HRG)
model. This matching is achieved through a smooth switching function [20].

The first Fourier coefficient, b1(T ), is parameterized as follows:

b1(T ) = [1�S(T )] bhrg
1 (T )+S(T )blat

1 (T ), (3.2)

S(T ) = exp

"✓
� T

T0

◆�r
#
. (3.3)

Here bhrg
1 is the partial pressure of baryons and antibaryons at µB = 0 in the ideal hadron resonance

gas (HRG) model. We evaluate it using the HRG model of Ref. [14]. blat
1 corresponds to the

lattice data of the Wuppertal-Budapest collaboration [14] at sufficiently high temperatures. We
parametrize blat

1 (T ) as

blat
1 (T ) =

bsb
1 +an/tb +bn/t2

b
1+ad/tb +bd/t2

b
, tb = T/T0 , (3.4)

with the following parameter values:

an =�0.940, bn = 0.345, ad =�1.336, bd = 0.502. (3.5)

4

[Vovchenko et al., PoS Corfu 2018; NPA 2018]
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Fig. 3. Temperature dependence of the leading two Fourier coe�cients b1(T ) and b2(T ), calculated in lattice QCD simulations by
the Wuppertal-Budapest collaboration [11], and reconstructed from the lattice data of the HotQCD collaboration [18, 19] for �B

2 and
�B

4 /�
B

2 using CEM [Eq. (6)].

symbols. This agreement can be regarded as a possible implicit evidence for both, the consistency between
the lattice results of the Wuppertal-Budapest and HotQCD collaborations, and that the CEM ansatz provides
an accurate description for all observables considered here.

4. Summary

We presented the Cluster Expansion Model for the QCD equation of state at finite baryon density, which
is based on the relation (4) between higher-order and the leading two Fourier coe�cients of the net baryon
density, suggested by the recent lattice data at imaginary µB. The analytic structure of the CEM has no criti-
cal point, therefore unambiguous signals of the hypothetical QCD critical point in various observables must
show up as deviations from CEM predictions. The presently available lattice data on Fourier coe�cients
and baryon number susceptibilities do not show such deviations. Given its simplicity and consistency with
the lattice data, the CEM based equation of state can be useful for hydrodynamic simulations of heavy-ion
collisions at finite baryon density.
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Interpretation of lattice data: radius of convergence
4

Figure 3. The Domb-Sykes 1/r2n�1 vs 1/n plots, calculated
within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �
B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB)� p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n
. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2, is used.
The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n� 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B
4 are similar and not shown). Note how the di↵er-

ent orders jump between several branches of 1/r2n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T
since the limit lim

n!1
rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2n
cn+2 cn � c2n+1

����
1/4

. (10)

The corresponding 1/r2n�1 vs 1/n plot is shown by the
full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.

Radius of convergence for CEM:
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Figure 3. The Domb-Sykes 1/r2n�1 vs 1/n plots, calculated
within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �
B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB)� p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n
. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2, is used.
The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n� 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B
4 are similar and not shown). Note how the di↵er-

ent orders jump between several branches of 1/r2n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T
since the limit lim

n!1
rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2n
cn+2 cn � c2n+1

����
1/4

. (10)

The corresponding 1/r2n�1 vs 1/n plot is shown by the
full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.

Ratio estimator only good for equal or alternating signs

[Mercer, Roberts,  
 SIAM J. Appl. Math., 90]
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Figure 4. The temperature dependence of the radius of
convergence rµ/T of the Taylor expansion in µB/T of the
pressure, calculated within the CEM-LQCD and CEM-
HRG (b = 1 fm3) models. The dash-dotted blue line
depicts the µB/T = ⇡ value, which corresponds to the
Roberge-Weiss transition at imaginary chemical potential.
Various QCD critical point estimates [44–48] are shown by
the black symbols.

