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Motivation: Problems of non-perturbation
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 Particle physics: color confinement

.New physics: muon g-2, Br(B — D")t)/Br(B - DV¢y)

- Parton physics: mass and spin of nucleon, PDF, GPD, TMD, LCDA
*Hadron physics: tetraquarks, pentaguark, glueballs

*High energy nuclear physics: QCD phase transition, critical point

-Low energy nuclear physics: nuclear force
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Motivation: non-perturbative approaches

- Lattice QCD

*QCD sum rules

- Dyson-Schwinger Equation
*Chiral perturbation theory

* Holographic QCD
»Light-front quantization

-Other EFTs and phenomenological models

*Each of them has its advantages and shortcomings.

- |t is always welcome to develop a new theoretical method for non-perturbation,

to make complimentary predictions what are difficult by the above methods.
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Criteria of a good theoretical approach

(1) Well defined in mathematics
(2) Realization in numerical calculations
(3) Can be systematically improved

(4) Simple at the beginning



The main idea of the inverse problem approach
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- Firstly proposed to solve the problem of understanding of D’ —D mixing [H.n.Li,
H.Umeeda, FSY, F.Xu, 2001.04079]

*Physical applications:
*muon g-2 [H.n.Li, H.Umeeda, 2004.06451]
*modifying the QCD sum rules [H.n.Li, H.Umeeda, 2006.16593]
glueballs [H.n.Li, 2109.04956]
*pion distribution amplitudes [H.n.Li, 2205.06746]
neutral meson mixings [H.n.Li, 2208.14798]

understandings of fermion masses and EW masses [H.n.Li, 2302.01761, 2304.05921,
2306.03463]

- [ts mathematical basis should be provided [A.S.Xiong, T.Wei, FSY, 2211.13753].



The main idea of the inverse problem approach

4 h
fs>A P A@[_H(S;Eis’ _ ﬂ@[ﬂ@)— 73/ ITZ[HS,) 7
K To be soIvFed \ Calculablef J

-With the dispersion relation of QFT, the non-perturbative quantities are obtained by
solving the inverse problem with the perturbative calculations as inputs.

Using the regularization method, the solutions are stable, and can be converged to
the true value as the input errors approaching zero.

* The precision of the predictions can be systematically improved, without any
artificially assumptions.



Outline

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives



1. Dispersion relations and inverse problems

Dispersion relation:

- Based on Quantum Field Theory and correlation functions

» Analyticity of QFT, relation between a physical point and the curves,
or relation between the real and imaginary parts

[(g°) = i f d*xe'* (O(x)0(0))

N

Re[ll(s)] = — ds’

T

| ro Im[T1(s)]

/

* The above formula is just an example. Any dispersion relation would be studied similarly.
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1. Dispersion relations and inverse problems

-

\_

If s > A, 73/
0 S—F

To be solved

>ds = #Re[ll(s))— P / @[H(Dds

878

calculable

/

~

/

“charge distribution”

at low s

“potential” at high s

>

-

11

471'80




2. lll-posedness of the inverse problem

Kx =y ==> x= K_ly. Discretization?

2 3%, =5
XI xz * xl — 1, X2 — 1
1.9999x, + 3.0001x, = 5

2x; + 3x, =5
XI xz * xl — — 59, XZ — 41
1.9999x, + 3.0001x, = 5.01

* A very small noise might cause a large change of solutions
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2. lll-posedness of the inverse problem

2 3%, =5
XI—I_ xz * x1=1, X2=1
1.9999x, + 3.0001x, = 5

2x; + 3x, =5
{ XI xz * X1=_59, XZ=41

1.9999x, + 3.0001x, = 5.01

* A very small noise might cause a large change of solutions

2 3 o KF 6000.2 —6000
K — o — K — —
(1.9999 3.0001) K] = 0.0005, K] (—3999.8 4000 )

K~! enhances the errors

-In the continuum limit, K~!is unbounded. The problem is ill-posed.
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2. Proof of the ill-posedness

» Dispersion relation: first-class Fredholm integration equation

K
fs>A, P / -_ D / Oom
0 S —
K To be soIvEd calculable J

r foo)
swagin dx=g(y), vyE€lc,d], ¢c>b, a>0

a X
Existence of solution ? Uniqueness of the solution ?7? Stability of the solution ?77?
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Ill-posedness of the inverse problem

7 f)
* The operator K : X — Y, Kx=y, xe€X, yeY J U dx = g(y)

_ y—4X
- Inverse problem: solve x by known of K and y, x=K 1y ’

» Definition of well-posedness:

Define:  The operator equation (3.1) is called well-posed if the following holds [8]:
1.Existence: For every g € G there is (at least one) f € F such that Kf = g;
2.Uniqueness: For every g € G there is at mostone f € F with Kf = g;

3.Stability: The solution f depends continuously on g; that is, for every sequence (f,) C F with
Kf, = Kf(n — o), it follows that f,, = f(n — o0)

* [ll-posedness: At least one of the above conditions is not satisfied

. If well-posed, K~ must be a bounded or continuous operator, otherwise ill-posed.
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2. Proof of the ill-posedness

Proof of uniqueness:

b
J /) dx=¢(), y€lc,d], c>b, a>0
a Y X

Proof. Since K 1s a linear operator, we know that K f;

- Kf, = K(f1 — f) =0. Setting f = f1 — f2, we
just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

It is easy to obtain that Kf = fb — f(dx = f (% Z,‘Z‘;O(f)k)f(x)dx. Since x € [a,b], y € [c,d],
¢ > b, we know |y| < |c| < 1, which implies that ‘ Z,‘f’zo(i)kf(x)‘ < Z,‘Z‘;O(%’)klf(x)l for all x € [a, b].

: : b
Combined with fa | f(x)|dx < +00 and the control convergence theorem, we have

b o0 b
yf ! f(x)dx = Z lk f xkf(x)dx =0, ye€]lcd]. (3.4)
a y - X k=0 y a

If d = +00, by using (3.4), we have
b 1 b 1 b
f f(x)dx + ;f xf(xX)dx + - -+ —kf X f)dx+---=0, ye(c,+o0). (3.5)
a a y a

Letting y — +o0 in (3.5), we have fa ’ f(x)dx = 0. Then multiplying y on both sides of (3.5) and letting

y — +00, we also have fa " x f(x)dx = 0. Repeating above process, we can obtain that

b
f X*f(x)dx=0, k=0,1,2,---. (3.6)
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Ifd < +o0,takingz € D :={z € C: |z] > ¢}, we have

\Z f 2 f(x)dx| < —| f x"f(x)dx|<zbk f F(X)ldx < +oo,

which implies that the series };” " f x* f(x)dx 1s convergent uniformly on D. Since lk f x* f(x)dx 1s
analytic on D for each k and use the Weierstrass theorem, we conclude that the series },_, x f x* f(x)dx
is analytic on D. Further, we know }};7 , . f x* f(x)dx is real analytic on y € (¢, +o0). Combined with

the analytic continuation, we know that (3.4) holds for y > ¢, 1. e.
> f ¥ fx)dx =0, ye/(c,+oo).
k=0 ) “a

Similar to the proof process of the case d = +00, we also conclude that fa b xk f(x)dx=0,k=0,1,2,---

ford < +o0.



