

The Top-Higgs Coupling: A Key to Inferring Higgs Physics

Shuo Han 韩朔 **Oct 12th 2023 IHEP, EPD seminar**

Why are Higgs properties important?

Standard Model (SM) describes 3 fundamental interactions, but leaves several questions, including

- Hierarchy: why the weak scale << Planck scale?
- What is the particle nature of Dark Matter?
- Why there is much more Matter than Antimatter?

Measuring Higgs boson properties

- a well established solution of the above questions
	- Hierarchy origins from Higgs boson properties
	- Dark Matter particles can obtain mass with Higgs mechanism
	- There can be CP violation in Higgs couplings

Experimental approaches for Higgs properties

Three experimental approaches towards the new physics with Higgs properties:

- Measuring on-shell Higgs boson
	- Higgs boson as physics particle in the final state
- Measuring off-shell Higgs boson
	- Higgs boson as mediator in the physics process
- Searching for beyond SM (BSM) processes

I'll introduce how to use the 3 approaches for specific Higgs properties later

Experimental landscape of Higgs properties

Why top-Higgs coupling important

It's the heaviest

Shuo Han

• top quark mass (172 GeV) is 10^4 -10⁵ times as u/d and electrons

In marco world, the adult human weight: $15 - 635$ kg, scale difference is $10²$ e.g. top loops dominants the ggF Higgs and Di-Higgs productions

the top-Higgs coupling strength is remarkably close to 1

y_t = √2 m_t / vev = √2 (172 GeV) / (246 GeV) ≈ 0.99

Study top-Higgs coupling can answer unsolved questions, by testing

- can top-Higgs coupling violate CP symmetry?
- can top-Higgs coupling strength modified by the new physics?
- can top mass comes from other interactions than Higgs mechanism?

The questions will be addressed by the physics analyses I introduce today

5

How to measure top-Higgs couplings

The top-Higgs Yukawa couplings and CP properties can be constrained

- directly, with tops in the final states (ttH/tH)
- indirectly, with tops as mediators

- In the SM, the Yukawa interactions are CP-even. In BSM models, CP-odd component arises
- The Lagrangian for top-Higgs interaction can be written as

$$
\mathcal{L}_t = -\frac{m}{\nu} \kappa_t (\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_5 t)H, \qquad \text{Standard m}
$$

CP even CP odd

Standard model : α = 0, κ_{t} = 1

CP properties can be directly measured with top-Higgs coupling

The publications in this talk

With the 3 experimental approaches, I'll introduce the following analyses today

- top-Higgs coupling with on-shell Higgs boson
	- A direct measurement of CP properties in top-Higgs Yukawa coupling [PRL 125 \(2020\) 061802](https://arxiv.org/abs/2004.04545)
	- Top-Higgs coupling with simplified template cross-section (STXS) measurements [JHEP 07 \(2023\) 088](https://arxiv.org/abs/2207.00348)
- Searching for new physics that may arises with new top-Higgs sectors
	- \circ Higgs(\rightarrow γγ) + X searches [JHEP 07 \(2023\) 176](https://arxiv.org/abs/2301.10486)
- top-Higgs coupling with off-shell Higgs boson
	- Observation of the four-top-quark production [EPJC 83 \(2023\) 496](https://arxiv.org/abs/2303.15061)

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the **Standard Model**

24 MARCH, 2023 | By Naomi Dinmore

BERKELEY LAE

ATLAS/CMS Detectors and Run-2 data

This talk: 140 fb⁻¹ pp collision data at 13 TeV with ATLAS (ATLAS Run-2)

IHEP ATLAS contribution: High-Granularity Timing Detector (HGTD), Inner Tracker (ITk) strip detector, leading various physics analyses

Shuo Han

IHEP CMS contribution: High Granularity Calorimeter (HGCal), leading various physics analyses

ERKELEY LA

with on-shell Higgs boson

The γγ channel of Higgs decay

- Higgs decays to a pair of photons via loop decays. It's one of the "golden channel" for precise Higgs property measurements.
- With relatively low branching ratio of 0.227%, the γγ signature is very "clean"
	- The high reconstruction eff. and low energy resolution of photons allows the search/measurements directly on the mass of γγ.

