重味重子半轻衰变的光锥求和规则研究

汇报人:段慧慧

河南师范大学物理学院 2023年10月8日

目 录

一、研究背景

二、理论基础

1. QCD光锥求和规则

2. 重子光锥分布振幅

三、粲重子半轻衰变

1. $\Xi_c \to \Xi \ell \nu_\ell$

2. $\Omega_c \to \Xi \ell \nu_\ell$

四、底重子半轻衰变

1. $\Lambda_b \to \Lambda_c \ell \nu_\ell$

2. $\Omega_b \to \Xi \ell \nu_\ell$

五、总结

一、研究背景

1、QCD非微扰效应的需要

2、重味重子及其半轻衰变的理论与实验进展

1. QCD非微扰效应的需要

● 自然界的四种相互作用力:强、弱、电磁、引力。

相互作用力	媒介粒子	电荷	质量 (MeV)	寿命	主要衰变模式
强	g (8 个胶子)	0	0	∞	
电磁	γ (光子)	0	0	∞	
己己	W [±] (带电)	± 1	80420	3.11×10^{-25}	$e^+\nu_e, \mu^+\nu_\mu, \tau^+\nu_\tau, cX \to \mathfrak{BF}$
권건	Z ⁰ (中性)	0	91190	2.64×10^{-25}	$e^+e^-, \mu^+\mu^-, \tau^+\tau^-, q\overline{q} \to \mathfrak{AF}$

●粒子物理的理论工具: QCD

➢ 强子内夸克之间的耦合强度: $\alpha_{QCD} = \frac{1}{1 + \alpha(\mu) \frac{\beta_0}{4\pi} \ln\left(\frac{Q^2}{\mu^2}\right)}$

上式在:
$$Q^2 \rightarrow \infty (Q^2 \gg \mu^2), x \rightarrow 0$$
时, $\alpha_{QCD} \rightarrow 0$, 渐近自由;
 $Q^2 \leq \mu^2, x$ 变大时, α_{QCD} 变大, 夸克禁闭。
_{强子束缚态}

□ $\alpha_{QCD} \rightarrow 0$ 时,处理强子物理过程可使用微扰论的研究方法;

α_{QCD}较大时,需要选用合适的非微扰方法,如:重夸克有效理论、
 光前夸克模型、QCD求和规则、光锥求和规则、格点QCD等。

2.重味重子及其半轻衰变的理论与实验进展

▶ 重味重子包含了粲重子与底重子,其弱衰变主要通过内部的底夸克与 粲夸克的下列衰变模式进行:

▶ 得益于重味重子半轻衰变道产物比较干净,近年来在实验和理论两 方面都对这类过程进行了很多研究。如:衰变宽度及分支比的测量, CP不对称参数的测量,轻子普适性的检验等等。

● 粲重子PDG现>	犬列表:
------------	------

● 粲重子夸克组分:

 Λ_c^+ : udc

 $\Sigma_c^{++}: uuc; \Sigma_c^+: udc;$ $\Sigma_c^0: ddc$

Ξ_c^+ : usc;	Ξ_c^0 : dsc
Ω_c^0 : ssc	
_1 -	

Ξ_{cc}^{++} : ucc

	重子态	现状	$I(J^P)$	质量 (MeV)	宽度 / 寿命	主要衰变道	实验组
	Λ_c^+	* * **	$0(\frac{1}{2}^+)$	2286.46 ± 0.14	$(200 \pm 6) \times 10^{-15} \mathrm{s}$	weak	Fermilab
	$\Lambda_{c}(2593)^{+}$	* * *	$0(\frac{1}{2}^{-})$	2592.25 ± 0.28	$(2.59\pm 0.30\pm 0.47)~{\rm MeV}$	$\Lambda_c^+\pi^+\pi^-$, $\Sigma_c\pi$	CLEO
1	$\Lambda_{c}(2625)^{+}$	* * *	$0(\frac{3}{2}^{-})$	2628.11 ± 0.19	$<0.97~{\rm MeV} 90\%$	$\Lambda_c^+\pi^+\pi^-$	ARGUS
	$\Lambda_{c}(2765)^{+}$	*	$?(?^{?})$	2766.6 ± 2.4	$50~{ m MeV}$	$\Lambda_c^+\pi^+\pi^-$	CLEO
	$\Lambda_{c}(2860)^{+}$	* * *	$0(\frac{3}{2}^+)$	$2856.1^{+2.0}_{-1.7}\pm0.5^{+1.1}_{-5.6}$	$67.6^{+10.1}_{-8.1}\pm1.4^{+5.9}_{-20.0}\;{\rm MeV}$	D^0p	LHCb
	$\Lambda_{c}(2880)^{+}$	* * *	$0(\frac{5}{2}^+)$	2881.62 ± 0.24	$5.6^{+0.8}_{-0.6}~{ m MeV}$	$\Lambda_c^+\pi^+\pi^-, \Sigma_c^{(*)}\pi, pD^0$	CLEO
	$\Lambda_c(2940)^+$	* * *	$0(\frac{3}{2}^-)$	$2939.6^{+1.3}_{-1.5}$	$20^{+6}_{-5}~{ m MeV}$	$pD^0, \Sigma_c \pi^{\pm}$	BABAR
	$\Sigma_{c}(2455)^{++}$	* * **	$1(\frac{1}{2}^+)$	2453.97 ± 0.14	$1.89^{+0.09}_{-0.18} \; {\rm MeV}$	$\Lambda_c^+\pi$	BNL
	$\Sigma_{c}(2455)^{+}$	* * **	$1(\frac{1}{2}^+)$	2452.9 ± 0.4	$< 4.6 { m ~MeV}$	$\Lambda_c^+\pi$	TST
	$\Sigma_{c}(2455)^{0}$	* * **	$1(\frac{1}{2}^+)$	2453.75 ± 0.14	$1.83^{+0.11}_{-0.19}~{\rm MeV}$	$\Lambda_c^+\pi$	BNL
	$\Sigma_{c}(2520)^{++}$	* * *	$1(\frac{3}{2}^+)$	$2518.41\substack{+0.21\\-0.19}$	$14.78^{+0.30}_{-0.40}~{\rm MeV}$	$\Lambda_c^+\pi$	SKAT
	$\Sigma_c(2520)^+$	* * *	$1(\frac{3}{2}^+)$	2517.5 ± 2.3	$< 17 { m MeV}$	$\Lambda_c^+\pi$	CLEO
	$\Sigma_c(2520)^0$	* * *	$1(\frac{3}{2}^+)$	2518.48 ± 0.20	$15.3^{+0.4}_{-0.5}\;{\rm MeV}$	$\Lambda_c^+\pi$	CLEO
	$\Sigma_{c}(2800)^{++}$	* * *	$1(?^{?})$	2801^{+4}_{-6}	$75^{+18+12}_{-13-11} { m MeV}$	$\Lambda_c^+\pi$	BELLE
	$\Sigma_{c}(2800)^{+}$	* * *	$1(?^{?})$	2792^{+14}_{-5}	$62^{+37+52}_{-23-38} \mathrm{MeV}$	$\Lambda_c^+\pi$	BELLE
	$\Sigma_{c}(2800)^{0}$	* * *	$1(?^{?})$	2806^{+5}_{-7}	$72^{+22}_{-15} { m MeV}$	$\Lambda_c^+\pi$	BELLE
	Ξ_c^+	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	2467.95 ± 0.19	$(442 \pm 26) \times 10^{-15} \mathrm{s}$	weak	CERN
	Ξ_c^0	* * **	$\frac{1}{2}(\frac{1}{2}^+)$	$2470.99^{+0.30}_{-0.50}$	$112^{+13}_{-10} \times 10^{-15} \mathrm{s}$	weak	CLEO
	$\Xi_c^{\prime+}$	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	2578.4 ± 0.5		$\Xi_c^+ \gamma$	CLEO
	$\Xi_c^{\prime 0}$	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	2579.1 ± 0.5		$\Xi_c^0 \gamma$	CLEO
	$\Xi_c(2645)^+$	* * *	$\frac{1}{2}(\frac{3}{2}^+)$	2645.57 ± 0.26	$2.14\pm0.19~{\rm MeV}$	$\Xi_c^0\pi^+, \Xi_c^+\pi^-$	CLEO
	$\Xi_{c}(2645)^{0}$	* * *	$\frac{1}{2}(\frac{3}{2}^+)$	2646.38 ± 0.21	$2.35 \pm 0.18 \pm 0.13 \; {\rm MeV}$	$\Xi_c^0\pi^+, \Xi_c^+\pi^-$	CLEO
	$\Xi_c(2790)^+$	* * *	$\frac{1}{2}(\frac{1}{2}^-)$	2792.4 ± 0.5	$8.9\pm0.6\pm0.8~{\rm MeV}$	$\Xi_c'\pi$	CLEO
	$\Xi_c(2790)^0$	* * *	$\frac{1}{2}(\frac{1}{2}^{-})$	2794.1 ± 0.5	$10.0\pm0.7\pm0.8~{\rm MeV}$	$\Xi_c'\pi$	CLEO
	$\Xi_c(2815)^+$	* * *	$\frac{1}{2}(\frac{3}{2}^{-})$	2816.73 ± 0.21	$2.43 \pm 0.20 \pm 0.17 \; {\rm MeV}$	$\Xi_c'\pi, \Xi_c\pi$	CLEO
	$\Xi_{c}(2815)^{0}$	* * *	$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$	2820.26 ± 0.27	$2.54 \pm 0.18 \pm 0.17 \ {\rm MeV}$	$\Xi_c'\pi, \Xi_c\pi$	CLEO
	$\Xi_c(2930)^+$	**	$?(?^{?})$	$2942.3 \pm 4.4 \pm 1.5$	$14.8\pm8.8\pm2.5\;\mathrm{MeV}$	$\Lambda_c^+ K^-, \Lambda_c^+ K_s^0$	BELLE
	$\Xi_{c}(2930)^{0}$	**	$?(?^{?})$	$2929.7^{+2.8}_{-5.0}$	$26\pm8~{\rm MeV}$	$\Lambda_c^+ K^-, \Lambda_c^+ K_s^0$	BABAR
	$\Xi_c(2970)^+$	* * *	$\frac{1}{2}(?^{?})$	2969.4 ± 0.8	$20.9^{+2.4}_{-3.5}~{\rm MeV}$		BELLE
	$\Xi_{c}(2970)^{0}$	* * *	$\frac{1}{2}(?^{?})$	2968.0 ± 2.6	$28.1^{+3.4}_{-4.0}~{\rm MeV}$		BELLE
	$\Xi_{c}(3055)^{+}$	* * *	$?(?^{?})$	3055.9 ± 0.4	$7.8\pm1.2\pm1.5~{\rm MeV}$	$\Sigma^{++}K^{-}, \Lambda D^{+}$	BABAR
	$\Xi_c(3080)^+$	* * *	$\frac{1}{2}(?^{?})$	3077.2 ± 0.4	$3.6\pm1.1\;{\rm MeV}$	$\Lambda_c^+ \overline{K} \pi, \Sigma_c \overline{K}, \Sigma_c K^-$	BELLE
	$\Xi_{c}(3080)^{0}$	* * *	$\frac{1}{2}(?^{?})$	3079.9 ± 1.4	$5.6\pm2.2~{\rm MeV}$	$\Lambda_c^+ \overline{K} \pi, \Sigma_c \overline{K}, \Sigma_c K^-$	BELLE
	$\Xi_c(3123)^+$	*	$?(?^{?})$	$3122.9 \pm 1.3 \pm 0.3$	$4.4\pm3.4\pm1.7~{\rm MeV}$		BABAR
	Ω_c^0	* * *	$0(\frac{1}{2}^+)$	$2695.2^{+1.8}_{-1.6}$	$(268 \pm 24) \times 10^{-15} \text{ s}$		CERN
	$\Omega_{c}(2770)^{0}$	* * *	$0(\frac{3}{2}^+)$	2765.9 ± 2.0		$\Omega_c^0\gamma$	BABAR
	$\Omega_c(3000)^0$	* * *	$?(?^{?})$	$3000.4 \pm 0.2 \pm 0.1 \pm 0.3$	$4.5\pm0.6\pm0.3~{\rm MeV}$	$\Xi_c^+ K^-$	LHCb