2. Proof of the ill-posedness

dx=g(), y€lc,d]l, ¢>b, a>0

b
Proof of uniqueness: J )

a4

Proof. Since K 1s a linear operator, we know that K f; — Kf> = K(f1 — f2) = 0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

b
- By using (3.6), we know that x)0,(x)dx = 0. Combined with the Cauchy inequality, we have
Since C[a, b] is dense in L*(a, b), then for f(x) € L*(a, b) and any € > 0, there exists f(x) € C[a, b], y using (3.6) Ja F02n(®) y inequality

~ ~ . . b b
such that ||f — fll 2. <~e. On the other hand, for f(x) € Cla, b], there exists a polynomial Q,(x) of I f”iz(a,b) _ JF fz(x) dx = f ( fz(x) — £( x)Qn(x)) dx
degree n € N, such that || f — Oyl|crap) < € by the Weierstrass theorem. Therefore, we have Fb .
< ) If Ol - |f(x) — On(x)ldx
If = Qallizapy < I = Fllzaas + I = Call iz b R l
— < fA(x)dx)’ f f(x) = Qu(x)lPdx)’
<e+ Vb- a”f - Qn”C[a,b] (Ja ) ( a )
<e+eVNVb—a, = Ifll2amllf = Cnllr2ap)
< (e + eVb = DIl .2(a.p)>
which_ipapti at || fll2p < €+€Vb—a.
Letting € — 0, we have ||f|| ;2,5 = 0,1. . f(x) =0, a. e. x € [a, bl#The proof is completed. O
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2. Proof of the ill-posedness

: - b f(x)
Proof of instability: J dx=¢(), ve€lc,d], ¢>b, a>0
a Y X

We show the instability of the inverse problem of dispersion relation by the special case. Taking
a=0,b=1,¢c=2,d =3, i(x) = fi(x) + Vncos(nrnx), and fi, are the solutions of g;, with
gi) = [ L fi(x)dx. As n — oo, it is obvious that

| 1/2
12 = fillzz,1) = ( f(; (\/ﬁcos(mrx))zdx) (3.7)

and

o G (3.8)

That means the solutions could be changed infinitely even though the noise of the input data is approaching

1 3 1 1 1/2
g2 — g1ll2¢23) = ( f (| (—)* sin(mrx)dx)zdy)
2

to vanish. So the inverse problem 1s unstable.
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2. Proof of the ill-posedness

The inverse problem of dispersion relation is ill-posed See 2211.13753
7 fw)
1) Existence \/ J dx=g2(), y€lc,d]l, ¢c>b, a>0
a Y X

2) Uniqueness \/

X

3) Stability

J(x) g(y)

1 T ] 1 ] 1 045 ]]]]]]]]]
— sin(pi *x) —Sin(pi*X)
_Z/DI 9 —_— 2/pi
04} -
. 035

[T unigueness

0.7 F
06
/:j'
0.3
0.2

Instability

llllllllllllllllllll

Can we find a good solution? And how?
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Inverse Problem Approach

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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3. Regularization method

Define: A regularization strategy is a family of linear and bounded operators R, : G — F,a > 0,

such that im R, K f = f forall f € F, where the « is the regularization parameter [8].

a—0

. Construct a bounded operator which is approximate to K _1,

- lll-posed problem => well-posed approximate problem, so that fg = Rag5

. fg is the approximate solution related to both a and 0.

.An effective regularization strategy is to satisfy f2 — f, as ||g° — g|| <6 = 0

”fcf B fHF = ||Rag‘5 B Rag”F +[|Reg — flIF Kf=g,feFgeG
< IRall||g° - 8|\, + IRK f — fll

< O||Re|l + IR K f — [l
| | - To keep a balance, a can be

o0 0 a— 0 neither too large nor too small
21



lim R Kf = f 3. Tikhonov Regularization

a—()

5 =R g° R,:=(@l+K'K)'K*:G—>F aft + K*KfS = K*g°

. 1 0
fa = argminJ(f), J(f) = ZIKSf = &I}z, 4 + I

12
fel?(a,b) 2 (@.5)
S 5 VaE
A priori condition: f = K*v, v € G, ||v|| < E fo —Sllr < |
2\/a 2

Take o = o/F
* The most important: the uncertainty

R converges to vanishing as o — 0.
fg —fllp <VOE =0, 60 . .
It exists an upper limit !

The uncertainty must be controllable.
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3. Selection rules of the Regularization parameter

A-priori methods are always difficult to use in practice.
A-posterior methods can be tried.

L-curve method: @ = arg min (”fg“,: ||85 — Kfcf“c;)
foeL?(a,b)

Both of Hfgﬂ and ||g° — ngﬂ should be minimized together,

1 0
. 5 : _t 012 112
considering f, = ;12%21(1:1; J(f), J(f)= 2HKf &M 2yt 2HfHLz(a,b)
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Inverse Problem Approach

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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4. Test of Toy Models

*Questions on the inverse problem approach:

(1) Regularization: How important are the regularization methods?
Can the solutions be systematically improved by the regularization method and
the method of selecting the regularization parameter?

(2) Impact of input uncertainties: What is the dependence of the errors of solutions
on the uncertainties of inputs”? Larger, smaller or similar?

(3) Impact of o and /\: How sensitive are the solutions to the parameters o and A?
Does it exist a plateau?

(4) Impact of more conditions: Can the solutions be improved if we known more

conditions?

25



4. Test of Toy Models

»Simple at the beginning: Tikhonov regularization + L-curve method for the regulator

* They are simple in mathematics and in practice and thus are very helpful to develop the new approach
in the future.

-Uncertainties are the most important issue. b; = u; + o

f@) = atfix) + axfolx) 80 =b1g1) + bag2(y)  8i(Y) = fab %dx

Model 1: a monotonic function as f;(x) = sin(nx), fo(x) = e* ;

Model 2: a simple non-monotonic function as fi(x) = xe™*, fo(x) =0 ;

Model 3: an oscillating function as f1(x) = sin(2nx), f>(x) = x.