The temperature dependence of the radius of
convergence, rµ/T , as calculated within the CEM-
LQCD (red stars) and the CEM-HRG model (dashed
line) models using the Mercer-Roberts procedure, is
presented in Fig. 4. rµ/T is a smooth function of
T and it is finite, at all temperatures considered.
The corresponding limiting singularities lie at com-
plex µB/T values, as follows from the absence of a
regular asymptotic behavior of the Taylor expansion
coe�cients. rµ/T decreases with temperature and it
approaches the asymptotic value of rµ/T = ⇡ at higher
temperatures, T > 190 MeV. This value can be iden-
tified with the Roberge-Weiss (R-W) transition [36],
which was predicted to appear at su�ciently high tem-
peratures at imaginary chemical potential values of
Im [µB/T]c = ⇡(2k+1), and studied quite extensively
in LQCD simulations [37–43]. This transition is a con-
sequence of the R-W periodicity of the QCD partition
function, Z(µB) = Z(µB + i2⇡T ), due to the center
symmetry [36], which is fully respected by the CEM.

We have cross-checked our results for rµ/T by con-
structing Padé approximants [49, 50] for the Taylor
expansion of �B

2 in µB/T within the CEM-LQCD
model, and in all cases observe poles corresponding
to the limiting singularity of the Taylor expansion.
These poles are located at Im[µB/T]c = ⇡, at all
temperatures, while Re[µB/T]c values decrease to-
wards zero at high temperatures. The absolute val-
ues, |[µB/T ]c|, agree perfectly with the rµ/T values in

Fig. 4.

It is interesting that numerical lattice studies at
purely imaginary µ indicate TRW = 208 ± 5 MeV for
the endpoint temperature of the R-W transition [43],
a temperature value where rµ/T is already almost in-
distinguishable from ⇡ in CEM-LQCD. We conclude
that the radius of convergence of the Taylor series at
T > 135 MeV is only determined by the singularities
in the complex plane which appear to be smoothly
connected to the R-W transition at high tempera-
tures, a scenario suggested in Refs. [8, 10]. The CEM-
LQCD “knows” about the the spontaneous breaking
of the center symmetry at the high temperature R-W
transition indirectly, being matched to baryonic exci-
tations at low temperatures and to quark degrees of
freedom at high temperatures. The exact nature and
relation to the R-W transition of the singularities at
intermediate temperatures still need to be clarified.
We note that CEM also inherits aspects of the chiral
symmetry restoration, in the form of the input coe�-
cients b1(T ) and b2(T ) taken from the lattice.

In any case, our analysis within CEM-LQCD and
CEM-HRG shows no evidence for the existence of a
phase transition or a critical point at real µB/T <
rµ/T , with rµ/T � ⇡ at all temperatures considered.
This is consistent with all available lattice results at
zero and imaginary chemical potential, but in con-
trast to various other QCD critical point estimates
available in the literature: these are based on lat-
tice reweighting techniques [44], experimental finite-
size scaling analyses [45], the Dyson-Schwinger [46] or
holographic [47, 48] approaches, which are also shown
in Fig. 4. We note that CEM is not full QCD, there-
fore we do not rule out conclusively these other esti-
mates. Note also that our results at T < 135 MeV are
based on the HRG extrapolation of the lattice data,
and therefore should be treated with care.

The particular CEM formulation presented here is
simple and powerful, but it has limitations. The re-
lation (5) expressing the higher-order Fourier coe�-
cients through the first two is likely to get modified
whenever e↵ects of genuine many-body interactions
become important. We therefore expect the model to
break down at large µB/T values, e.g., in the dense
nuclear matter region. Note that the formalism itself
can accommodate any pressure function periodic un-
der the µB ! µB + i 2⇡T transformation, as required
by the Z(3) symmetry of QCD. The CEM model can
thus be extended once new and possibly contradicting
lattice data become available. However, given that
CEM is consistent with all presently available lattice
data we conclude that its range of applicability is at

CEM prediction:  
 
Closest singularity in complex plane  
is Roberge-Weiss transition (endpoint estimate agrees with lattice!)  
 