• 粲重子弱衰变模式
• 粲重子半轻衰变的实验背景
PDG列表: PTEP 2022,083C01(2022)

$$\Lambda_c^+: \Lambda_c^+ \to \Lambda e^+ v_e \quad (3.6 \pm 0.4)\%$$

 $\Lambda_c^+ \to \Lambda \mu^+ v_\mu \quad (3.5 \pm 0.5)\%$
 $\Xi_c^0: \Xi_c^0 \to \Xi^- e^+ v_e \quad (1.04 \pm 0.24)\%$
 $\Xi_c^0 \to \Xi^- \mu^+ v_\mu \quad (1.01 \pm 0.25)\%$
 $\Xi_c^+: \Xi_c^+ \to \Xi^0 e^+ v_e \quad (7 \pm 4)\%$
 $\Omega_c^0: \Omega_c^0 \to \Omega^- e^+ v_e \quad (2.4 \pm 1.2)\%$
 $s_c^{0} \to \Omega^- e^+ v_e \quad (2.4 \pm 1.2)\%$
 $s_c^{0} \to \Omega^- e^+ v_e \quad (2.4 \pm 1.2)\%$
 $s_c^{0} \to \Omega^- e^+ v_e \quad (2.4 \pm 1.2)\%$

素重子PDG现状列表:	重子态	现状	$I(J^P)$	质量 (MeV)	宽度 / 寿命	主要衰变道	实验组
	Λ^0_b	* * *	$0(\frac{1}{2}^{+})$	5619.60 ± 0.17	$(1.471 \pm 0.009) \times 10^{-12} \text{ s}$	$pK^{-}\pi^{+}\pi^{-}$	CERN
	$\Lambda_b(5912)^0$	* * *	$\frac{1}{2}^{-}$	$5912.60 \pm 0.13 \pm 0.17$	$< 0.66 \; {\rm MeV}$	$\Lambda_b^0\pi^+\pi^-$	LHCb
	$\Lambda_b(5920)^0$	* * *	$\frac{3}{2}^{-}$	5912.92 ± 0.19	$< 0.63 \; {\rm MeV}$	$\Lambda_b^0\pi^+\pi^-$	LHCb
	Σ_b^+	* * *	$1(\frac{1}{2}^{+})$	5810.56 ± 0.25	$5.0\pm0.5\;{\rm MeV}$	$\Lambda_b^0\pi$	CDF
5千7大十四八,	Σ_b^-	* * *	$1(\frac{1}{2}^{+})$	5815.64 ± 0.27	$5.3\pm0.5~{\rm MeV}$	$\Lambda_b^0\pi$	CDF
低里于夸兄组分:	Σ_b^{*+}	* * *	$1(\frac{3}{2}^{+})$	5830.32 ± 0.27	$9.4\pm0.5\;{\rm MeV}$	$\Lambda_b^0\pi$	CDF
	Σ_b^{*-}	* * *	$1(\frac{3}{2}^{+})$	$5834.74 \pm 0.6^{+1.7}_{-1.8}$	$10.4\pm0.8\;{\rm MeV}$	$\Lambda_b^0\pi$	CDF
	$\Sigma_{b}(6097)^{+}$	* * *	$?^{?}$	$6095.8 \pm 1.7 \pm 0.4$	$31.0\pm5.5\pm0.7\;\mathrm{MeV}$	$\Lambda_b \pi^+$	LHCb
$\Lambda_{b}^{0}: udb$	$\Sigma_{b}(6097)^{-}$	* * *	$?^{?}$	$6098.0 \pm 1.7 \pm 0.5$	$28.9\pm4.2\pm0.9\;\mathrm{MeV}$	$\Lambda_b \pi^+$	LHCb
	Ξ_b^0	* * *	$\frac{1}{2}\left(\frac{1}{2}^+\right)$	5791.9 ± 0.5	$1.480\pm0.030\;{\rm MeV}$	$\Xi_c^+\pi^-$	DELPHI
Σ^+	Ξ_b^-	* * *	$\frac{1}{2}(\frac{1}{2}^+)$	5797.0 ± 0.9	$1.572\pm0.040\;\mathrm{MeV}$	$\Xi_c^0\pi^-$, $J/\Psi\Xi^-$	DELPHI
L_b : uub; L_b : aab	$\Xi_b'(5935)^-$	* * *	$\frac{1}{2}^{+}$	$5935.02 \pm 0.02 \pm 0.05$	$< 0.08 \; {\rm MeV}$	$\Xi_b^0\pi^-$	LHCb
	$\Xi_b(5945)^0$	* * *	$\frac{3}{2}^{+}$	5952.3 ± 0.9	$0.90 \pm 0.16 \pm 0.08 \; {\rm MeV}$	$\Xi_b^-\pi^-$	CMS
Ξ_{1}^{0} ·ush· Ξ_{2}^{-} ·dsh	$\Xi_b^*(5955)^-$	* * *	$\frac{3}{2}^{+}$	$5955.33 \pm 0.12 \pm 0.05$	$1.65 \pm 0.31 \pm 0.10 \; {\rm MeV}$	$\Xi_b^0\pi^-$	LHCb
	$\Xi_b(6227)$	* * *	??	$6226.9 \pm 2.0 \pm 0.4$	$18.1\pm5.4\pm1.8~{\rm MeV}$	$\Lambda_b^0 K^-$, $\Xi_b^0 \pi$	LHCb
	Ω_b^-	* * *	$0(\frac{1}{2}^{+})$	6046.1 ± 1.7	$1.64^{+0.18}_{-0.17} { m MeV}$	$J/\Psi \Omega^-$	$D\phi$

● 底

$\Omega_b^-:ssb$

二、理论基础

1、QCD光锥求和规则

2、重子光锥分布振幅

1、QCD光锥求和规则

1.1 光锥求和规则的前置理论基础: QCD求和规则

1979年Shifman、Vainshtein和Zakharov等人(SVZ)发展的基于QCD理论的

一套在类空区域用夸克流关联函数计算强子性质的方法。

- ▶ 假定QCD理论的物理真空不同于微扰论的真空;
- ▶ 假定在QCD物理真空中存在着一系列的〈qq〉、〈GG〉、〈qGq〉……等反映 QCD非微扰特性的真空凝聚;
- □ 将这些真空凝聚项作为QCD理论的一些非微扰的基本输入参量处理强 子物理的唯象过程。

QCD求和规则

QCD 求和规则

杨茂志 南开大学物理科学学院

粒子物理基本专题讲座, 2021年 7 月 13 日 于河南师范大学

Lecture Notes in Physics
Edited by H. Araki, Kyota, J. Ehlers, München, K. Hepp, Zürich R. Kippenhehn, München, H. A. Weidenmüller, Heidelberg and J. Zittartz, Köln
194
P. Pascual R. Tarrach
OCD: Renormalization for the Practitioner
Springer-Verlag Berlin Heidelberg GmbH

● QCD求和规则计算强子物理过程的四个步骤:

▶ 定义关联函数:

 $\begin{aligned} \Pi_{\mu\nu}(q) &= i \int d^4 x \, e^{iqx} \big\langle 0 \big| T \big\{ j_\mu(x) j_\nu(0) \big\} \big| 0 \big\rangle \\ &= \big(q_\mu q_\nu - q^2 g_{\mu\nu} \big) \Pi(q^2) \end{aligned}$

▶ 应用QCD在夸克层次计算包含QCD物理真空凝聚的关联函数,表达式 中高量纲的真空凝聚参量被Wilson系数 $C_d(q^2)$ 中的1/ Q^2 幂次压低。

$$\Pi(q^2) = \Pi^{pert}(q^2) + \sum_{d=3,4,\cdots} C_d(q^2) \langle 0|O_d|0 \rangle$$

▶ 应用色散关系在强子层次计算关联函数

$$\Pi(q^{2}) = \frac{1}{\pi} \int_{s_{0}}^{\infty} ds \frac{Im\Pi(s)}{s - q^{2} - i\epsilon}$$
$$\Pi_{\mu\nu}(q) = \int_{s_{min}}^{\infty} \frac{ds}{s - q^{2} - i\delta} \left\{ \left[\frac{f_{\rho}^{2}}{2} \delta\left(s - m_{\rho}^{2}\right) + \rho^{H}(s) \right] \left(-g_{\mu\nu}q^{2} + q_{\mu}q_{\nu} \right) \right\}_{q^{2} = s}$$

▶ 两者相等建立求和规则,应用Borel变换寻找求和规则适用能区以改善求和规则不确定性。

$$\frac{f_{\rho}^{2}}{2(m_{\rho}^{2}-q^{2})} + \int_{s_{0}}^{\infty} \frac{ds\rho^{H}(s)}{s-q^{2}-i\delta} = \Pi^{pert}(q^{2}) + \sum_{d=3,4,\cdots} C_{d}(q^{2})\langle 0|O_{d}|0\rangle$$
$$\hat{B}[f(p^{2})] = \lim_{\substack{-p^{2},n\to\infty\\-p^{2}/n=M^{2}}} \frac{1}{n!}(-p^{2})^{n+1} \left(\frac{d}{dp^{2}}\right)^{n} f(p^{2})$$

1.2 光锥求和规则方法

- 将微扰QCD应用到遍举过程与QCD求和规则结合的产物
- □ 基本出发点是一个由两个夸克流的编时乘积夹在QCD真空态和强子 态之间的关联函数,

 $T_{\mu}(P,q) = i \int d^4x \ e^{iq \cdot x} \langle 0 | \mathcal{T}\{\mathcal{O}_1(0), \mathcal{O}_2(x) | B(P,s) \rangle$