They are either helpful to clarify the properties of inverse problems or close to the real physical problem
260



4. Test: Importance of regularization

The solutions without any regularization:

3000 T T T T T T T T T 60 ' ' . . . , , : : 100
— e — e —true
2500 w— g pproximate | 7 w— g pproximate w—Fpproximate
|
1500 | 20 ‘ l
’ | | l | { s I 4 L LI 1
1000 l “ 0 l' “’ M l'“ nenl .
500 . ol I ) J| L rl' 2 Il'P“ .'.'s l
WGAREL AL DR R B I LA N l |
-20
-500
-1000 | 100
40 r
-1500
-2000 : : : : : : : : : 60 1 L L . . : ! L 1 -150 1 1 I 1 1 ! ! ) ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

* [t can be clearly seen that the solutions are unstable and far from the true values.
* The ill-posed inverse problems can not be solved without any regularization.
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4. Test: Importance of regularization

The solutions with Tikhonov regularization:

94 5= 0.1 0.01 0.001 . 0.0001

jarak

N
o
-
N

0 1 2 0 1 2 0 1

1e-06 1e-07 1e-08 1e-09
5 5 5 5 . 19'07
M 0.2 0.2
0 - o 1 2 o 1 2 o0 1 2
1e-11 . 1e-12 . 1e-13 1e-14 1e-11 1e-12
0.4 0.4 0.
D,J\1 0.2 o.f\ 0.
o 1 2 0 1 2
1e-16 — 1e-17 1e-18 1e-19 1e-17
40
20
.20
40 1 200 .50 .
0
model 3
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The solutions with Tikhonov regularization:

o =

0 1 2
1e-11
10
5
0
0 1 2

0 1 2
1e-07
10
5
0
0 1 2

4. Test: Importance of regularization

0.01

0.001

20
10%
0

0 1
1e-08

2

0 1
1e-13

10
5
0

2

10
5
0

0 1

2

model 1

0.0001

1e-05
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* [t can be seen clearly that some values of
regularization parameters can give good results.

* The ill-posed inverse problems can be solved by
regularization.

* The regularization parameter can be neither too
small (not enough for regularization), nor too large
(dominate over the original problem)

- But o still works by ranging several orders of
magnitude.

* The regularization methods are very important in
solving the inverse problems.



4. Test: Impact of input uncertainties

* The most important issue is
to control the uncertainties!

* The uncertainties of the solutions are almost
at the same level of the input errors.

* The smaller the input errors are, the more
precise the solutions are.

* The precision of the predictions can be
systematically improved by lowering
down the input errors.

Input errors: 30% 10% 1%
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4. Test: Impact of improved regularization method

* The regularization method

can be modified according
to the problem of physics

vvvvvvvvv

* The norm space of f(x) is changed from

vvvvvvvvv

L*(a,b) to H'(a, b)
b b
1l 2 = J (fH)dx — [Ifllg = J (f* +f*)dx

|||||||||

vvvvvvvvv

mean

 The solutions are perfect for model 1 and 2.

vvvvvvvvv

vvvvvvvvv

uncertainty

mean

Model 3 is also significantly improved.

* The uncertainties stemming from the
regulator a is automatically included in the

uncertainty

final results. Don’t need to estimate the

uncertainties from «. Input errors:

31
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4. Test: Impact of improved regularization method

* The regularization method
works well for the three
models

* Non-stationary Tikhonov
regularization for model 3

(1) Compute r,‘z =g —Kf;
1
(2) Solve  hy = min{_{|Kh — ]l + ‘;—"nhuﬁl}

() Ubpdate  fir1 = fi + hi

(4) Stop by the L-curve method

model 1

model 2

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

uncertainty

vvvvvvvvv

uncertainty

vvvvvvvvv

uncertainty

model 3 |

Input errors:
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4. Test: Plateaus of the regularization parameter
1fe = Al

k rhodell 1 '

L-curve _)

18

A

A
A
A

There exist plateaus. Solutions are insensitive to regularization parameter. L-curve method is suitable.

The inverse problem approach works for the non-perturbative calculations.
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4. Test: Plateaus of the separation scale A
f‘s(l)

o model 1
8 -
7r i
6”
5r i
4 +
3 -
2 -
1_
0 |
2 3 4 5 6 7 8
1e-07 1e-09
15 40 1e-08 400 1e-09
. 100
20
: 50 200
0 0
0 1 2 0 1 2 3 0 0
0 2 4 0 2 4 6
1e-10 1e-11 1e-11

 There exist plateaus.

» Solutions are insensitive to the separation scale for monotonic and simple non-monotonic functions.

0.4

0.45

0.445 r

0.44

0.435

043 r

0.425

042 r

0.415

0.41

0.405

0.4

Imodlel 2 I

2 3 4 5 6 7 8

- The continuous condition at /A might be even more helpful.
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£2(0.2)

model 3
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17z = fll

6\
5.9

5_

45f
Al
351
3l
25}t

2_

rlnodell 1 '

L-curve

_

1.5
0

fan)

2

4

6 8 10 12 14

16 18

©

model 1

o - N w B ()] » ~ o
T T T T T

N

4. Test: Insensitivity to @ and A

0.4

0.35

031

0.25

0.2

0.15

011

0.05

(1)

0.45

0.445

0.44 -

0.435

0.43 1

0.425

0.42

0.415

0.41

0.405

0.4

model 2

_

0 2 4 6 8 10 12 14 16 18

—logp &

model 2
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Solutions are insensitive to the
regularization parameter and the
separation scale.

* The uncertainties of the inverse
problem can be well controlled.



4. Test: Constrained data

* This method can combine with experiments and Lattice QCD to improve the precision of predictions

0.5

0.45 | —

0.4

_— Original uncertainty directly from inputs

- Data from experiments or Lattice QCD

0.35
0.3
0.25 | N~ Improved uncertainty considering data
0.2
0.15
0.1r

0.05

- |[f there Is an experimental data or lattice data

: 05 1' 15 : with much smaller uncertainty than the original
solutions, we can use it to constrain the
solution to be more precise in the whole range.
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The precision can be systematically improved

Without any beyond-control assumptions, the precision can be systematically improved:
(1) Suitable regularization method and selection rule of the regulators

(2) Higher precision of input data

(3) Combination with higher precise data of experiments or Lattice QCD.
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Inverse Problem Approach

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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Criteria of a good theoretical approach

(1) Well defined in mathematics - Dispersion relation + proof of ill-posedness

(2) Realization in numerical calculations — Reqgularization methods

(3) Can be systematically improved - Errors converge to vanishing as 0 — 0

(4) Simple at the beginning - Tikhonov regularization

Inverse problem approach has a potential to be a first-principle approach

39



5. Physical perspectives

(1) Provide the quantities at the whole non-perturbative region

(2) Advantage for the excited states. Either calculate directly, or combine with
experiments or LQCD for ground states

(3) Advantage for non-local correlation functions: widths and lifetimes, inclusive
processes, distribution amplitudes

(4) QCD sum rules with modification on the quark-hadron duality.
(5) Solving some inverse problems in Lattice QCD.
(6) More efforts on perturbative calculations to improve the input precision.