 
No critical point for real
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least as large as that of current lattice methods.
To summarize, a novel Cluster Expansion Model for

the QCD equation of state has been developed and
applied to calculate the baryon number susceptibili-
ties at µ = 0, to very high order. The only model
inputs are the partial pressures in the |B| = 1 and
|B| = 2 sectors, taken from the lattice simulations at
imaginary µB . The model yields excellent agreement
with the available lattice data for �B

2 , �B
4 /�

B
2 , and

�B
6 /�

B
2 . The extended model predictions for �B

8 , �
B
10,

and �B
12 shall be verified by future lattice data. The

commonly used ratio estimator is unable to determine
the radius of convergence of the Taylor series of the
pressure in µB/T , due to a non-trivial asymptotic be-
havior of the Taylor coe�cients. The radius of conver-
gence is instead determined with the more elaborate
Mercer-Roberts estimator, which provides finite val-
ues of the convergence radii at all temperature values
considered, 135 < T < 230 MeV, in full agreement
with the singularities of Padé approximants. These
singularities lie in the complex plane and appear to
be smoothly connected to the R-W transition at high
temperatures and imaginary (baryo)chemical poten-
tial. The analysis within CEM shows no evidence
for the existence of a phase transition or a critical
point at real values of the baryochemical potential at
µB/T . ⇡ for temperatures above 135 MeV.
The CEM model can be straightforwardly extended

to calculate the equation of state of QCD at finite
µB/T , by supplying the B = 0 partial pressure p0(T )
as additional model input. Furthermore, the CEM for-
malism is rather flexible, and the model assumptions
and input can be modified if new and contradicting
lattice data becomes available. 2
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This does NOT rule out critical point BUT:
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CEM prediction:

Closest singularity in complex plane
is Roberge-Weiss transition 



Search for Lee-Yang zeroes
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Tracking the Lee-Yang edge (LYE) singularities in the complex     -plane μB
— a new method to detect the QCD critical point ?

Talks from Bielefeld-Parma Collaboration: K. Zambello,  S. Singh,       G.Nicotra 

Magnetic EoS

The universal scaling 
function exhibits a 
brunch cut, starting 
at              (LYE)z ≡ zLY

Three distinct 
scaling-regions:


• Roberge-Weiss 
(Z(2))


• Chiral (O(4)/O(2))


• Critical endpoint 
(Z(2))
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LYE: Nø = 4

201 MeV < T < 145 MeV

• Robust identification of LYE from analytic continuation via 
multi-point Padé approximation of the net-baryon density


• Find Z(2) scaling close to the RW-transition and a candidate 
chiral LYE, preliminary results: 2101.02254


• Radius of convergence is limited by LYE

• Advantage: no regular part involved in the analysis, the 

determination of non-universal parameter thus more precise
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FIG. 6. Location of poles nearest to the origin obtained from the [4,4] Padé approximants in the complex µ̂B-plane. Only poles
with Re(µB) > 0 are shown. Shown are results the case µQ = µS = 0 (left) and the strangeness neutral, isospin symmetric
case (right).

FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.

⇥c,4 = arccos

0

@ c6,2 � c8,2

2
q
(1 � c6,2)(c26,2 � c8,2)

1

A

= arccos

 
(c6,2 � c8,2)�̄

B,4
0

24(1 � c6,2)�̄
B,2
0

r2c,4

!
. (29)

Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,
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. (30)

The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

Poles of the [4,4] Pade of the pressure ( ) 
from Taylor expansion at 

Δp/T4

μB = 0
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FIG. 7. Magnitude of poles nearest to the origin obtained
from the [2,2] (squares and circles) and [4,4] (bands) Padé
approximants for Taylor expansions at µQ = µS = 0 and for
strangeness neutral, isospin symmetric media, respectively.
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Expressing the relation given in Eq. 28 in terms of the
cumulants �̄B,n