用强子分布振幅在光锥附近做算符乘积展开,再应用类似于传统SVZ 求和规则中的色散关系、夸克-强子对偶性和Borel变换等关系来解决 和强子有关的性质。

▶ 光锥条件

考虑强子过程的运动学区域, $e^+e^- \rightarrow \pi^0 e^+e^-(\gamma^*(q)\gamma^*(p-q) \rightarrow \pi^0(p))$ 为例,其子过程的两个虚光子的虚度都很大,其差也非常大,这就有:

$$|2p \cdot q| \simeq ||(p-q)^2| - Q^2| \sim Q^2 \sim |(p-q)^2| \gg \Lambda_{QCD}^2$$

由上述关系可以证明 $x^2 \leq \frac{4}{Q^2}$,满足: Q^2 大的区域,关联函数中算符乘 积主导的区域趋于光锥区域 $x^2 \sim 0$ 。

> 光锥求和规则步骤

- 光锥求和规则有类似于QCD求和规则的步骤和过程,这两种求和规则的不同点是在光锥求和规则中定义的关联函数中的矩阵元是流算符的编时乘积夹在真空态和强子态之间,且在对关联函数进行时是按扭度(维度-自旋)展开为一系列强子光锥波函数的形式。
- 其它过程则与QCD求和规则类似。

2、重子光锥分布振幅(光锥波函数)

强子的光锥分布振幅是光锥求和规则中的重要输入参量,反映了强子 内部价夸克的空间及动量分布,包含着强子内部的动力学信息,它将强子 在强子层面和其内部的部分子分布之间建立了联系。

● 轻重子光锥分布振幅 V. Braun, NPB 589(2000)381; Y. L. Liu NPA 821(2009)80.

$$\left\langle 0 \left| \epsilon^{ijk} q_{1\alpha}^{i}(a_{1}z) q_{2\beta}^{j}(a_{2}z) q_{3\gamma}^{k}(a_{3}z) \right| X(P) \right\rangle$$

该波函数可以一般分解为:

$$4\langle 0|\epsilon^{ijk}s^{i}_{\alpha}(a_{1}z)s^{j}_{\beta}(a_{2}z)q^{k}_{\gamma}(a_{3}z)|\Xi(P)$$
$$=\sum_{i}\mathcal{F}_{i}\Gamma^{\alpha\beta}_{1i}(\Gamma_{2i}\Xi)_{\gamma},$$

● 底重子光锥分布振幅 PLB 665 (2008) 197; EPJC 73 (2013) 2302

□B介子光锥分布振幅→b重子光锥分布振幅

□ $m_b \rightarrow \infty$, b夸克坐标x = 0, 轻夸克坐标 $x = t_i$ (i = 1, 2)

▶ 底重子按量子数分类(双夸克 $j^p = 0^+ n j^p = 1^+$):

● 底重子光锥分布振幅

□ 轻双夸克自旋*j* = 0的底重子光锥分布振幅

▶ 定义式:

$$\begin{aligned} \frac{1}{v_{+}} \langle 0| \big[q_{1}(t_{1}) \mathcal{C}\gamma_{5} \not n q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=0} \rangle &= \psi^{n}(t_{1}, t_{2}) f_{H_{b}^{j=0}}^{(1)} u_{\gamma}, \\ \frac{i}{2} \langle 0| \big[q_{1}(t_{1}) \mathcal{C}\gamma_{5} \sigma_{\bar{n}n} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=0} \rangle \\ &= \psi^{n\bar{n}}(t_{1}, t_{2}) f_{H_{b}^{j=0}}^{(2)} u_{\gamma}, \\ \langle 0| \big[q_{1}(t_{1}) \mathcal{C}\gamma_{5} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=0} \rangle &= \psi^{1}(t_{1}, t_{2}) f_{H_{b}^{j=0}}^{(2)} u_{\gamma}, \\ v_{+} \langle 0| \big[q_{1}(t_{1}) \mathcal{C}\gamma_{5} \not n q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=0} \rangle &= \psi^{\bar{n}}(t_{1}, t_{2}) f_{H_{b}^{j=0}}^{(1)} u_{\gamma}, \end{aligned}$$

▶ 紧致形式:

 $\epsilon^{ijk} \langle 0 | u^i_{\alpha}(t_1 n) d^j_{\beta}(t_2 n) h^k_{v\gamma}(0) | \Lambda_b(v) \rangle$

$$= \frac{1}{8} f_{\Lambda_b}^{(2)} \Psi_2(t_1, t_2) (\not{\pi} \gamma_5 C)_{\alpha\beta} u_{\Lambda_b\gamma}(v)$$

+ $\frac{1}{4} f_{\Lambda_b}^{(1)} \Psi_3^s(t_1, t_2) (\gamma_5 C)_{\alpha\beta} u_{\Lambda_b\gamma}(v)$
- $\frac{1}{8} f_{\Lambda_b}^{(1)} \Psi_3^\sigma(t_1, t_2) (i\sigma_{\overline{n}n} \gamma_5 C)_{\alpha\beta} u_{\Lambda_b\gamma}(v)$
+ $\frac{1}{8} f_{\Lambda_b}^{(2)} \Psi_4(t_1, t_2) (\not{n} \gamma_5 C)_{\alpha\beta} u_{\Lambda_b\gamma}(v)$

• 底重子分布振幅: $\psi^{i}(t_{1},t_{2})$ 反映了底重子内两个轻夸克的能量分布

$$\begin{split} \psi(t_1, t_2) &= \int_0^\infty d\omega_1 \int_0^\infty d\omega_2 \, e^{-it_1\omega_1 - it_2\omega_2} \psi(\omega_1, \omega_2) \\ &= \int_0^\infty \omega d\omega \int_0^1 du \, e^{-i\omega(t_1u + t_2\overline{u})} \tilde{\psi}(\omega, u) \end{split}$$

Figure 2: QCD model for the leading-twist DA of the Λ_b baryon defined in Eq. (38) at the scale of 1 GeV (solid curve) and after the evolution to $\mu = 2.5$ GeV (dash-dotted curve) as a function of $\omega = \omega_1 + \omega_2$ for two values of the light quark momentum fraction u = 0.5 and u = 0.125. The result of a single-step evolution to $\mu = 2.5$ GeV, which includes the $\sim \mathcal{O}(\alpha_s)$ correction only, is shown by dashes for comparison.

Figure 3: The *u* dependence of the DA for fixed $\omega = 0.5$ GeV (near the peak in Figure 2) and $\omega = 1.0$ GeV (crossing over to the tail region). The curves are as explained in Fig. 2. Note that the effect of evolution to higher μ is to decrease the DA for any *u* in the former case and increase it in the latter.

,

● 分布振幅的参数化形式:

理论基础

$$\tilde{\psi}_{2}(\omega, u) = \omega^{2} u(1-u) \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{4}} \frac{C_{n}^{3/2}(2u-1)}{|C_{n}^{3/2}|^{2}} e^{-\omega/\epsilon_{n}}$$
$$\tilde{\psi}_{3}(\omega, u) = \frac{\omega}{2} \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{3}} \frac{C_{n}^{1/2}(2u-1)}{|C_{n}^{1/2}|^{2}} e^{-\omega/\epsilon_{n}},$$
$$\tilde{\psi}_{4}(\omega, u) = \sum_{n=0}^{2} \frac{a_{n}}{\epsilon_{n}^{2}} \frac{C_{n}^{1/2}(2n-1)}{|C_{n}^{1/2}|^{2}} e^{-\omega/\epsilon_{n}}$$

上述底重子分布振幅参数化成了用Gegenbaur矩和非微扰参数表示的形式。 □非微扰参数*ϵ_n、a_n*可以通过QCD求和规则确定,这些参数的误差也是将分布 振幅用于强子过程中的重要误差来源。

$$\begin{split} & \frac{\bar{v}^{\mu}}{v_{+}} \langle 0| \big[q_{1}(t_{1}) \mathcal{C} \not{n} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=1} \rangle \\ &= \frac{1}{\sqrt{3}} \psi_{\parallel}^{n}(t_{1}, t_{2}) f_{H_{b}^{j=1}}^{(1)} \varepsilon_{\parallel}^{\mu} u_{\gamma}, \\ & \frac{i \bar{v}^{\mu}}{2} \langle 0| \big[q_{1}(t_{1}) \mathcal{C} \sigma_{\bar{n}n} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=1} \rangle \\ &= \frac{1}{\sqrt{3}} \psi_{\parallel}^{n\bar{n}}(t_{1}, t_{2}) f_{H_{b}^{j=1}}^{(2)} \varepsilon_{\parallel}^{\mu} u_{\gamma}, \\ & \bar{v}^{\mu} \langle 0| \big[q_{1}(t_{1}) \mathcal{C} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=1} \rangle \\ &= \frac{1}{\sqrt{3}} \psi_{\parallel}^{1}(t_{1}, t_{2}) f_{H_{b}^{j=1}}^{(2)} \varepsilon_{\parallel}^{\mu} u_{\gamma}, \\ & -v_{+} \bar{v}^{\mu} \langle 0| \big[q_{1}(t_{1}) \mathcal{C} \not{n} q_{2}(t_{2}) \big] \mathcal{Q}_{\gamma} \big| H_{b}^{j=1} \\ &= \frac{1}{\sqrt{3}} \psi_{\parallel}^{\bar{n}}(t_{1}, t_{2}) f_{H_{b}^{j=1}}^{(1)} \varepsilon_{\parallel}^{\mu} u_{\gamma}, \end{split}$$

▶ 紧致形式

$$\begin{split} \langle 0|q_{1}(t_{1}n)\mathcal{C}\Gamma q_{2}(t_{2}n)Q_{\gamma}|H_{b}^{j=1}\rangle \\ &= \frac{1}{4\sqrt{3}}\mathrm{Tr}\bigg[\Gamma.\bigg(f_{H_{b}^{j=1}}^{(2)}\frac{i}{2}\bigg(v_{+}\sigma_{\bar{n}\varepsilon_{\perp}}\psi_{\perp}^{n}(t_{1},t_{2}) \\ &+ e\sigma_{n\bar{n}}\psi_{\parallel}^{n\bar{n}}(t_{1},t_{2}) + \frac{1}{v_{+}}\sigma_{n\varepsilon_{\perp}}\psi_{\perp}^{\bar{n}}(t_{1},t_{2})\bigg) \\ &+ ef_{H_{b}^{j=1}}^{(2)}\psi_{\parallel}^{1}(t_{1},t_{2}) + \frac{i}{2}f_{H_{b}^{j=1}}^{(1)}\gamma_{5}\gamma_{\alpha}\epsilon^{\alpha\varepsilon_{\perp}n\bar{n}}\psi_{\perp}^{n\bar{n}}(t_{1},t_{2}) \\ &+ f_{H_{b}^{j=1}}^{(1)}\bigg(\frac{e\,v_{+}}{2}\,\bar{n}\psi_{\parallel}^{n}(t_{1},t_{2}) + \not{\varepsilon_{\perp}}\psi_{\perp}^{1}(t_{1},t_{2}) \\ &- \frac{e}{2v_{+}}\,\vec{n}\psi_{\parallel}^{\bar{n}}(t_{1},t_{2})\bigg)\bigg)\bigg]u_{\gamma}, \end{split}$$