(7) And many others...
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DY — D’ Mixing

The time evolution

0
ot

DO(t) \
D't )

Am

L =

I

mi — msa

I

(

D(t)

M- 5r) ( 20 )

- Mixing parameters: Mass and Width differences

AT T, —T,

Yy =

21 21

- Useful to search for new physics,

- but less understood in the Standard Model
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- Before 2017, exclusive approach is hopeful

Falk, et al, '02; Cheng, Chiang, '10
yppipy = (3.6 £2.6) X 1077

Inclusive approach -
doesn’t work

Yincl ™ 10_7

Lenz, et al, ’12

*
| EXxp
yppopy efore 2017
YD
1 Verp=(6.1£0.8)x 107

v

- After 2017, exclusive approach is dying

yppapy = (2.1 £0.7) X 1072
Jiang, FSY, Qin, Li, LG, 17

No theoretical methods work for DO mixing
No theoretical predictions for indirect CP violation

42




Inclusive
Approach

NLO QCD Golowich and Petrov 2005

Theory / Exp. comparison (for inclusive)

Hagelin 1981, Cheng 1982
Buras, Slominski and Steger 1984

u C _7 :
r~6x10
SM - :
¢ “ y~6x10" .
Suppressed by GIM E
quark level 5
Short-distance HFLAV at Moriond201 E
r=(3.9717)
Exp.

0.63
Y = (6‘51i().69) ‘

SM

Exp.

B.meson

Artuso, Borissov and Lenz, 2016

AM, = (18.3 + 2.7)ps "
AT, = (0.088 + 0.020)ps~*

AM,
Al

HFLAV

(17.757 £ 0.021) ps~"
(0.082 + 0.006) ps

SM

Bjmeson

Artuso, Borissov and Lenz, 2016

AM,; = (0.528 £ 0.078) ps~!
AI“, _ (2.61 £0.59) - |()—3 p!\'_l

Exp.

1

HFLAV

AMa = (0.5055 + 0.0020) ps~!
Al'y = 066(1+10)-107 ps—!

e For B, B, mesons, the data are reproduced within lo.

e For D meson, the order of magnitude 1s not reproduced within leading-power.
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Inverse Problem o

S — P,my =109.9MeV, A = 12GeV?
:{ ‘ i 7 18

E 1L multiple solutions

D’ —D°’mixing »_§ § v \m . %

0 1 2 :
m?(GeV?]

/A / o0 / \ /1.00 S
/ dsl y(S ), — 7T33(S) . / dsl y(S ), — w(s) 0'75 y HFLAV 1o
0 §—S A S— 38§ o Additional conditions:

ooofe /| 1 dataof x andy as inputs

—
—
ey

N \ g ]
025 | 7 -

parametrization: 0s0f- :

= \ / —
C AP .
[ 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 .
1.5 1.6 1.7 1.8 1.9
s[GeV?]

— NS[bO + b1 (3 — m2) + bQ(S — m2)2]

y(s) s—m22 212
\ ( )? + d?] /

Li, Umeeda, Xu, FSY, PLB(2020)

Predict indirect CPV consistent with data
q/p — 100026100060 q/p — (0969t882g)62(—39i22)o
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A real prediction

0.005

-0.005 -

s (GeV?)

FIG. 7: Behaviors of z(s) (dotted line) and y(s) (solid line) for A = 4.3 GeV?.

Inverse prOblem: a:(m%) = (0.211_8:8%%, y(m%) = (0.52 4+ 0.03)%.

H.n.Li, 2208.14798

Experiment: T = (0.44f8:}§)%, y = (0.63 = 0.07)%,

* Perspective: Using the Tikhonov regularization could provide more reasonable uncertainties.
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muon g-2

- Muon g-2: 4.20 deviation from the SM Muon g-2, PRL(2021)

- Dominate uncertainty of the SM prediction: hadronic vacuum polarization (HVP) Aoyama, et al, Phys.Rept(2020)

lattice —8—
R-ratio —o&—

BMWc20 | | ——

y Mainz’19

FHM'19 |

ETM'19 | :

RBC’18 | =5

U BMWc'17 | g—
DHMZ'19 } O

KNT'19 | O

CHHKS'19 | O

.....{]----

1]

1]

~ no newiphysics |

660 680 700 720 740
1010 atO-HVP

* Inverse Problem: A, / B 0o /
/ dS,Ier(s) 7TH,,«(()) _ WHT( s) / ds'ImHT(S) r=op, W ¢
A, s'(s" + s) s S A s'(s' + s) >
-Result:  Inverse problem: a,, '+ = (6417¢3) x 107" H.n.Li, Umeeda, 2004.06451

Non-perturbative properties can be revealed from asymptotic QCD by solving an inverse problem.
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muon g-2

Figure from DHMZ, EPJC80 (2020) 241 Figures from DHMZ, EPJC80 (2020) 241

I | | I | I I | I 1 I | | I | I | | I | I I I I I I I | I I | | I I | | | 3 i T I T I 1 I T 1 I T T 1 I 1 1 I 1T 1 I 1T 1 I 11 l UL | LI I I:

CLEO : v = r p(770) * TOF 5 KLOE12

376.9+6.3 S 10° E &p-w mixing 4 OLYA = BESIII —

= = o CMD ¢ SND =

SND 0 D - -

\ v 2 B * CMD-2 06 4 DM1 7

7170 2 o2 °© CMD-203 v DM2 N

BESIII ' ks O = 4 KLOE 08 v CLEO g

368.2+4.2 © L »KLOE10  © BABAR 1

CMD-2 O 10 Combined _

372.4+3.0 = =

- , P(1700) -

BABAR e O] - ; y @i ; _

376.7 +2.7 1E *é‘li 7 e =

- fré* oy i =

KLOE —c— - | ] 4§ ezsoo

366.9 + 2.1 -, - | _%_ B -

PR T W NN TR YN WO O NN YO N T T AN T TN TN WO NN TN TN U U NN NN M NN AN NN TN NN AN O N 10'1 = € e_)n+n ++ ++ '?"?’_%-—_

355 360 365 370 375 380 385 E l L1 1 l L1 1 l L1 1 l L1 1 l L1 1 I L1 m 1 1 l L1 1 l l l

04 06 0.8 1 12 14 16 1.8 2 22 24

a, (r'n, 0.6—-0.9 GeV) [x10 "]
Zhiging Zhang’s slides
» Perspective: 4-loop pQCD combined with experimental data at reliable regions
might solve the BABAR-KLOE problem and lower down the uncertainty of predictions.
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QCD sum rules

- Conventional QCD sum rules 11, (q%) = z'/d4:ceiq'w(0|T[J“(:c)J,,(0)]|O)

4
*
AR Y
*
N

Dispersion relation: H(q2) — i j{ds H(S) —% /ds fm 12_1(8)

Quark-hadron duality: p"(s) = —ImIIP®"*(s)d(s —9

o0 h o0 pert
/ g Prs) 1 7, ImIIP(s)
s—qg? 7 s — g2

- Uncertainty sources: quark-hadron duality. Results are very sensitive to the effective threshold s,
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QCD sum rules

» Excited states and continuum spectrum can be directly solved by the inverse problem.