0 entering the Taylor series for the pres-
sure, Eq. 7, we have in the region of complex poles,
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The positions of the poles in the complex µ̂B-plane
are shown in Fig. 6. Only the two poles in the region
Re(µ̂B) � 0 are shown. With decreasing temperature the

poles move closer to the real axis as c8,2 approaches c+8,2,

i.e. ⇥c,4 = 0 for c8,2 = c+8,2. Furthermore, it is clear from
Eq. 29 that ⇥c,4 and rc,4 are correlated, which leads to
the orientation of the 1-� error ellipse in the complex µB,c

plane arising from the errors on c6,2 and c8,2, which are
assumed to given by independent Gaussian distributions
of the variables c6,2 and c8,2.

In Fig. 7 we show as symbols and bands, respectively,
the distance of poles of the [2,2] and [4,4] Padé approx-
imants from the origin as function of temperature. The
bands shown in Fig. 7 have been obtained by using the
spline interpolations of �̄B,6

0 and �̄B,8
0 on N⌧ = 8 lat-

tices and the continuum extrapolated results for �̄B,2
0 and

�̄B,4
0 , shown in Fig. 1, respectively. As can be seen the

two estimators yield a similar magnitude for rc,2 and rc,4.
Their location in the complex µB-plane, however, is quite
di↵erent. While the poles of the [2,2] Padé are always on
the real axis, the poles of the [4,4] Padé are in the complex
plane in the entire interval 135 MeV  T  165 MeV.

For 135 MeV  T  165 MeV we find that the poles
of the [4,4] Padé appear at a distance from the origin
corresponding to |µ̂B |>⇠2.5 at T ' 135 MeV and rises
to values larger than |µ̂B |>⇠3 for T>⇠Tpc. This also are
the best estimates for a temperature dependent bound
on the radius of convergence of the Taylor series for the
pressure, based on the Mercer-Roberts estimator. The
information extracted from the [4,4] Padé approximants
on the location of poles in the analytic function represent-
ing the pressure as function of a complex valued chemical
potential µ̂B thus seems to be consistent with the good
convergence properties of the Taylor series itself.

• Resummation of Taylor series using (standard) Padé-
approximants

• Poles of the [n,4]-Pade are identical to the  
corresponding Mercer-Roberts approximation of the 
radius of convergence (if poles are complex)


• Find upper bound for QCD critical point: 

                  

• Currently observed temperature scaling of the 

position of poles does not resemble universal scaling 

- Order of approximation not sufficient?

- Far away from scaling region?


Also in that paper: 

• Update on the EoS at non-zero , well controlled 

series for pressure and number density for 
 and , respectively — consistent with 

Padé result.

Tc < 125 MeV, μB /T > 2.5

μB

μB /T ≤ 2.5 2

Bollweg et al. [Hot-QCD], arXiv:2202.09184 [hep-lat]

From lattice coeffs up to       ,  Pade resummation
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µcep
B > 2.5T, T < 125 MeV  [HotQCD PRD 22] 
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µ8
B

LY zeros (in infinite volume) at real parameter values signal non-analytic phase transition



Physical point: reweighting LQCD revisited

New treatment: rooted determinant + reweighting in sign only [Giordano et al. JHEP 20]

Simulation with stout-sm. staggered action,              : no sign of criticality for  
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µB < 2.5T
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N⌧ = 6



Summary: constraints on the critical point

‣ Ordering of critical temperatures  

‣ Cluster expansion model of lattice fluctuations 

‣ Singularities, Pade-approx. fluctuations 

‣ Direct simulations with refined reweighting

‣ Consistent with DSE, fRG         
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weakens to disappear in a Zp2q-critical line, which emanates from the tricritical point by
tricritical scaling [76],

µc
Bpmu,dq “ µtric

B ` A m2{5
u,d ` Opm4{5

u,d q,

Tcpmu,dq “ Ttric ` B m2{5
u,d ` Opm4{5

u,d q . (19)

This implies an ordering of the critical temperatures to be exploited below,

Tcpmu,d “ 0, µB “ 0q ° Ttricpmu,d “ 0, µB “ 0q ° Tceppmphys
u,d , µ

cep
B q . (20)