三、粲重子半轻衰变的光锥求和规则

1. $\Xi_c \rightarrow \Xi \ell \nu_\ell$ 半轻衰变

2. $Ω_c → Ξ ℓ ν_ℓ$ 半轻衰变

1. $\Xi_c \rightarrow \Xi \ell^+ \nu_\ell$ 半轻衰变

●实验背景:

ALICE: PRL127.272001(2021)(*pp*) $\Gamma(\Xi_c^0 \to \Xi^- e^+ \nu_e) / \Gamma(\Xi_c^0 \to \Xi^- \pi^+)$ = 1.38 ± 0.14_(stat) ± 0.22_(syst); → $Br(\Xi_c^0 \to \Xi^- e^+ \nu_e) \approx 2.48\%$

ARGUS: PLB 303 (1993) 368 (ARGUS) $\frac{Br(\Xi_c^0 \to \Xi^- e^+ \nu_e)}{Br(\Xi_c^0 \to \Xi^- \pi^+)} = 0.96 \pm 0.43 \pm 0.18;$ Belle:PRL127.121803(2021)(e^+e^-) $Br(\Xi_c^0 \to \Xi^-e^+\nu_e)$ = (1.31 ± 0.04 ± 0.07 ± 0.38)%; $Br(\Xi_c^0 \to \Xi^-\mu^+\nu_\mu)$ = (1.27 ± 0.06 ± 0.10 ± 0.37)%_☉

CLEO: PRL 74. 3113 (1995) $\frac{Br(\Xi_c^0 \to \Xi^- e^+ \nu_e)}{Br(\Xi_c^0 \to \Xi^- \pi^+)} = 3.1 \pm 1.0^{+0.3}_{-0.5};$

LQCD: CPC 46. 011002 (2022) $Br(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 2.38(0.30)_{stat}(0.32)_{syst}\%;$ $Br(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) = 2.29(0.29)_{stat.}(0.31)_{syst.}\%;$ $Br(\Xi_c^+ \to \Xi^0 e^+ \nu_e) = 7.18(0.90)_{stat.}(0.98)_{syst.}\%;$ $Br(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu) = 6.91(0.87)_{stat.}(0.93)_{syst.}\%.$ ● $c \rightarrow s\ell^+\nu_\ell$ 半轻衰变的光锥求和规则分析过程:

□ 形状因子:

$$\begin{split} \langle \Xi_{c}^{(*)}(P')|j_{\nu}|\Xi(p)\rangle &= \bar{u}_{\Xi_{c}^{(*)}}(P')\{f_{1}^{(*)}(q^{2})\gamma_{\nu} + i\frac{f_{2}^{(*)}(q^{2})}{M_{\Xi_{c}^{(*)}}}\sigma_{\nu\mu}q^{\mu} + \frac{f_{3}^{(*)}(q^{2})}{M_{\Xi_{c}^{(*)}}}q_{\nu} \\ &- [g_{1}^{(*)}(q^{2})\gamma_{\nu} + i\frac{g_{2}^{(*)}(q^{2})}{M_{\Xi_{c}^{(*)}}}\sigma_{\nu\mu}q^{\mu} + \frac{g_{3}^{(*)}(q^{2})}{M_{\Xi_{c}^{(*)}}}q_{\nu}]\gamma_{5}\}u_{\Xi}(p), \end{split}$$

上面带星号的量为对应的自旋-宇称量子数为 $J^P = \frac{1}{2}$ 的 E_c^* 重子的对应量。这些量的引入是因为在求和规则中,具有负宇称的内插重子态也会产生影响。

● 计算过程:

➤ QCD求和规则关联函数:

$$\Pi_{\nu}(p_{1}^{2}, p_{2}^{2}, q^{2}) = i^{2} \int d^{4}x \, d^{4}y \, e^{-ip_{1} \cdot x + ip_{2} \cdot y} \left\langle 0 \left| T \{ J_{\Xi}(y) j_{\nu}(0) \overline{J}_{\Xi_{c}}(x) \} \right| 0 \right\rangle$$

▶ 光锥求和规则关联函数:

$$T_{\nu}(p,q) = i \int d^4x \, e^{iq \cdot x} \langle 0 \left| T \left\{ j_{\Xi_c}(0) j_{\nu}(x) \right\} \right| \Xi(p) \rangle$$

口 Ξ_c 内插流: $j_{\Xi_c}(x) = \epsilon_{ijk} [s^{iT}(x)C\gamma_{\mu}c^{j}(x)]\gamma_5\gamma^{\mu}q^{k}(x)$

口 弱衰变V - A流: $j_{\nu}(x) = \bar{c}(x)\gamma_{\nu}(1 - \gamma_5)s(x)$

$$\int d^4 P' \sum_i \left| \Xi_c^{(*)i}(P') \right\rangle \left\langle \Xi_c^{(*)i}(P') \right| = 1$$

$$T_{\nu}(p,q) = \frac{\langle 0|j_{\Xi_{c}}|\Xi_{c}(P')\rangle\langle\Xi_{c}(P')|j_{\nu}|\Xi(p)\rangle}{M_{\Xi_{c}}^{2} - P'^{2}} + \frac{\langle 0|j_{\Xi_{c}}|\Xi_{c}^{*}(P')\rangle\langle\Xi_{c}^{*}(P')|j_{\nu}|\Xi(p)\rangle}{M_{\Xi_{c}}^{2} - P'^{2}} \dots$$

 $\overline{A}_{\Xi_{c}}^{2} - P'^{2}$
 $\overline{A}_{\Xi_{c}}^{2} - P'^{2}$

$$\langle 0 | j_{\Xi_c^*} | \Xi_c^*(P') \rangle = f_{\Xi_c^*} \gamma_5 u_{\Xi_c^*}(P')_\circ$$

□参数化为包含形状因子和衰变常数信息的形式:

$$T_{\nu}(P',q^{2}) = \frac{f_{\Xi_{c}}}{M_{\Xi_{c}^{(*)}}^{2} - P'^{2}} \prod' (F_{i}(q^{2}))\Gamma_{\nu} + \cdots$$

形状因子的函数

$$S(-x) = i \int d^4x \frac{e^{ik \cdot x}}{\gamma^{\mu} k_{\mu} - m_{\alpha}}$$

□将Ξ_c重子流和c夸克弱衰变流代入关联函数,得:

$$T_{\nu}(p,q) = -i \int d^4x e^{iq \cdot x} [C\gamma_{\mu}S(-x)\gamma_{\nu}(1-\gamma_5)]_{\alpha\tau}(\gamma_5\gamma^{\mu})_{\sigma\gamma} \times \langle 0|\epsilon^{ijk}s^i_{\alpha}(0)s^j_{\tau}(x)u^k_{\gamma}(0)|\Xi(p)\rangle.$$

$$4\langle 0 | \epsilon^{ijk} s^{i}_{\alpha}(a_{1}z) s^{j}_{\beta}(a_{2}z) q^{k}_{\gamma}(a_{3}z) | \Xi(P) \rangle$$
$$= \sum_{i} \mathcal{F}_{i} \Gamma^{\alpha\beta}_{1i}(\Gamma_{2i}\Xi)_{\gamma}, \qquad \longleftarrow \qquad \text{光锥波函数}$$

□QCD表示的12个Lorentz结构:

$$\Pi_{\gamma_{\nu}}, \quad \Pi_{q_{\nu}}, \quad \Pi_{\gamma_{\not q}}, \quad \Pi_{p_{\nu}}, \quad \Pi_{p_{\nu}\not q}, \quad \Pi_{q_{\nu}\not q}$$
$$\Pi_{\gamma_{\nu}\gamma_{5}}, \quad \Pi_{q_{\nu}\gamma_{5}}, \quad \Pi_{\gamma_{\not q}\gamma_{5}}, \quad \Pi_{p_{\nu}\gamma_{5}}, \quad \Pi_{p_{\nu}\not q\gamma_{5}}, \quad \Pi_{q_{\nu}\not q\gamma_{5}}$$

▶ 由强子-夸克对偶性,匹配关联函数的强子表示和QCD表示,可以通过求 解下面的线性方程组获得形状因子的解:

$$\begin{bmatrix} \Pi_{\gamma_{\nu}} \\ \Pi_{q_{\nu}} \\ \Pi_{q_{\nu}} \\ \Pi_{q_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{p_{\nu}} \\ \Pi_{q_{\nu}} \\ \eta \end{bmatrix} = \begin{bmatrix} 2a & 0 & 0 & -2b & 0 & 0 \\ a(M_{\Xi_{c}} - M_{\Xi}) & a\frac{M_{\Xi}^{2} - M_{\Xi_{c}}^{2}}{M_{\Xi_{c}}} & 0 & b(M_{\Xi} + M_{\Xi_{c}}) & b\frac{M_{\Xi}^{2} - M_{\Xi_{c}}^{2}}{M_{\Xi_{c}}^{*}} & 0 \\ 0 & -\frac{2a}{M_{\Xi_{c}}} & 0 & 0 & -\frac{2b}{M_{\Xi_{c}}^{*}} & 0 \\ a & -a\frac{M_{\Xi} + M_{\Xi_{c}}}{M_{\Xi_{c}}} & 0 & -b & -b\frac{M_{\Xi} - M_{\Xi_{c}}^{*}}{M_{\Xi_{c}}^{*}} & 0 \\ -2a & a\frac{M_{\Xi} + M_{\Xi_{c}}}{M_{\Xi_{c}}} & a\frac{M_{\Xi} + M_{\Xi_{c}}}{M_{\Xi_{c}}} & 2b & b\frac{M_{\Xi} - M_{\Xi_{c}}^{*}}{M_{\Xi_{c}}^{*}} & b\frac{M_{\Xi} - M_{\Xi_{c}}^{*}}{M_{\Xi_{c}}^{*}} \\ 0 & \frac{a}{M_{\Xi_{c}}} & -\frac{a}{M_{\Xi_{c}}} & 0 & \frac{b}{M_{\Xi_{c}}} & -\frac{b}{M_{\Xi_{c}}} \end{bmatrix} \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \\ f_{1}^{*} \\ f_{2}^{*} \\ f_{3}^{*} \end{bmatrix}$$

$$\Pi_{\Gamma} \to \Pi_{\Gamma\gamma_{5}}, \quad f_{i}^{(*)} \to g_{i}^{(*)} \qquad a = f_{\Xi_{c}} e^{-\frac{M_{\Xi_{c}}^{2}}{M_{B}^{2}}}, \quad b = f_{\Xi_{c}^{*}} e^{-\frac{M_{\Xi_{c}}^{2}}{M_{B}^{2}}}$$