» Avoid the quark-hadron duality

ImIl(g*) = 7Tfp25(q2 — mi) T Wf3(1450)5(q2 — mf,(1450)) T 7718;3(1700)5((12 — mi(1700))

+m fi6(q* —miy) + mp"(¢?), |
H.n.Li, Umeeda, 2006.16593

mp(770) (mp(1450), mp(1700), mp(lgoo)) ~ 0.78 (146, 170, 190) GeV

Focr70) (fo(1450), fo(1700)s fo(1000)) = 0.22 (0.19, 0.14, 0.14) GeV

» Perspective: Inverse problem modifies the QCD sum rules.
* Provide under-controlled uncertainties.
- Calculate whatever calculated.
» Advantage to excited states, no matter how much the pole contributes.
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Light-cone distribution amplitudes

» Theoretical uncertainties on baryon CPV are dominated by the baryon LCDAs.

» Limited knowledge for nucleons. VERY very limited for all the others, especially for

HIGH TWISTSs.

« LaMET and Lattice QCD

/.F.Deng, C.Han, W.Wang, J.Zeng, J.L.Zhang, 2304.09004
Hua, et al, 2021

* Inverse Problem can give very high moments.
r oromom om om - H.n.Li, 2205.06746
(a27a47a67a87a107a127° e 7a'32>a'34)|u=2GeV
= (0177525 5040, 0-0957 56012, 0.0762 503, 0-0688 5 013, 0.0643 2017, 0.0603 5. g,
-++,0.00890500, 0.00285,0003),

» Perspective: Tikhonov regularization could provide more reasonable uncertainties.
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Summary

» We propose a novel method to calculate the non-perturbative quantities.

» With the dispersion relation of QFT, the non-perturbative quantities are obtained
by solving the inverse problem with the perturbative calculations as inputs.

* The precision of the predictions can be systematically improved, without any
artificial assumptions.

» The mathematical basis has been provided.

» Physical applications are expected.

Thank you!

52



BacKups



BRERIEY, HFRERKLZEMGLR

2 HUAWEI

MEEkIRRR7 . R SEEREKE

YAFREERE. FREE. EINERFRER T BESS. i HFER
B AR I R T 4E.

%ﬁ%ggig%i@g' e amiER LT Jout = 'Analyzer - Polarizer * lsample * Jpolarizer * Jin
. %% = Z |1j:(6,6) — ®(4,, A)|| +Re—__ e
' KT R AR E 3157
¢ RIESERIEMNEY ZEATEAR
l o EEHEEFROSRESR
a o BENZNRENSE
—’ : Muller o BFREMRREIERRE
Ca|cu|us ¢ RBCRBYEIGE
Jones (0 S‘e’% . :
gj:% Calculus [" ( a.l] & : ¢ RESHANER
t
Uit JERIRY
l (B : FEEEEEFNEEEEETRE,
éﬁmmm % SERRBE. BEE. {EENEZE, REF
Rt RLER

54



2. lll-posedness of the inverse problem

» The operator K : X — Y, Kx=y, x€X, yeY

* The inverse problem of dispersion relation must be ill-posed.

- K is a linear bounded compact operator. It doesn’t have a bounded inverse operator in the infinite
dimensional space.

Proof. 1tis easily to check that Kfi + Kf, = K(f1 + f2) and aKf = K(af) so the K : FF — G operator is

a linear operator. For any f € L*(a, b), by the Cauchy inequality, we have

d d b
K F1172 0 f (Kf)’dy = f f
f f (—)zdx f f(x)dxdy<(—) (b= a)d = NSz = MUfIlF2 ) < +00,

where M > 0 is a constant. Thus, from the form of the equation (3.2), we easily know K : F — G is a

f(x)dx)zdy (3.2)

bounded operator.
Since ¢ > b, the mth order derivative of K f exists for any m € N and by the Cauchy inequality, we

have
0’"(Kf )|I*

1)"m!
f ([ fdxrdy < Cllfi,, . (33)
L%(c,d)

x) m+1
where C > ( is a constant dependlng ona,b,c,d only. Therefore, K f € H"(c,d) for any m € N. Since m

is arbitrary, by the embedding theorem, we know K f € C*[c,d]. And since H!(c, d) is embedded into

L?*(c,d) compactly, we know the operator K is a compact opgmtor. The proof is completed O



2. Proof of the ill-posedness

Proof of uniqueness:

Proof. Since K 1s a linear operator, we know that K f;

b
J /) dx=¢(), y€lc,d], c>b, a>0
a Y X

- Kf, = K(f1 — f) =0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

It is easy to obtain that Kf = fb — f(dx = f (% Z,‘Z‘;O(f)k)f(x)dx. Since x € [a,b], y € [c,d],
¢ > b, we know |y| < |c| < 1, which implies that ‘ Z,‘f’:o(i)kf(x)‘ < Z,‘Z‘;o(lg’)klf(x)l for all x € [a, b].

: : b
Combined with fa | f(x)|dx < +00 and the control convergence theorem, we have

b 00
y f —f()dx = Z f X fx)dx =0, yelc,dl. (3.4)

0 a

If d = +00, by using (3.4), we have
b 1 b 1
f f(x)dx + ;f xf(x)dx +---+ — f xkf(x)dx+ -.-=0, ye((c,+00). 3.5)
a a y a

Letting y — +o0 in (3.5), we have fa ’ f(x)dx = 0. Then multiplying y on both sides of (3.5) and letting

y — +00, we also have fa " x f(x)dx = 0. Repeating above process, we can obtain that

b
f X*f(x)dx=0, k=0,1,2,---. (3.6)

56

Ifd < +o0,takingz € D :={z € C: |z] > ¢}, we have

\Z f 2 f(x)dx| < —| f x"f(x)dx|<zbk f F(X)ldx < +oo,

which implies that the series };” " f x* f(x)dx 1s convergent uniformly on D. Since lk f x* f(x)dx 1s
analytic on D for each k and use the Weierstrass theorem, we conclude that the series },_, x f x* f(x)dx
is analytic on D. Further, we know }};7 , . f x* f(x)dx is real analytic on y € (¢, +o0). Combined with

the analytic continuation, we know that (3.4) holds for y > ¢, 1. e.
> f ¥ fx)dx =0, ye/(c,+oo).
k=0 ) “a

Similar to the proof process of the case d = +00, we also conclude that fa b xk f(x)dx=0,k=0,1,2,---

ford < +o0.