For completeness, we need to also discuss an alternative scenario, where the chiral
phase transition in the massless limit is second order all the way to T “ 0. At least from a
lattice perspective, this is not excluded so far, but crucially depends on whether there is any
non-trivial mc

u,dpµq-dependence in the continuum limit. Moreover, a recent investigation
of the chiral nucleon-meson and chiral quark-meson models finds the phase transition
for m “ 0 at T “ 0 to turn second order, once fluctuations are included [78]. In such
a scenario there is no tricritical point and no first-order transition anywhere. Instead,
non-vanishing quark masses remove the entire second-order line and the chiral transition
would be analytic crossover exclusively for physical quark masses.

Figure 12. (Left): Relation of the tentative QCD phase diagram with physical light quark masses (back
plane) to the chiral limit (front plane) according to [75,76]. (Right): If the entire chiral transition line
in the massless limit is of second order, the transition at the physical point is crossover everywhere.

5.1. The Crossover at Small Baryon Densities
There are several methods that have been used so far to extract information about the

phase structure at the physical point for small baryon density. All of them introduce some
approximation which can be controlled as long as µ{T†„1: (i) Reweighting [79], (ii) Taylor
expansion in µ{T [80] and (iii) analytic continuation from imaginary chemical potential [63,64].
When the QCD pressure is expressed as a series in baryon chemical potential,

ppT, µBq
T4 “ ppT, 0q

T4 `
8ÿ

n“1

1
2n!

cB
2npTq

´ µB
T

¯2n
, cB

2npTq “
B2np p

T4 q
Bp µB

T q2n

ˇ̌
ˇ
µB“0

, (21)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which
can also be computed by fitting to untruncated results at imaginary µB. This permits full
control of the systematics between (ii) and (iii). These coefficients are presently known up to
2n “ 8 on Nt “ 16 lattices, Figure 13 (left), and in principle also observable experimentally.
For a review of the equation of state relating to heavy ion phenomenology, see [81,82]. Note
also, that this low density regime appears to be accessible by complex Langevin simulations
without recourse to series expansions, albeit not yet for physical quark masses [83]. This
offers an additional cross check between different methods.
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) �B
2 , (b) �B

4 /�
B
2 , (c) �B

6 /�
B
2 , and (d) �B

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities �B

k = �
k�1(�B/T 3)/�(µB/T )k�1 in the CEM read

�B
k (T, µB) = � 2

27�2

b̂2
1

b̂2

�
4�2
�
Li2�k (x+) + (�1)k Li2�k (x�)

�
+ 3
�
Li4�k (x+) + (�1)k Li4�k (x�)

��
. (6)

Leading order baryon number susceptibilities at µB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of �B
2 , �B

4 /�
B
2 , �B

6 /�
B
2 , and �B

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for �B

2 and �B
4 /�

B
2 .

The CEM is also consistent with the lattice data for �B
6 /�

B
2 and �B

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
�B

6 /�
B
2 , where this quantity is negative. It was interpreted as a possible signature of chiral criticality [21].

Given that this behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical
point, we conclude that the negative dip in �B

6 /�
B
2 cannot be considered as an unambiguous signal of chiral

criticality.

3.2. Reconstructing the Fourier coe�cients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coe�cients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for �B

2 and �B
4 /�

B
2 . The temperature

dependence of the b1 and b2 coe�cients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary µB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

Figure 13. (Left): Baryon number fluctuations cB
2 , cB

4 , cB
8 from the lattice in comparison with the

CEM model. (Right): b1 computed directly from Equation (26) by the WB collaboration, and reverse
engineered using CEM from HotQCD baryon number fluctuations. From [88].