➢ Borel变换压低QCD表示高扭度贡献

$$\begin{split} \int dx \frac{\rho(x)}{(q-xP)^2 - m^2} &= -\int_0^1 \frac{dx}{x} \frac{\rho(x)}{(s-P'^2)} \to -\int_{x_0}^1 \frac{dx}{x} \rho(x) e^{-s/M_B^2}, \\ \int dx \frac{\rho(x)}{[(q-xP)^2 - m^2]^2} &= \int_0^1 \frac{dx}{x^2} \frac{\rho(x)}{(s-P'^2)^2} \to \frac{1}{M_B^2} \int_{x_0}^1 \frac{dx}{x^2} \rho(x) e^{-s/M_B^2} \\ &\quad + \frac{\rho(x_0) e^{-s_0/M_B^2}}{x_0^2 M^2 - q^2 + m^2}, \\ \int dx \frac{\rho(x)}{[(q-xP)^2 - m^2]^3} &= -\int_0^1 \frac{dx}{x^3} \frac{\rho(x)}{(s-P'^2)^3} \to -\frac{1}{2M_B^4} \int_{x_0}^1 \frac{dx}{x^3} \rho(x) e^{-s/M_B^2} \\ &\quad - \frac{1}{2} \frac{\rho(x_0) e^{-s_0/M_B^2}}{x_0 M_B^2 (x_0^2 M^2 - q^2 + m^2)} \\ &\quad + \frac{1}{2} \frac{x_0^2}{x_0^2 M^2 + q^2 + m^2} [\frac{d}{dx} \frac{\rho(x_0)}{x_0 (x_0^2 M^2 - q^2 + m^2)}] e^{-s_0/M_B^2} \end{split}$$

➤ 在强子层次,通过下面的Borel变换变换强子表示一侧的lorentz结构系数:

$$\hat{B}_{M^2}\left\{\frac{1}{M_H^2 - p^2}\right\} = e^{-\frac{M_H^2}{M^2}}$$

▶QCD表示一侧的Lorentz结构系数变换为了:

$$\begin{split} \Pi_{\Gamma} &= -\int_{\alpha_{20}}^{1} \frac{d\alpha_{2}}{\alpha_{2}} \rho_{\Gamma}^{1}(\alpha_{2}) e^{-s/M_{B}^{2}} \\ &+ \frac{1}{M_{B}^{2}} \int_{\alpha_{20}}^{1} \frac{d\alpha_{2}}{\alpha_{2}^{2}} \rho_{\Gamma}^{2}(\alpha_{2},q^{2}) e^{-s/M_{B}^{2}} + \frac{\rho_{\Gamma}^{2}(\alpha_{20},q^{2}) e^{-s_{0}/M_{B}^{2}}}{\alpha_{20}^{2}M_{\Xi}^{2} - q^{2} + m_{c}^{2}} \\ &- \frac{1}{2M_{B}^{4}} \int_{\alpha_{20}}^{1} \frac{d\alpha_{2}}{\alpha_{2}^{3}} \rho_{\Gamma}^{2}(\alpha_{2},q^{2}) e^{-s/M_{B}^{2}} - \frac{1}{2} \frac{\rho_{\Gamma}^{3}(\alpha_{20},q^{2}) e^{-s_{0}/M_{B}^{2}}}{\alpha_{20}M_{B}^{2}(\alpha_{20}^{2}M_{\Xi}^{2} - q^{2} + m_{c}^{2})} \\ &+ \frac{1}{2} \frac{\alpha_{20}^{2}}{\alpha_{20}^{2}M_{\Xi}^{2} - q^{2} + m_{c}^{2}} [\frac{d}{d\alpha_{20}} \frac{\rho_{\Gamma}^{3}(\alpha_{20},q^{2})}{\alpha_{20}(\alpha_{20}^{2}M_{\Xi}^{2} - q^{2} + m_{c}^{2}}] e^{-s_{0}/M_{B}^{2}}. \end{split}$$

● 经过Borel变换后的形状因子的表达式为:

$$\begin{split} f_{1}(q^{2}) &= \frac{e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ (M_{\Xi} + M_{\Xi_{c}}) [(M_{\Xi} - M_{\Xi_{c}})\Pi_{p\nu q} + \Pi_{p\nu}] \\ &+ 2(M_{\Xi_{c}^{*}} - M_{\Xi_{c}})\Pi_{\gamma\nu q} + 2\Pi_{\gamma\nu} \}, \\ f_{2}(q^{2}) &= \frac{M_{\Xi_{c}}e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ M_{\Xi}\Pi_{p\nu q} - M_{\Xi_{c}^{*}}\Pi_{p\nu q} + \Pi_{p\nu} - 2\Pi_{\gamma\nu q} \}, \\ f_{3}(q^{2}) &= \frac{M_{\Xi_{c}}e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ (M_{\Xi} - M_{\Xi_{c}^{*}})(\Pi_{p\nu q} + 2\Pi_{q\nu q}) + \Pi_{p\nu} \\ &+ 2(\Pi_{\gamma\nu q} + \Pi_{q\nu}) \}, \\ g_{1}(q^{2}) &= \frac{e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ (M_{\Xi} - M_{\Xi_{c}^{*}})[(M_{\Xi} + M_{\Xi_{c}^{*}})\Pi_{p\nu q\gamma_{5}} - \Pi_{p\nu\gamma_{5}}] \\ &+ 2(M_{\Xi_{c}} - M_{\Xi_{c}^{*}})\Pi_{\gamma\nu q\gamma_{5}} - 2\Pi_{\gamma\nu\gamma_{5}} \}, \\ g_{2}(q^{2}) &= \frac{M_{\Xi_{c}}}e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ (M_{\Xi} + M_{\Xi_{c}^{*}})\Pi_{p\nu q\gamma_{5}} - \Pi_{p\nu\gamma_{5}} \}, \\ g_{3}(q^{2}) &= \frac{M_{\Xi_{c}}e^{M_{\Xi_{c}}^{2}/M_{B}^{2}}}{2f_{\Xi_{c}}(M_{\Xi_{c}} + M_{\Xi_{c}^{*}})} \{ (M_{\Xi} + M_{\Xi_{c}^{*}})(2\Pi_{q\nu q\gamma_{5}} + \Pi_{p\nu q\gamma_{5}}) \\ &- 2\Pi_{\gamma\nu q\gamma_{5}} - 2\Pi_{q\nu\gamma_{5}} - \Pi_{p\nu\gamma_{5}} \}. \end{split}$$

□不同扭度的光锥波函数:包含了强子内部分子的分布(*x_i*)和强子衰变 (衰变常数)信息。

Twist-3	Twist-4	Twist-5	Twist-6
	$V_2(x_i) = 24x_1x_2\phi_4^0,$	$V_4(x_i) = 3(x_1 - x_3)\psi_5^0,$	
	$A_2(x_i) = 0,$	$A_4(x_i) = 3(x_1 - x_2)\psi_5^0,$	
$V_1(x_i) = 120x_1x_2x_3\phi_3^0,$	$V_3(x_i) = 12x_3(x_1 - x_2)\psi_4^0,$	$V_5(x_i) = 6x_3\phi_5^0,$	$V_6(x_i) = 2\phi_6^0,$
$A_1(x_i) = 0,$	$A_3(x_i) = -12x_3(x_1 - x_2)\psi_4^0,$	$A_5(x_i) = 0,$	$A_6(x_i) = 0,$
$T_1(x_i) = 120x_1x_2x_3\phi_3^{\prime 0},$	$T_2(x_i) = 24x_1x_2\phi_4^{\prime 0},$	$T_4(x_i) = -\frac{3}{2}(x_1 + x_2)(\xi_5^{\prime 0} + \xi_5^0),$	$T_6(x_i) = 2\phi_6^{\prime 0},$
	$T_3(x_i) = 6x_3(1 - x_3)(\xi_4^0 + \xi_4'^0),$	$T_5(x_i) = 6x_3\phi_5'^0,$	
	$T_7(x_i) = 6x_3(1 - x_3)(\xi_4^{\prime 0} - \xi_4^0).$	$T_8(x_i) = \frac{3}{2}(x_1 + x_2)(\xi_5^{\prime 0} - \xi_5^0).$	

□光锥波函数中的参数与衰变常数的关系:

$$\begin{split} \phi_3^0 &= \phi_6^0 = f_{\Xi}, \quad \psi_4^0 = \psi_5^0 = \frac{1}{2}(f_{\Xi} - \lambda_1), \quad \phi_4^0 = \phi_5^0 = \frac{1}{2}(f_{\Xi} + \lambda_1), \\ \phi_3^{'0} &= \phi_6^{'0} = -\xi_5^0 = \frac{1}{6}(4\lambda_3 - \lambda_2), \quad \phi_4^{'0} = \xi_4^0 = \frac{1}{6}(8\lambda_3 - 3\lambda_2), \\ \phi_5^{'0} &= -\xi_5^{'0} = \frac{1}{6}\lambda_2, \quad \xi_4^{'0} = \frac{1}{6}(12\lambda_3 - 5\lambda_2) \end{split}$$

● 形状因子数值结果

□ 在光锥求和规则区域图像

- 光锥求和规则在整个物理区间上计算形状因子 关
 - 形状因子拟合方案
 - ▶ 双极点拟合公式

$$f_i(q^2) = \frac{f_i(0)}{a(q^2/M_H^2)^2 + b(q^2/M_H^2) + 1}; \qquad f_i(q^2) = \frac{f_i(0)}{1 - q^2/m_{fit}^2 + \delta(q^2/m_{fit}^2)}$$

▶ "Z-展开" 拟合 $f_i(q^2)/g_i(q^2) = \frac{1}{1-q^2/M_{D_s}^2} [a_0 + a_1 z(q^2, t_0) + a_2 z(q^2, t_0)^2]$ $t_0 = (M_{\Xi_c} + M_{\Xi})(\sqrt{M_{\Xi_c}} - \sqrt{M_{\Xi}})^2, \qquad z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$ $t_+ = (M_{\Xi_c} + M_{\Xi}).$

□ "z-展开" 拟合中的拟合参数

$f_i(q^2)$	$f_i(0)$	a_0	a_1	a_2	$g_i(q^2)$	$g_i(0)$	a_0	a_1	a_2
$f_1(q^2)$	1.091	1.346	-4.048	17.924	$g_1(q^2)$	-0.002	-0.211	3.031	-9.870
$f_2(q^2)$	-0.279	-0.663	5.330	-16.315	$g_2(q^2)$	0.051	0.158	-2.320	12.607
$f_3(q^2)$	-0.179	-0.724	8.149	-28.309	$g_3(q^2)$	-0.798	-1.127	2.731	4.386