2. Proof of the ill-posedness

dx=g(), y€lc,d]l, ¢>b, a>0

b
Proof of uniqueness: J )

a4

Proof. Since K 1s a linear operator, we know that K fi — Kf> = K(f1 — f2) = 0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

b
~ By using (3.6), we know that x)0,(x)dx = 0. Combined with the Cauchy inequality, we have
Since C[a, b] is dense in L%(a, b), then for f(x) € L*(a, b) and any € > 0, there exists f(x) € C[a, b], y using (3.6) Ja F02n(®) y inequality

~ ~ . . b b
such that ||f — fll;2(4) < € On the other hand, for f(x) € Cla, b], there exists a polynomial Q,(x) of I f”iz(a,b) _ JC f?‘(x) dx = L ( f?‘(x) — £( x)Qn(x)) dx

degree n € N, such that || f — Onllcrap) < € by the Weierstrass theorem. Therefore, we have

~ ~ < sz £001 - £ ) — Qa(0)ldx
If = Qnllzz@py < W = Alz@e) + I1f = Onllr2@p) o Lorb N
<e+revb_a = 1fl2apllf = Cnllzzap)
< (e + € Vb = D)lIfll2(ap)s
which_imphi at [ fll2ap) < €+ e Vb - a.
Letting € — 0, we have ||f|| ;2,5 = 0,1. . f(x) =0, a. e. x € [a, bl#The proof is completed. O

57



2. Proof of the ill-posedness

: - b f(x)
Proof of instability: J dx=¢(), ve€lc,d], ¢>b, a>0
a Y X

We show the instability of the inverse problem of dispersion relation by the special case. Taking
a=0,b=1,¢c=2,d =3, i(x) = fi(x) + Vncos(nrnx), and fi, are the solutions of g;, with
gi) = [ L fi(x)dx. As n — oo, it is obvious that

, 1/2
12 = fillzz,1) = ( f(; (\/ﬁcos(mrx))zdx) (3.7)

and

o G (3.8)

That means the solutions could be changed infinitely even though the noise of the input data is approaching

1 3 1 1 1/2
g2 — g1ll2¢23) = ( f (| (—)* sin(mrx)dx)zdy)
2

to vanish. So the inverse problem 1s unstable.
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® [ [o] 7] :
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Exact solution

- |R] et

- /
r”’//| 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x(t) =t
5 Exact solution
1.5
1F
05

x(t) = t* + sin(107¢)

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.26

0.24

0.22

0.2

0.18

0.16

0.14

Exact data

1

2.1

2.2

2.3

2.4

25 26

y(s) = Kx

Exact data




dx=g(), y€lc,d]l, ¢>b, a>0

b
Proof of uniqueness: J US

a4

Proof. Since K 1s a linear operator, we know that K fi — Kf» = K(f1 — f2) = 0. Setting f = f1 — f2, we
just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

It is easy to obtain that Kf = [ -Lf(dx = [ (L (5 f(x)dx. Since x € [a,b], y € [c,d],

—X

¢ > b, we know |3| < |%| < 1, which implies that ‘ I EIN f(x)‘ < 22 oBOKf(x)l for all x € [a,b].

: —
Combined with L |f(x)|dx < +00 and the control convergence theorem, we have

b 00
y f L fdx = > lk fb X fx)dx=0, yelc,dl. (3.4)
a y —X k=0 y a
If d = +00, by using (3.4), we have
b 1 b 1 b
f f(x)dx + ;f xf(x)dx+---+ Ff xkf(x)dx+ ---=0, ye(c,+). (3.5)

Letting y — +o001n (3.5), we have L ’ f(x)dx = 0. Then multiplying y on both sides of (3.5) and letting

y — +o00, we also have fa b xf(x)dx = 0. Repeating above process, we can obtain that

b
f *f(x)dx=0, k=0,1,2,---. (3.6)
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Proof of uniqueness:

Ifd < +oo,takingze D :={z € C: |z] > ¢}, we have

|Z fx"f(x)dx <Z If x"f(x)dx|<z f |f(x)|ldx < +00,

which implies that the series .77, ik f ’ x* f(x)dx 1s convergent uniformly on D. Since lk f ’ x¥ f(x)dx 1s
analytic on D for each k and use the Weierstrass theorem, we conclude that the series }};” k f x* f(x)dx
is analytic on D. Further, we know } ;7 . L x* f(x)dx is real analytic on y € (c, +o0). Combined with

the analytic continuation, we know that (3.4) holds for y > ¢, 1. e.
1 b
Z — f X f(x)dx=0, ye/(c,+).
—0 ) Va

Similar to the proof process of the case d = +o0, we also conclude that L > ¥k fx)dx=0,k=0,1,2,---

ford < +oo.
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Proof of uniqueness:  Since C[a, b] is dense in L(a, b), then for f(x) € L2(a, b) and any € > 0, there exists f(x) € C[a, b],
such that || f — f 12(ap) < €. On the other hand, for f(x) € C|a, b], there exists a polynomial Q,(x) of

degree n € N, such that || f — QOullcrap) < € by the Weierstrass theorem. Therefore, we have

If = Oullizapy < N = Fllzap + If = Qullizap
< e+ Vb—alf - Qullcias
<e+eVb-a,
By using (3.6), we know that [ f(x)Q,(x)dx = 0. Combined with the Cauchy inequality, we have
11220 ) = f " P = f b (F2(0) = F()Qu(x))dx
<[ L1 1) — Qald
<(| " Poodx) | 1100 - uoPd)

=||f ||L2(a,b)||f - Qn||L2(a,b)
< (e + € Vb = a)||fll 12(a,p):

which 1implie

Letting € — 0, we have ||f||;2(,5) = 0,1. . f(x) =0, a. €) x € [a, b]. The proof is completed. O
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. i " Ax)
Proof of instability: J dx=g(), yv€lc,d], ¢c>b, a>0
a YA

We show the instability of the inverse problem of dispersion relation by the special case. Taking
a=0,b=1,¢c=2,d =3, (x) = fi(x) + Vncos(nrx), and f, are the solutions of g;, with

8i(y) = jg)l y%x fi(x)dx. As n — oo, it 1s obvious that

, 1/2
12 = fillzz,1) = ( fo (Vn COS(nﬂx))zdx) (3.7)
and
1 3 1 1 5 , 1/2
182 — &1llz223) = % <f2 ( ; (y_x) sin(nmx)dx) dY) (3.8)