CP in top-Higgs coupling with H → γγ

H→vv

 $t/b/\tau$

 900000

- CP properties has an impact on both ttH/tH cross-section, and ttH/tH kinematics, so we delivered the measurement on CP properties with $H \rightarrow \gamma \gamma$ [PRL 125 \(2020\) 061802](https://arxiv.org/abs/2004.04545)
	- a. Select ttH/tH, H \rightarrow γγ events, extract the number of signal events
	- b. Parameterise ttH/tH productions with top-Higgs coupling modifier $κ_{t}$, and CP mixing angle α
	- c. Interpret the result and measure (κ_{t}, α)

ttH and tH cross-section as function of (κ $_{\rm t}$, α)

CP in top-Higgs coupling: categorization

The ttH/tH, $H \rightarrow \gamma \gamma$ events are selected with two event classifiers ttH/tH CP odd vs CP even

- A boosted decision tree (BDT)
- Using kinematics of γγ system and the top candidates
- Using kinematics of yy system and the top candidates
For the top candidates, using a top-reconstruction method combining $\frac{5}{6}$ 0.2
 $\frac{1}{6}$ 0.15 the 3 objects (tri-jets or j, e/μ, ν) from top decay

Signal vs background

- A BDT distinguish the ttH/tH from background (other Higgs, γγ, γ+j, ttγγ)
- Using γ , e/μ, j and missing ET kinematics

12 categories for top hadronic decays + 8 more categories for the top leptonic decays

Hadronic Bkg. Rej. Discriminant

Shuo Han

CP in top-Higgs coupling with H → γγ

- 1. Top quark kinematics are used to distribute events in categories
- 2. Signal + background fit on the m(γγ) in each category
- 3. Extract ttH/tH, $H \rightarrow \gamma \gamma$ events

CP in top-Higgs coupling with H → γγ

The measurement ttH/tH cross-section is

 $\mu = 1.43^{+0.33}_{-0.31}$ (stat.)^{+0.21}_{-0.15}(syst.) Observation of ttH/tH firstly in single channel (sig. = 5.2σ)

- κ , α are measured
	- \circ total CP-odd (α =90°) is excluded by 3.9σ, 95% CL limit on CP mixing: $|\alpha|$ < 43°
	- \circ 2D 95% CL limits on [κ_tsin(α), κ_tcos(α)]

The STXS measurements with H → γγ

- Simplified Template Cross Sections (STXS) divides cross-section measurements in phase spaces [\(arxiv](https://arxiv.org/abs/1906.02754) [1906.02754\)](https://arxiv.org/abs/1906.02754), which is sensitive to measure Higgs couplings
	- \circ The ttH/tH cross-section in pTH bins with H \rightarrow γγ [JHEP 07 \(2023\) 088](https://arxiv.org/abs/2207.00348) further constrain the top-Higgs Yukawa coupling, and also probe the impacts from new physics like CP-odd processes

ttH/tH selection with STXS

- 1. ttH/tH vs Higgs boson production in other phase spaces
	- The five ttH, and two tH (tWH, tHib) phase spaces are selected with multi-class BDT
- 2. After various STXS regions are split
	- In the ttH and tWH classes, train another ttH/tH vs background BDT
	- In the tHib class, we optimized the categorization to separate CP-even/-odd, using 3 NN scores
		- CP even vs CP odd
		- CP even vs background
		- CP odd vs background

The input variables are from y system, top candidates, top + Higgs system and forward jets

Finally, 9 categories targeting to the 6 ttH/tH phase spaces

Shuo Han

 $50 \leq p_1^H < 120\,\text{GeV}$ $20 \le p_{\rm v}^H < 200$ $0 \leq p_T^H < 300$

STXS measurement result

The analysis extracted signal events with S+B fits on m(γγ)

The Higgs $\rightarrow \gamma \gamma$ STXS measurement has highest sensitivity to constrain ttH/tH cross-sections among all Higgs decay channels in the combined measurement

ttH differential cross-section is compatible with SM tH cross-section 95% CL limit is 10 times SM expectation

17

Model independent H+X search

- STXS measurement covers various phase spaces, but there are many regions uncovered..
- Various of BSM models, like EW or strong SUSY and Flavor Changing Neutral Currents (FCNC) expect the production of Higgs boson and new particles
	- Including the new physics that arise with the top-Higgs sector
- A search ([JHEP 07 \(2023\) 176](https://arxiv.org/abs/2301.10486)) for H(\rightarrow γγ)+X process is model-independent