● 整个物理区间上的形状因子

● 唯象结果

▶ 螺旋度微分衰变宽度
$$\Gamma = \int_{m_l^2}^{\left(M_{\Xi_c} - M_{\Xi}\right)^2} dq^2 \frac{d\Gamma}{dq^2}$$

$$\frac{d\Gamma}{dq^2} = \frac{d\Gamma_L}{dq^2} + \frac{d\Gamma_T}{dq^2}$$

$$\begin{aligned} \frac{d\Gamma_L}{dq^2} &= \frac{G_F^2 |V_{cs}|^2 q^2 p (1 - \hat{m}_l^2)^2}{384 \pi^3 M_{\Xi_c}^2} [(2 + \hat{m}_l^2)(|H_{\frac{1}{2},0}|^2) & \qquad \frac{d\Gamma_T}{dq^2} = \frac{G_F^2 |V_{cs}|^2 q^2 p (1 - \hat{m}_l^2)^2 (2 + \hat{m}_l^2)}{384 \pi^3 M_{\Xi_c}^2} (|H_{\frac{1}{2},1}|^2 + |H_{-\frac{1}{2},1}|^2)], \\ &+ |H_{-\frac{1}{2},0}|^2) + 3\hat{m}_l^2 (|H_{\frac{1}{2},t}|^2 + |H_{-\frac{1}{2},t}|^2)], \\ \end{aligned}$$

 $|V_{cs}| = 0.987 \pm 0.011$

□螺旋度振幅中的变量:形状因子

□ 微分衰变宽度在物理区间上的行为

15

10

5

0.0

0.2

0.4

0.6

 q^2 (GeV²)

0.8

 $d\Gamma/dq^{2} (\times 10^{-14} \text{ GeV}^{-1})$

• $\Xi_c \to \Xi \ell^+ \nu_\ell$ 绝对分支比

工作	$\mathcal{B}r(\Xi_c^0 o \Xi^- e^+ u_e)$	${\cal B}r(\Xi^0_c o\Xi^-\mu^+ u_\mu)$	$\mathcal{B}r(\Xi_c^+ o \Xi^0 e^+ \nu_e)$	$\mathcal{B}r(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu)$
实验	$(2.48 \pm 0.72)^{[60]},\ (1.31 \pm 0.38)^{[61]}$	$(1.27 \pm 0.37)^{[61]}$	-	-
本文	$2.81\substack{+0.17 \\ -0.15}$	$2.72_{-0.15}^{+0.17}$	$8.43_{-0.45}^{+0.52}$	$8.16_{-0.43}^{+0.50}$
Lattice	$(2.38 \pm 0.32)^{[118]}$	$(2.29\pm0.31)^{[118]}$	$(7.18 \pm 0.98)^{[118]}$	$(6.91 \pm 0.93)^{[118]}$
LCSR	$2.03^{[101]},$ $(1.43^{+0.52}_{-0.57})$ ^[119] , $(7.26 \pm 2.54)^{[120]},$ $(1.85 \pm 0.56)^{[121]}$	$(7.15 \pm 2.50)^{[120]},$ $(1.79 \pm 0.54)^{[121]}$	$\begin{aligned} & 6.05^{[101]}, \\ & (4.27^{+1.55}_{-1.72})^{[119]}, \\ & (5.51 \pm 1.65)^{[121]} \end{aligned}$	$(5.53 \pm 1.61)^{[121]}$
SU(3)	$(4.87 \pm 1.74)^{[122]},$ $(3.0 \pm 0.3,$ $2.4 \pm 0.3,$ $2.7 \pm 0.2)^{[123]},$ $(4.10 \pm 0.46)^{[137]}$	$(3.98 \pm 0.57)^{[137]}$	$egin{aligned} (3.38^{+2.19}_{-2.26})^{[122]},\ (11.9\pm1.3,\ 9.8\pm1.1,\ 10.7\pm0.9)^{[123]} \end{aligned}$	-
LFQM	$1.35^{[124]},$ $(1.72 \pm 0.35)[126],$ $(3.49 \pm 0.95)^{[125]}$ $2.28^{[127]}$	$(3.34 \pm 0.94)^{[125]}$	$5.39^{[124]},$ $(5.20 \pm 1.02)^{[126]},$ $(11.3 \pm 3.35)^{[125]}$ $0.40^{[127]}$	-
KQM	2.38^{127}	2.311.27	9.40^{122}	9.11(12)
QCDSR	$(3.4 \pm 0.7)^{[120]}$	-	$(10.2 \pm 2.2)^{[120]}$	
PDG	$(1.8 \pm 1.2)^{[3]}$	-	$(7 \pm 4)^{13}$	-

● $\Xi_c \rightarrow \Xi \ell^+ \nu_\ell$ 中的轻子普适性

□光锥求和规则计算结果:

$$\frac{Br(\Xi_c^0 \to \Xi^- e^+ \nu_e)}{Br(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)} = 1.03;$$

$$\frac{Br(\Xi_c^+ \to \Xi^0 e^+ \nu_e)}{Br(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu)} = 1.03;$$

□ Belle结果: PRL127.121803(2021)

$$\frac{Br(\Xi_c^0 \to \Xi^- e^+ \nu_e)}{Br(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)} = 1.03 \pm 0.05 \pm 0.07$$

2. Ω_c 重子半轻衰变

- Ω_c 重子实验及理论背景
- **□** Ω_c⁰寿命的更新: PRL121.092003(2018) LHCb

 $\tau(\Omega_c^0) = (268 \pm 24 \pm 10 \pm 2) \times 10^{-15} \text{ s}$

□ 实验上已经建立起来的半轻衰变道: PRL 89.171803 (2002) CLEO

 $\Omega_c^0 \to \Omega^- e^+ \nu_e$

□ 理论上对 $\Omega_c^0 \rightarrow \Xi$ 衰变过程的研究:非相对论夸克模型,重夸克有效理论,

光前夸克模型, MIT袋模型。

● 计算过程

类似于 $Ξ_c \rightarrow Ξ\ell \nu_\ell$ 的计算过程,未考虑负宇称重子贡献。 □ $Ω_c$ 重子的内插流:

 $j_{\Omega_c(x)}(x) = \epsilon_{ijk} \left(s^{iT}(x) C \gamma_\mu s^j(x) \right) \gamma^\mu \gamma_5 c^k(x)$

□ *c* → *d* 弱衰变流:

 $j_{\nu}(x) = \bar{c}(x)\gamma_{\nu}(1-\gamma_5)d(x)$

▶ 关联函数:

定义光锥矢量 z^{ν} , $(z^{2} = 0)$; 乘在关联函数上, 可以在计算过程中忽略掉形状因子 $f_{3}(q^{2})$ 和 $g_{3}(q^{2})$ 贡献。 $z^{\nu}T_{\nu}(p,q) = iz^{\nu} \int d^{4}x \ e^{iq \cdot x} \langle 0|T\{j_{\Omega_{c}}(0)j_{\nu}(x)\}|\Xi(p) \rangle$ ➤抽取Lorentz结构
1、##

 $1、 # 和 \gamma_5、 # \gamma_5$

▶ 匹配关联函数的强子表示 和QCD表示,得到形状因子 f₁(q²)、f₂(q²)和g₁(q²)、 g₂(q²)的变化趋势:

▶形状因子的拟合采用双极点拟合公式:

$$f_i(q^2) = \frac{f_i(0)}{a(q^2/M_{\Omega_c}^2)^2 + b(q^2/M_{\Omega_c}^2) + 1}$$

□ 形状因子拟合参数

f_{i}	$f_i(0)$	а	b
f_1	0.66	1.28	-3.01
f_2	-0.76	1.58	-3.2
g_1	0.06	16.99	-6.9
g_2	-0.44	1.62	-2.13

□ 不同形状因子值的比较

$f_i(0)$	本文	NRQM [146]	HQET [147]	LFQM [124]	MIT bag ^[149]
$f_{1}(0)$	0.66 ± 0.02	-0.23	-0.34	0.653	0.34
$f_{2}(0)$	-0.76 ± 0.03	0.21	0.35	0.620	-
$g_1(0)$	0.06 ± 0.01	0.14	0.10	-0.182	-0.15
$g_2(0)$	-0.44 ± 0.01	-0.019	-0.020	0.002	-

$$\begin{split} \frac{d\Gamma}{dq^2} &= \frac{G_F^2 |V_{cd}|^2}{192\pi^3 M_{\Omega_c}^5} q^2 \sqrt{q_+^2 q_-^2} \{-6f_1 f_2 M_{\Omega_c} m_+ q_-^2 \\ &+ 6g_1 g_2 M_{\Omega_c} m_- q_+^2 + f_1^2 M_{\Omega_c}^2 (\frac{m_+^2 m_-^2}{q^2} + m_-^2 \\ &- 2(q^2 + 2M_{\Omega_c} M_{\Xi})) + g_1^2 M_{\Omega_c}^2 (\frac{m_+^2 m_-^2}{q^2} + m_+^2 \\ &- 2(q^2 - 2m_{\Omega_c} M_{\Xi})) - f_2^2 [-2m_+^2 m_-^2 + m_+^2 q^2 \\ &+ q^2 (q^2 + 4M_{\Omega_c} M_{\Xi})] - g_2^2 [-2m_+^2 m_-^2 + m_-^2 q^2 \\ &+ q^2 (q^2 - 4M_{\Omega_c} M_{\Xi})] \}. \end{split}$$

$$|V_{cd}| = 0.221 \pm 0.004$$

● 微分衰变、分支比和光前夸克模型的比较

衰变道	$\Gamma/{ m GeV}$	$\mathcal{B}r$	文献
$\Omega_c^0 o \Xi^- l^+ \bar{\nu}_l$	$(8.15 \pm 0.47) \times 10^{-15}$	$(3.32\pm0.19) imes10^{-3}$	本文
$\Omega_c^0\to \Xi^- e^+\nu_e$	2.08×10^{-15}	$2.18 imes 10^{-4}$	[124]

[124] 光前夸克模型

光锥求和规则对衰变宽度的计算结果在数量级上与光前夸克模型一致;
 分支比的结果因更新了Ω⁰_c寿命,使得比光前夸克模型的预言值提高了
 一个数量级。

□ 为实验上探测该衰变提供了预言。

四、底重子半轻衰变

1. $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell$ 半轻衰变

2. $Ω_b → Ξ ℓ \bar{\nu}_{\ell}$ 半轻衰变

1. $Λ_b → Λ_c$ 半轻衰变

● 实验背景:

LHCb: PRL 128. 191803 (2022)

$$Br(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}) = (1.50 \pm 0.16_{stat} \pm 0.25_{syst} \pm 0.23)\%,$$

$$R(\Lambda_{c}^{+}) = \frac{Br(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \tau^{-} \overline{\nu}_{\tau})}{Br(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \mu^{-} \overline{\nu}_{\mu})} = (0.242 \pm 0.026 \pm 0.040 \pm 0.050);$$

DELPHI: PLB 585 (2004) 63

$$Br(\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell) = 5.0\% \ (\ell = e, \ \mu);$$

CDF: PRD 79 (2009) 032001

$$\frac{Br(\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell)}{Br(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 16.6_{\circ}$$

▶ 关联函数:

$$T_{\mu}(p,q) = i \int d^4x e^{ip \cdot x} \langle 0 | \mathcal{T}\{j_{\Lambda_c}(x), j_{\mu}(0)\} | \Lambda_b(p+q) \rangle$$

□ Λ_c 内插重子流 j_{Λ_c} 有两种形式:

$$j_{\Lambda_c}^1(x) = \epsilon_{ijk} [u^{iT}(x)C\gamma_5 d^j(x)]c^k(x),$$

$$j_{\Lambda_c}^2(x) = \epsilon_{ijk} [u^{iT}(x) C \gamma_5 \gamma_\nu d^j(x)] \gamma^\nu c^k(x).$$

□ $b \rightarrow c$ 弱衰变流 $j_{\mu}^{V-A}(x)$ 为:

$$j_{\mu}(0) = \overline{c}(0)\gamma_{\mu}(1-\gamma_5)b(0)$$

类似于 Ξ_c 半轻衰变的形式,假设 Λ_b 是在壳的, Λ_b 重子的四动 量 $p + q = M_{\Lambda_b} v_{\circ}$

➤ QCD表示

$$T_{\mu}(p,q) = i \int d^4 x e^{ip \cdot x} \langle 0 | \mathcal{T}\{j_{\Lambda_c}(x), j_{\mu}(0)\} | \Lambda_b(p+q)$$

= $i \int d^4 x e^{ip \cdot x} (C\gamma_5)_{\alpha\beta} S_{\sigma\tau}(x) [\gamma_{\mu}(1-\gamma_5)]_{\tau\gamma} \langle 0 | \epsilon_{ijk} u^{iT}_{\alpha}(x) d^j_{\beta}(x) b^k_{\gamma}(0) | \Lambda_b(p+q) \rangle$

$$\begin{split} \epsilon^{ijk} \langle 0|u^i_{\alpha}(t_1n)d^j_{\beta}(t_2n)h^k_{v\gamma}(0)|\Lambda_b(v)\rangle &= \frac{1}{8}f^{(2)}_{\Lambda_b}\Psi_2(t_1,t_2)(\overline{n}\gamma_5C)_{\alpha\beta}u_{\Lambda_b\gamma}(v) \\ &\quad + \frac{1}{4}f^{(1)}_{\Lambda_b}\Psi^s_3(t_1,t_2)(\gamma_5C)_{\alpha\beta}u_{\Lambda_b\gamma}(v) \\ &\quad - \frac{1}{8}f^{(1)}_{\Lambda_b}\Psi^\sigma_3(t_1,t_2)(i\sigma_{\overline{n}n}\gamma_5C)_{\alpha\beta}u_{\Lambda_b\gamma}(v) \\ &\quad + \frac{1}{8}f^{(2)}_{\Lambda_b}\Psi_4(t_1,t_2)(n\gamma_5C)_{\alpha\beta}u_{\Lambda_b\gamma}(v), \end{split}$$

$□ Λ_b$ 重子分布振幅:

$$\Psi_i(t_1, t_2) = \int_0^\infty \omega d\omega \int_0^1 du e^{-i\omega(t_1u + t_2\overline{u})} \tilde{\psi}_i(\omega, u)$$

其中, $\overline{u} = 1 - u$, $t_i n = x_i$, 以及

$$\begin{split} \tilde{\psi}_{2}(\omega, u) &= \omega^{2} u(1-u) \left[\frac{1}{\epsilon_{0}^{4}} e^{-\omega/\epsilon_{0}} + a_{2} C_{2}^{3/2} (2u-1) \frac{1}{\epsilon_{1}^{4}} e^{-\omega/\epsilon_{1}} \right] \\ \tilde{\psi}_{3}^{s}(\omega, u) &= \frac{\omega}{2\epsilon_{3}^{3}} e^{-\omega/\epsilon_{3}}, \\ \tilde{\psi}_{3}^{\sigma}(\omega, u) &= \frac{\omega}{2\epsilon_{3}^{3}} (2u-1) e^{-\omega/\epsilon_{3}}, \\ \tilde{\psi}_{4}(\omega, u) &= 5 \mathcal{N}^{-1} \int_{\omega/2}^{s_{0}^{\Lambda_{b}}} ds e^{-s/\tau} (s-\omega/2)^{3}, \end{split}$$

口 Λ_c 重子内插流为 $j_{\Lambda_c}^1(x) = \epsilon_{ijk} [u^{iT}(x)C\gamma_5 d^j(x)]c^k(x)$ 时, 形状因子有以下 关系和形式:

$$f_1(q^2) = g_1(q^2) \text{ fn } f_2(q^2) = f_3(q^2) = g_2(q^2) = g_3(q^2)$$

$$f_1(q^2) = \int_0^1 du \int_0^{\sigma_0} d\sigma \frac{\sigma M_{\Lambda_b}^2 (m_c - \sigma M_{\Lambda_c} + M_{\Lambda_c^*})}{\overline{\sigma} (M_{\Lambda_c} + M_{\Lambda_c^*})} \psi_3^s(\sigma, \omega) e^{(M_{\Lambda_c}^2 - s)/M_B^2},$$

$$f_2(q^2) = -\int_0^1 du \int_0^{\sigma_0} d\sigma \frac{\sigma^2 M_{\Lambda_b}^3 \overline{\psi_3^s(\sigma, \omega)}}{\overline{\sigma} (M_{\Lambda_c} + M_{\Lambda_c^*})} e^{(M_{\Lambda_c}^2 - s)/M_B^2}.$$

 $\Box_{j_{\Lambda_c}}^1$ 型内插流,光锥求和规则范围内的形状因子图像:

 $\Box_{j_{\Lambda_c}}^1$ 型内插流,"*z*-展开"拟合后的形状因子图像:

口 Λ_c 重子内插流为 $j^2_{\Lambda_c}(x) = \epsilon_{ijk} [u^{iT}(x)C\gamma_5\gamma_\nu d^j(x)]\gamma^\nu c^k(x)$ 时, 形状因子有以 下关系和形式:

$$\begin{split} f_{1}(q^{2}) &= -\frac{M_{\Lambda_{b}}}{M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}}} \int_{0}^{1} du \int_{0}^{\sigma_{0}} \frac{d\sigma}{\overline{\sigma}} \{\sigma[M_{\Lambda_{c}}(M_{\Lambda_{c}^{*}} - M_{\Lambda_{c}} - m_{c}) + \overline{\sigma}M_{\Lambda_{b}}^{2} + q^{2}]\psi_{2}(\omega, u) + \\ &+ 2[\overline{\psi_{2}(\omega, u) - \overline{\psi_{4}(\omega, u)}}]\}e^{(M_{\Lambda_{c}}^{2} - s)/M_{B}^{2}} \\ &+ \frac{M_{\Lambda_{b}}}{(M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}})M_{B}^{2}} \int_{0}^{1} du \int_{0}^{\sigma_{0}} \frac{d\sigma}{\overline{\sigma}^{2}}[(\sigma M_{\Lambda_{c}} - M_{\Lambda_{c}^{*}})m_{c} - \sigma(\overline{\sigma}M_{\Lambda_{b}}^{2} + q^{2}) + \overline{\sigma}M_{\Lambda_{c}}^{2}] \times \\ &\times [\overline{\psi_{2}(\omega, u) - \overline{\psi_{4}(\omega, u)}}]e^{(M_{\Lambda_{c}}^{2} - s)/M_{B}^{2}} \\ &+ \frac{M_{\Lambda_{b}}}{(M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}})} \int_{0}^{1} du \frac{\eta(\sigma_{0}, q^{2})}{\overline{\sigma}_{0}}[(\sigma_{0}M_{\Lambda_{c}} - M_{\Lambda_{c}^{*}})m_{c} - \sigma_{0}(\overline{\sigma}_{0}M_{\Lambda_{b}}^{2} + q^{2}) + \overline{\sigma}_{0}M_{\Lambda_{c}}^{2}] \times \\ &\times [\overline{\psi_{2}(\omega_{0}, u) - \overline{\psi_{4}(\omega_{0}, u)}}]e^{(M_{\Lambda_{c}}^{2} - s_{0})/M_{B}^{2}} \end{split}$$

$$\begin{split} f_{2}(q^{2}) &= -\frac{M_{\Lambda_{b}}^{2}}{M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}}} \int_{0}^{1} du \int_{0}^{\sigma_{0}} \frac{d\sigma}{\overline{\sigma}} \sigma(M_{\Lambda_{c}^{*}} - m_{c}) \overline{\psi_{2}(\omega, u)} e^{(M_{\Lambda_{c}}^{2} - s)/M_{B}^{2}} \\ &+ \frac{M_{\Lambda_{b}}^{2}}{(M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}})M_{B}^{2}} \int_{0}^{1} du \int_{0}^{\sigma_{0}} \frac{d\sigma}{\overline{\sigma}^{2}} \sigma M_{\Lambda_{b}}^{2} m_{c} [\overline{\psi_{2}(\omega, u) - \overline{\psi}_{4}(\omega, u)}] e(M_{\Lambda_{c}}^{2} - s)/M_{B}^{2} \\ &+ \frac{M_{\Lambda_{b}}^{2}}{M_{\Lambda_{c}} + M_{\Lambda_{c}^{*}}} \int_{0}^{1} du \frac{\eta(\sigma_{0}, q^{2})}{\overline{\sigma}_{0}^{2}} \sigma_{0} M_{\Lambda_{b}}^{2} m_{c} [\overline{\psi_{2}(\omega_{0}, u) - \overline{\psi}_{4}(\omega_{0}, u)}] e^{(M_{\Lambda_{c}}^{2} - s_{0})/M_{B}^{2}} \end{split}$$

$j^1_{\Lambda_c}$ 型[内插流有分	分布振	堛 $ ilde{\psi}_3^{\scriptscriptstyle S}=$
$\frac{\omega}{2\epsilon_3^3}e^{-\epsilon}$	<u>∞</u> ^ϵ ₃有贡献,	$\epsilon_3 =$	230 MeV