That means the solutions could be changed infinitely even though the noise of the input data is approaching

to vanish. So the inverse problem is unstable.
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Numerical Method of Tikhonov Regularization

= x € [xi1, %],

| . (1 512 if12
f(f = arg min J(f) = arg min (5“1(][ — 8 ”Lz(c,d) T EHfHLZ(a,b))

i\X) = _x_xi+l9 s Vi ’
#i(X) Ao X € X X feL?(a,b) feL?(ab)

0, otherwise,

X—X1 n
- h s X € [X(),X]],
@o(x) = | 0 (%) = X cipi(x)
0, otherwise, ’ i=0
2 2
x_);ln_l , X € [Xy—1, Xnl, J(fa””) = 5 Z cikei— g T 5 Z Citpi
@n(X) = i=0 L2(c,d) i=0 L*(a,b)

0, otherwise. n

1 « 5 1 5 & a
=5 i]Z::() CiCi(Kpi, K2y — ;Ci(KSOi,g )12(c,d) + 5(8 8 )12(cd) t ) iJZ::o CiC(Pi> )12(ab)

X — Span{90039019° A 72 }
& " Ajj = (Kei, Kojreeay  Bii = @ipdrrer €= (co,c1, - Cn)"
n
on(X) = X cigi(x) 5
) (A +aB)C =D D; = (Koi, 8°)12(c.a)
Theorem 4.3. If the noise 6 and the regularization parameter « are fixed, we have || fcf,n - 1 12(ab)

0, asn — oo. o



Dispersive analysis of neutral meson mixing

Hsiang-nan Li
Institute of Physics, Academia Sinica, Taipei, Taitwan 115, Republic of China

 Revisited by the inverse matrix method
-SU(3) breaking effects: physical thresholds of D — ziw, Kn, KK

* The solutions are stable

*B mixing and kaon mixing are also studied in the same formalism
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Inverse Problem: inverse matrix method

* The inverse matrix method was proposed by Hsiang-nan Li, on the studies of glueballs in
arXiv:2109.04956 and on pion LCDA in arXiv:2205.06746

* A unique and stable solution can be attained before an ill posed nature appears.
(Discretized regularization)

AA;: (v @Q)A + D—vz 0 box (A + TD
Inverse Problem: / @ / dv ( J / dv @g ( 1J
0 Tij—TIJ

u—v u—v u—v

\

To be solved calculable

Notice that the range of v = [0, + 00)
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Inverse Problem: inverse matrix method

dv

©  AA; °  AbX(yA 4 myr eV [0 AP (yA + m
Inverse Problem: / dv (V) :/ dv—Y ( 17) / 7 ( 1)
0 0 -

u—7v u—v u—7v

ij—TIJ

* Expansion by generalized Laguerre polynomials:

N
AAi(v) =) alDve LY, (v),
n=1

Unknown coefficients: (%) — (agij), agij), e ,a%j)),

a=3/2 by physical condition of AA;;(v) ~v¥%atv—0

'm+a+1)
m!

orthogonality: / v¥e "L (v) Ly (v)dv = bmn  independent a’
0
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AA;;(v) /oo dvA%OX(vA-FmIJ)e_Uz : /
0 r

@)
‘Inverse Problem: / dv —
0 u—7mv

u—v

0 AP (A +m
o A7 ( 1J)

u—v

ij—TIJ

n—1

N
Expansion by generalized Laguerre polynomials: AA;;(v) = Z a,ffj)v“e""L(“) (v),
n=1

N
» Taylor expansion of the integral: L — Z Y
u—v =

m—1

um

for a sufficiently large |u]

— pl27)

Upink = / dvvm_Hae_”LgLa_)l(v) UGJ(Z])
0

0

plid) — / dvvm_lAzf’x(vA + m”)e_'”2 —|—/ dvv
0 r

lnverse Problem: inverse matrix method

71

ij—TIJ

m_lA?jOX(’UA -+ m”)

N X N: regularization




Inverse Problem: inverse matrix method

One can then solve for the vector a(¥) through a(*) = U~1b(¥) by applying the inverse matrix U~!. The existence of
U ! implies the uniqueness of the solution for a*). An inverse problem is usually ill posed; namely, some elements of
U~ rise fast with its dimension. Nevertheless, the convergence of Eq. (15) can be achieved at a finite N, before U 1
goes out of control. The difference between an obtained solution and a true one produces a correction to Eq. 414)

only at power 1/u™ 1!, and the coefficients af,fj ) built up previously are not altered by the inclusion of an additional

higher-degree polynomial into the expansion in Eq. (15), because of the orthogonality condition in Eq. (16). The
convergence of solutions in the polynomial expansion and their insensitivity to A will validate our approach, which is

thus free of tunable parameters.
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D" — DY mixing

1 n
-Dispersion relation:  Mi2(s) = zﬂ/ ds’ 312(3) D g g Do
4m?2 T

|D1,2) = p| D) % ¢|D°) g = \/gﬁiz — Zgi
€T = Mo ; mi _ %Re -%(ZMH — iI‘lg): y = FQZ—FFl _ _%Im :g(ZMm — iI‘12):
In the CP-conserving case: == ZAI{”, Y = %
- Absorptive piece:  Tia(s Z)\ ATy (s i,j=d,s,b,and \y = Vo V5, k =d, s, b

T12(mp) = AN2[Caa(mp) — 2L as(m3) + Lss(mp)] + 22X X [Laa(mp) — Las(mp)] + Ay Taa(m?)
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D" — DY mixing

1 n
-Dispersion relation:  Mi2(s) = 27r/ ds’ 312(3) D g g Do
4m?2 T

* Absorptive piece:  T'ia(s Z/\ A;L5(s t,J =d,s,b, and Ay, = VeV, £ =d, s,b
Atlarge s pbox(s) — G/ 11?2"”'”‘WBD APO<(s)
7'('

T, = mi/m¥,  xp = s/miy,

T /Th —22p(% + x5) + (3 — x5)°

A7) = 223/ (1—z)(1 — =)
<{(1- ""Z”J) 323 — wp(ws +25) — 2(ws — ;)] + 220 (i + 25) (3 + 25 — 2p) |

MlZ(S) — Zi,j >\z)\jMZJ (8)

* In principle, the dispersion relation, as a result of QCD dynamics which has nothing to
do with the CKM factors, holds for each pair of the components Mij(s) and TlTij(s)

. Inverse problem for each components of ij. A, (S) is monotonic, easily for solutions.
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D" — DY mixing

1 n
-Dispersion relation:  Mi2(s) = 27r/ ds’ 312(3) D g g Do
4m?2 T

T Vah —2zp(zi + ;) + (25 — xj)?

box _
AT = (1—2)(1 - ;)
< { (14 =2) Beh — ap (@i +3;) — 2 —2;)2] + 2wp (2 + 2;) (@i + 7 — ) }
3/2

I';:(s) grows like 5%, so the integration is divergent.