An important quantity is the pseudo-critical temperature marking the “phase bound-
ary” between the chirally broken and restored regimes. Since the chiral transition at the
physical point corresponds to an analytic crossover with a non-zero order parameter every-
where, there are no truly distinct “phases” and no unambiguous definition of a transition
temperature exists. In general, definitions based on different observables will give different
pseudo-critical temperatures, even in the thermodynamic limit, contrary to the unique
locations of singularities for true phase transitions. While this is an issue when comparing
with an experimental situation, for theoretical investigations it is convenient to stick to
the observables representing the true order parameter in the appropriate limit, i.e., the
susceptibility of an appropriately normalised chiral condensate in this case. Following as
an implicitly defined function from the partition function, the pseudo-critical temperature
can be similarly expressed as a power series in chemical potential,

TpcpµBq
Tpcp0q “ 1 ´ k2

ˆ
µB

Tpcp0q

˙2
` . . . , (22)

with Tpcp0q “ 156.5p1.5q MeV [87]. Continuum extrapolated results for the leading coeffi-
cient are collected in Table 2, the sub-leading coefficient k4 is compatible with zero at the
current accuracy. This is a remarkable result telling us that up to µB†„3T the dependence
of thermodynamic quantities on chemical potential is rather weak and can be accurately
described by a truncated leading-order Taylor series in chemical potential.

Table 2. Summary of continuum-extrapolated values for k2 in Equation (22) .

k2 Action Ref.

0.0158(13) imag. µ, stout-smeared staggered [84]
0.0135(20) imag. µ, stout-smeared staggered [85]
0.0145(25) Taylor, stout-smeared staggered [85,86]
0.016(5) Taylor, HISQ [87]

We now have the necessary information to obtain a conservative bound on the location
of a possible critical point, which according to Figure 12 sits on the pseudo-critical line of a
strengthening crossover. Using the central value from Equation (10) for the chiral critical
temperature and imposing the model-independent ordering Tcep † Tc “ 132 MeV, the
chemical potential of a critical point must satisfy

µ
cep
B ° 3.1 Tpcp0q « 485 MeV. (23) [O.P.  Symmetry 21] 
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µcep
B > 2.5T, T < 125 MeV  [Bollweg et al. PRD 21] 
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µcep
B > 2.5T  [Wuppertal-Budpest collaboration, PRD 21] 

 [Vovchenko et al. PRD 18] 
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µcep
B > ⇡T

[Fischer PPNP 19; Fu, Pawlowski, Rennecke PRD 20; Gao, Pawlowski PRD 21] 

Other (mostly ignored) possibilities

Knowledge of chiral limit constrains those possibilities!

?

CEP seen at larger density, but “not yet controlled”

2

served charge distributions. Importantly, computations
at finite density are not obstructed by the sign problem
as for lattice QCD, and are only limited by the compu-
tational resources required for computations in reliable
approximations. By now functional QCD can access the
regime with µB/T . 4 with quantitative precision, and
allows for qualitative estimates in the regime µB/T & 4.
For recent reviews see [19–21].

These functional QCD studies have passed through
strict benchmark tests in the regime of µB/T . 2 � 3,
where the respective results on the phase structure and
on fluctuations can be compared with results from lattice
QCD simulations, see e.g. [22–28] and the recent review
[29]. Hence, they represent themselves a self-consistent
analytic continuation from QCD with µB/T . 3. Ac-
cordingly, results from functional QCD at µB/T & 3
are not only fully compatible with constraints from ana-
lytic extrapolations based on lattice data, see e.g. [29–32],
their reliability qualitatively surpasses that of analytic
extrapolations as they are based on solving dynamical
equations in QCD.

The present fRG approach with a QCD-assisted LEFT
relies on results and technical advances in the description
of first-principles QCD at finite temperature and density
with the fRG put forward in [2], based on [33–40] in the
vacuum and at finite temperature. The construction of
a quantitatively reliable LEFT is facilitated by the fact
that the glue dynamics decouple very e�ciently due to
the gluonic mass gap of QCD at energy scales of about
1GeV [2, 20, 21]. This entails that low energy QCD is
well described by the respective emergent LEFT: QCD
without gluonic fluctuations but in a gluonic background.
Moreover, quantitative precision is then obtained by us-
ing the fRG to match the RG flows of QCD to those
of the LEFT. This set-up has been named QCD-assisted
LEFT, and a first study including a detailed discussion
of the setup has been presented in [12].