$\Lambda^0_b\to\Lambda^+_c\ell^-\overline\nu_\ell$	$\Gamma(\times 10^{-14} {\rm GeV})$	$\mathcal{B}r(\%)$
$\Lambda_b^0 \to \Lambda_c^+ e^- \overline{\nu}_e$	$2.60\substack{+0.52 \\ -0.54}$	$5.81^{+1.16}_{-1.21}$
$\Lambda^0_b\to\Lambda^+_c\mu^-\overline{\nu}_\mu$	$2.59\substack{+0.52\\-0.54}$	$5.79^{+1.15}_{-1.20}$
$\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_\tau$	$0.71\substack{+0.13\\-0.13}$	$1.59\substack{+0.28 \\ -0.29}$

$\Lambda^0_b\to\Lambda^+_c\ell^-\overline\nu_\ell$	$\Gamma(imes 10^{-14} { m GeV})$	$\mathcal{B}r(\%)$
$\Lambda_b^0\to\Lambda_c^+e^-\overline{\nu}_e$	(2.55 ± 0.44)	$5.71\substack{+0.97 \\ -0.99}$
$\Lambda_b^0 o \Lambda_c^+ \mu^- \overline{ u}_\mu$	$2.54\substack{+0.43 \\ -0.44}$	$5.69\substack{+0.97\\-0.99}$
$\Lambda^0_b\to\Lambda^+_c\tau^-\overline{\nu}_\tau$	$0.74\substack{+0.11 \\ -0.12}$	$1.66\substack{+0.25 \\ -0.27}$

 $6.73^{+2.88}_{-4.51}$

 $1.61\substack{+0.49 \\ -0.92}$

 $3.01^{+1.29}_{-2.02}$

 $0.72\substack{+0.22 \\ -0.41}$

• $j_{\Lambda_c}^2$ 型内插流,以下两个分布振幅有贡献: $\tilde{\psi}_2(\omega, u) = \omega^2 u(1-u) \left[\frac{1}{\epsilon_0^4} e^{-\frac{\omega}{\epsilon_0}} + a_2 C_2^{\frac{3}{2}} (2u-1) \frac{1}{\epsilon_1^4} e^{-\frac{\omega}{\epsilon_1}} \right],$ $\tilde{\psi}_4(\omega, u) = 5 \mathcal{N}^{-1} \int_{\omega/2}^{s_0^{\Lambda_b}} ds \ e^{-\frac{s}{\tau}} \left(s - \frac{\omega}{2} \right)^3, \ \epsilon_0 = 200^{+130}_{-60} \text{ MeV}_{\circ}$ $\overline{\frac{\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell \qquad \Gamma(\times 10^{-14} \text{GeV}) \qquad \mathcal{B}r(\%)}{\Lambda_b^0 \to \Lambda_c^+ e^- \overline{\nu}_e \qquad 3.03^{+1.30}_{-2.03} \qquad 6.76^{+2.90}_{-4.53}}}$

 $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu$

 $\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau}$

- ≻ 右侧列表为实验和其它理论方法 及我们结果的一个比较。
- ▶所得结果与最近的LHCb实验符 合,与其它理论在误差范围内也 符合。

- `` +±b	衰变宽度Γ	$(\times 10^{10} \ {\rm s}^{-1})$	分支比 $\mathcal{B}r(\times 10^{-2})$		
又瞅	$\Lambda^0_b\to\Lambda^+_c\ell^-\overline\nu_\ell$	$\Lambda^0_b\to\Lambda^+_c\tau^-\overline{\nu}_\tau$	$\Lambda^0_b\to\Lambda^+_c\ell^-\overline\nu_\ell$	$\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_\tau$	
LHCb ^[87]	-	-	-	1.50	
DELPHI ^[161]	-	-	5.0	-	
CDF ^[162]	-	-	7.3	2.0	
[164]	5.4	-	-	-	
[165]	3.52	1.12	6.04	1.87	
[166]	-	-	6.2, 6.3	-	
[167]	-	. 	5.59, 5.57	1.54	
[168]	5.0, 7.7	-	-	-	
[169]	-	-	6.47, 6.45	1.97	
[170]	3.61	1.2	-	-	
[174]	4.42,4.41	1.39	6.48, 6.46	2.03	
[175]	-	-	6.9	2.0	
[177]	4.11	-	6.04	-	
[180]	-	-	5.34	1.78	
[204]	5.9	-	-	-	
[147]	5.1	-		-	
[196]	5.39	-	-	-	
[205]	6.09	-		-	
[206]	5.01, 7.61, 2.73	-	-		
[207]	-	-	6.3	-	
[208]	5.82	-	-	-	
[209]	5.02, 5.64	-	6.2, 6.9	-	
[210]	4.50	-	6.61	-	
本文					
$j^1_{\Lambda_c}$	3.95, 3.94	1.08	5.81, 5.79	1.59	
$j^2_{\Lambda_c}$	4.60, 4.57	1.09	6.76, 6.73	1.61	

$R(\Lambda_c^+)$ 理论计算与实验测量值的比较:

文献	实验 [87]	[165]	[167]	[170]	[172, 213]	[174]	[175]
$\mathcal{R}(\Lambda_c^+)$	0.242	0.31	0.28	0.333	0.324	0.313	0.294
文献		[178]	[180]	[183]	[214]	$j^1_{\Lambda_c}$	$j^2_{\Lambda_c}$
$\mathcal{R}(\Lambda_c^+)$		0.29	0.33	0.317	0.332	0.274	0.239

考虑到误差时:

由 $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \bar{\nu}_\mu$ 的测 量误差引起

实验: $R(\Lambda_c^+) = 0.242 \pm 0.026 \pm 0.040 \pm 0.059;$

 $j_{\Lambda_c}^1$ 型内插流时: $R(\Lambda_c^+) = 0.274^{+0.009}_{-0.005}$

 $j_{\Lambda_c}^2$ 型内插流时: $R(\Lambda_c^+) = 0.239^{+0.070}_{-0.021}$

 $j_{\Lambda_c}^1$ 型内插流不考虑负宇称 Λ_c^* 贡献时: $R(\Lambda_c^+) = 0.292 \pm 0.005$

2. $Ω_b$ → Ξ半轻衰变

● 实验及理论背景:

□ *b* → *u*衰变的实验进展 LHCb PRL 126 (2021) 081804, ARGUS PLB 255 (1991) 297.

□ 理论上对底重子光锥分布振幅的发展 EPJC 73 (2013) 2302

▶ 关联函数:
$$T^{\nu}(P,q) = i \int d^{4}x \, e^{ip \cdot x} \langle 0|T\{j_{\Xi}(x)j^{\nu}(0)\}|\Omega_{b}(P_{\Omega}) \rangle$$

▶ 强子表示:
$$T^{\nu}(p,q^{2}) = \frac{\lambda_{1}M_{\Xi}}{M_{\Xi}^{2} - p^{2}} \{(M_{\Omega} - M_{\Xi})(\frac{M_{\Omega} + M_{\Xi}}{M_{\Omega}}f_{2}(q^{2}) - f_{1}(q^{2}))\gamma^{\nu} + 2M_{\Omega}f_{1}(q^{2})v^{\nu} + [\frac{M_{\Omega} + M_{\Xi}}{M_{\Omega}}(f_{2}(q^{2}) + f_{3}(q^{2})) - 2f_{1}(q^{2})]q^{\nu} - 2M_{\Omega}g_{1}(q^{2})v^{\nu}\gamma_{5} - [(M_{\Omega} + M_{\Xi})g_{1} - g_{2}\frac{M_{\Omega}^{2} - M_{\Xi}^{2} + 2q^{2}}{M_{\Omega}}]\gamma^{\nu}\gamma_{5} + [2g_{1}(q^{2}) + \frac{M_{\Omega} - M_{\Xi}}{M_{\Omega}}(g_{2}(q^{2}) + g_{3}(q^{2}))]q^{\nu}\gamma_{5} - 2f_{2}(q^{2})v^{\nu}q + (f_{1}(q^{2}) - \frac{M_{\Omega} - M_{\Xi}}{M_{\Omega}}f_{2}(q^{2}))\gamma^{\nu}q + \frac{1}{M_{\Omega}}(f_{2}(q^{2}) - f_{3}(q^{2}))q^{\nu}q\gamma_{5} + \frac{1}{M_{\Omega}}(g_{3}(q^{2}) - (\frac{M_{\Omega} - M_{\Xi}}{M_{\Omega}}g_{2}(q^{2}) + g_{1}(q^{2}))\gamma^{\nu}q\gamma_{5} + \frac{1}{M_{\Omega}}(g_{3}(q^{2}) - g_{2}(q^{2}))q^{\nu}q\gamma_{5}\}u_{\Omega}(p_{\Omega}) + \cdots$$

> QCD表示:

因子图像:

● 采用 Ω_b 光锥分布振幅时形状因子图像:

□扭度-2的Ω_b重子光锥分布振幅做主要贡献

● 不同计算方法下的形状因子数值对比

$f_i(0)/g_i(0)$	底重子 LCSR	轻味重子 LCSR	光前方法 [124]
$f_1(0)$	0.029	0.132	0.169
$f_2(0)$	-0.820	-0.135	0.193
$f_3(0)$	-0.810	-	-
$g_1(0)$	-0.032	0.016	-0.033
$g_2(0)$	0.821	0.007	-0.041
$g_3(0)$	0.811	-	-

• 不同计算方法下 $\Omega_b \to \Xi \ell \bar{\nu}_\ell$ 的衰变宽度及分支比对比

衰变模式	$\Gamma/{ m GeV}$	$\mathcal{B}r$	文献
$\Omega_b^- o \Xi^0 \ell \overline{\nu}_\ell$	3.49×10^{-15}	$8.76 imes 10^{-3}$	BBDA
$\Omega_b^- o \Xi^0 \ell \overline{ u}_\ell$	5.72×10^{-17}	$1.43 imes 10^{-4}$	LBDA
$\Omega_b^-\to \Xi^0 e^- \overline{\nu}_e$	1.18×10^{-17}	$2.82 imes 10^{-5}$	光前方法 [124]

五、总结

总结

- ▶ 验证了Ξ_c → Ξℓν_ℓ、Λ⁰_b → Λ⁺_cℓ⁻ν_ℓ的实验结果。
- ▶ 预言了 $\Lambda_b^0 \to \Lambda_c^+ \ell^- \bar{\nu}_\ell$ 、 $\Omega_b^- \to \Xi^0 \ell \bar{\nu}_\ell$ 的唯象结果。
- ➢ 分析了 E_c 、 Λ_b 半轻衰变中负宇称粒子的影响,在 E_c 、 Λ_b 半轻衰变中分别 给出了轻子普适性及 $R(\Lambda_c^+)$ 值。
- \succ 在 Λ_b 半轻衰变中考虑了流的选择对光锥波函数的选择及误差的影响。
- $∼ ext{ } au_{b}^{-} → ext{ } au_{\ell}^{0} + ext{ } e$

□上述工作仅在重子衰变的树图层面进行了考虑,尚未考虑重子光锥分布振幅高扭度及高阶修正对物理过程产生的影响。也未考虑微扰QCD高阶和有效场论的高阶影响。