', converges due to SU(3) cancellation.

—Q
\)

-Reformulate the dispersion relation: 1o, (s) = M, (s) — iTy; (s),2 / \
1 ;(s) \f  —




D" — D" mixing \

. . . . [ 8
- Reformulate the dispersion relation:  11,,(s) = M;;(s) — il (s)/2 j
1 I, (s
S dsl ](8) —O
271 s — 8
- LR Ty(s) | 1 G 2
Physical threshold: M;i(s) = — / ds’ (%) e / ds' — ( ), Minn = AM2, mag = (my +mx)?, mux = 4m,
2T Jns s—s"  2m Jo, s— 8
1 R [ box (8’) 1 [Tbox (8’)
- - box = — F_Y | d F_Y mygg = 4m2, Mmgs = (Mma + ms)?, mss = 4m?2,
Quark-level threshold: Mj™(s) = - | A / a7, i = Ay iy = (0

At large s, M(s) = Mgox(s), as heavy meson mixings.

[ astat) " T

o
ma, s— 8

/0



D" — DY mixing
° . . . . box( ./
Reformulate the dispersion relation: /R d /R LT

s — s’

mrJg

To be solved

Introduce a subtracted unknown function:
AT;(s,A) =Tyj(s) — Ty (s){1 — exp[—(s — ms)?/A?]}

The scale A characterizes the order of s, at which I';;(s) transits to the perturbative expression I'’%%(s)

21

Alternative formula, like 1 — exp[—(s — mrs)3/A%] , only vary the solution by few percent

The subtraction term can be regarded as an ultraviolet regulator.

/ (A
ds’ — ds'
s — 8’

*Inverse problem: /oo ATy (s, A) /oo (s expl—(s' = mis /A7) /m” [box (/)

!
mrJg mrJg S S

7



Numerical results

FIG. 1: Dependencies of y4s(s) = I'4s(s)/I" on s for N = 3 (dotted line), N = 8 (dashed line), N = 13 (solid line) and N = 23
(dot-dashed line) with A = 5 GeV?.

ds ds ds ds ds ds ds ds
105 X (ag )7ag )7af(5 )7"' 7agz ),a§3 )?ag4)9"' 70’%2 )7ag3 ))

= (4.04,2.47,1.45,--- ,—2.08 x 1072, —4.59 x 107°,9.25 x 107°,--- ,7.49 x 1072,1.04),



Numerical results

FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/I" (solid lines) with the inputs yl-oj

ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?>.

12|
1.0
0.8
0.6

0.4

=
=
_——

=
-

O

p'e — 1Tbox
(s) = Fz’j

s(GeVz)
(c)
(s)/T" (dashed lines) for (a)



Numerical results
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FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/I" (solid lines) with the inputs y;*(s) = I';?*(s)/T" (dashed lines) for (a)
ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?.
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FIG. 3: Dependencies of (a) Yaa — 2yds + Yss, (b) Yaa — yas and (c) yho* — 2y5* 4+ y2%* on s for A =5 GeV?.



Numerical results

0.005 0.005

-0.005

FIG. 4: Solutions of y(s) for A = 4.0 GeV?, 4.5 GeV?, 5.0 GeV? and 5.5 GeV?, corresponding to the curves with the peaks
from left to right, in the cases (a) with and (b) without the second term in Eq. (20).
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FIG. 5: Dependencies of y(m%) on A in the cases with (upper curve) and without (lower curve) the second term in Eq. (20).



Numerical results
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FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/I" (solid lines) with the inputs y;*(s) = I';?*(s)/T" (dashed lines) for (a)
ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?.
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FIG. 3: Dependencies of (a) Yad — 2Yds + Yss, (D) Ydd — Ygs and (c) yo9* — 2yoo* + yoo* on s for A = 5 GeV?>.



5. Physical applications: neutral meson mixing

AF1<=2|F12|

A
45 ‘><10-14 ] ' [
X X X al 0 78
3.5
\/ 31

(s = 5)(s1 = $)(5 = 5) [A [15(s) g’ 1?
27 ; (8" — )" — 51" — $9) sl
= (5] — )M 5(s) + (55 — S)M;,(s51) + (s — 5)M,(5,) | ) ) ) o
(s —s)(s] — $)(55 — ) J'OO ['5(s") ”
2T A =8 = s = 57)
I = > ]éBqusc@qu / diz T (ch%l(x)?{gg:l(())) B,)
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Inverse problem in Lattice QCD

p(w) Log[D(7)]

XY, 24
Lattice QCD

D/D thresh. D(1) = Joo dwe " p(w)
—2Mg

w Inverse problem 2

Hadron spectral function Euclidean time correlation function

Rothkopf, 2211.10680

Spectral function reconstruction from Euclidean lattices
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Inverse problem in Lattice QCD

Hadronic on the Lattice

Lattice QCD: Euclidean field theory using the path-integral formalism: time-dependent matrix
elements are problematic.

1 4, ,iqz
W,HI/=4_ <€ p>S p,S

[J;,‘ 2) J,,(O)]

T

Euclidean hadronic tensor:

5, = = —ig(X—x — —
W'uy(p9 Q9T — t2 - t]) € 1 (x2 xl)(P,Sljg(xz, tZ)Jy(xp t]) Ipa S)

Back to Minkowski space by solving the inverse problem:

o K.F. Liuand S. J. Dong, PRL 72, 1790 (1994)
W;w(P, q,7) = JdV Wyy(p9 q,v)e " K.-F. Liu, PRD62, 074501 (2000)
J. Liang et. al.,PRD101, 114503 (2020)

J. Liang et. al., PRD102, 034514 (2020)

Jian Liang’s talk @ 2nd EicC CDR workshop
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(00

Maximum entropy method (MEM) D(7) = f K (T, w)A(w) dw
0

® MEM is a method to circumvent these difficulties by making a statistical inference of the most probable
SPF (or sometimes called the image in the following) as well as its reliability on the basis of a [Imited
number of noisy data.

® |[ts basis Is Bayes’ Theorem:
PIY|X|P|X]
P[Y]

PIX|Y] =

From Bayes' Theorem, we can get :

T

The most probable image is A(w) that satisfies the condition:

SP|A|DH|

dA 0

(1) Firstly, they make:

1
P[D|AH] = Z—e-L, =)

L = %Z(D(T.) — DA(T:'))C;‘;I(D(TJ') — Da(75)),

In the case where P[A|H] = 0, maximizi’ng P[A|DH] is equivalent to standard x* — fitting. However, the

x?% — fitting does not work.
hep-lat/0011040
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