In the present work we aim for quantitative preci-
sion and reliable predictions at high densities. This is
achieved by directly evolving the RG flow of quark-meson
scattering processes obtained in first-principles QCD in
[2] in our LEFT. These processes encode the correlations
between quarks and gluons in the channel that carries
the dynamics of the chiral condensate. This allows us
to accurately capture the CEP as it arises in QCD at
large µB , while being in excellent agreement with lattice
data at small µB . The CEP in the present QCD-assisted
LEFT is located at

(TCEP, µBCEP) = (98, 643)MeV , (1)

consistent with the constraint

600MeV . µBCEP
. 650MeV , (2)

in full functional QCD, [2, 16–18]. Variations of the CEP
location within this regime are possible and we shall
use them later for an investigation of the experimental
imprints and properties of the regime around the CEP.

The details of our setup can be found in the supplement.

Baryon number fluctuations at freeze-out.– In the
present work we use vanishing chemical potentials for the
electric charge and strangeness, as the e↵ects of the corre-
sponding charge conservation are subleading for baryon-
number fluctuations [41–43]. We thus compute the grand
potential ⌦[T, µB ] and extract from it the pressure,

p =� ⌦[T, µB ] , (3)

and the generalised susceptibilities,

�B
n =

@n

@(µB/T )n
p

T 4
. (4)

The �B
n are directly related to the cumulants of the net-

baryon number distribution, whose proxy, the net-proton
distribution, can be measured in the experiments [44].
The cumulants of the lowest four orders, the mean value
M , the variance �, the skewness S and the kurtosis ,
are given by

M

V T 3
= �B

1 ,
�2

V T 3
= �B

2 , S =
�B
3

�B
2 �

,  =
�B
4

�B
2 �

2
, (5)

where we have already divided out the volume depen-
dence. The latter is naturally absent in the ratio between
two susceptibilities of di↵erent orders,

RB
nm =

�B
n

�B
m

. (6)

These ratios have been computed in equilibrium and at
vanishing density in lattice QCD, e.g. [27, 45–47] and
with functional methods both at vanishing and finite den-
sity, e.g. [12, 48–52].
In particular in the regime of low collision energy, high-

order baryon number fluctuations are significantly sup-
pressed by global baryon number conservation, [53–55].
In order to accurately describe the relevant features of
the medium created in heavy-ion collisions, this is taken
into account here by considering canonical corrections to
grand canonical susceptibilities. To this end, we adopt
the subensemble acceptance method (SAM) as proposed
in [54]. In SAM the ratio between the subensemble vol-
ume, V1, measured in the acceptance window and that
of the whole system, V , is given by ↵ = V1/V . In
the thermodynamic limit, where both sizes of total- and
sub-systems are significantly larger than the correlation
length ⇠, the measured cumulants in the sub-system ap-
proach the grand canonical values discussed above when
↵ ! 0. When the e↵ect of global baryon number conser-
vation begins to play a role, the parameter ↵ develops a
nonzero value and canonical corrections apply.
We fix ↵ with the most sensitive and well-observed

ratio of low-order fluctuations. This is R32, for which
the experimental data show a significant flattening forp
sNN . 11.5GeV which is not seen in R32 computed

within the grand canonical ensemble. We attribute a siz-
able part of it to the increasing importance of canonical



Conclusions

Chiral transition at zero density is second order  
for Nf=2,3 massless quark flavours 

So far consistent between all lattice discretisations + DSE 

Imaginary chemical potential has no effect on the order  
of the chiral transition  

Lesson from cutoff effects: 
 
Correct UV sector of a theory is crucial for its phase diagram! 
 
“Low energy effective models” can be deceiving