H+X search: results

- 22 cut-based categories are defined with different final states the searches are performed independently in all the signal regions, by S+B fits on the m(γγ)
- no obvious excess for H+X production.
	- The largest deviation from SM has a local significance 1.8σ in the HT > 1000 GeV region
	- There's 1.7σ local significance in the top hadronic decay region
- The detector level limits are set on the H+X cross-sections, and the detector efficiencies of various BSM models are reported to utilize the limits

with off-shell Higgs boson - the observation of tttt

21

Top-Higgs Yukawa couplings with four-tops XATLAS

- There are various motivations of four-top cross-section measurement: SUSY (2HDM, Gluino), ttbar $+ X$, composite top models, composite Higgs models (CERN-TH-2020-166)
- Among which, top-Higgs Yukawa coupling has unique impacts on the four top cross-section with quartic terms, so it is independent from Higgs coupling measurements with Higgs production/decays
	- \circ σ_{titt} parameterization (<u>[arXiv:1901.04567](https://arxiv.org/abs/1901.04567)</u>) in terms of [a_t = k_t cos(α), b_t = k_t sin(α)] shows flat behavior for small couplings and rise above 1.5.

The four-top decays

Each top quark decays to b quark + W boson The most sensitive channels for four-top are:

- **● 2 leptons same sign and 3 leptons (2LSS/3L), 13% branching ratio, highest sensitivity -- observation.**
- 1 lepton and 2 leptons opposite sign (1L/2LOS), 57% branching ratio, large ttbar background.

23

 $-tt+X$

hhhh (31.1 %)

IIII (0.4 %)

IIIh $(4.9%$

Ilhh SS (7.2 %)

Ilhh OS (14.3 %)

The complicated final state is a challenge

Shuo Han

lhhh (42.2 %)

GNN multivariate analysis

RKELEY L

- After the selections of 2LSS or 3L, Njet >=6, Nbjet >=2, HT > 500 GeV, the S/B is around 10%
	- The main challenge of the four-top signal extraction is the complicated final state
- The **Graph Neural Network (GNN,** [arxiv 1806.01261 \[graph_nets\]](https://arxiv.org/pdf/1806.01261.pdf)**)** combines information about all objects (jets, leptons, MET) from an event into a graph, with node, edge and global properties.
	- Message passing architecture allows network to learn complex features of the four top process
- "global score" is used and chosen as the event classifier and the observable in the pre-selected region
	- \sim 10% higher sensitivity compared with the best BDT methods after fine tuning.

Background modelings

SM physics processes: (~75%)

- ttW: a data-driven parameterization with 4 ttW control regions
- ttZ, ttH and others: using MC

Instrumental and fake backgrounds (~25%)

- Charge mis-ID: data-driven method
- Non-prompt leptons and (virtual) photon conversions: ttbar MC distributions, but correct the normalization with 4 non-prompt/fake control regions

Fake leptons from light mesons, quark/gluon jets, others: using MC

8 control regions + 1 signal region, 8 background parameters

Standard model σ_{tttt}

$$
\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3} \text{(stat)}^{+4.6}_{-3.4} \text{(syst)} \text{ fb} = 22.5^{+6.6}_{-5.5} \text{fb}.
$$

- The expectation $\sigma^{\text{SM}}= 12.0 \pm 2.4$ fb, so $\sigma_{\text{tm}}/\sigma^{\text{SM}}= 1.9$
- Background only hypothesis is rejected with **6.1σ (4.3σ)**

observed (expected) [EPJC 83 \(2023\) 496](https://arxiv.org/abs/2303.15061)

$$
\sigma_{t\bar{t}t\bar{t}} = 17.9^{+3.7}_{-3.5} \text{ (stat.)}^{+2.4}_{-2.1} \text{ (syst.)} \text{ fb} \cdot \mathbf{S}_{t\bar{t}t\bar{t}} = 5.5 \text{ (4.9)} \sigma
$$
\n
$$
\underline{\text{CERN-EP-2023-090 (PLB)}} \text{ in agreement with SM}
$$

Top-Higgs coupling and CP

Two scenarios (k_{t} , α) measurements

- \bullet 1) both four-top and ttH parameterized as a function of (k_t , α)
- 2) only four-top parameterized, ttH normalization is profiled as background parameter
- 95% CL limits on |k_t| (assuming CP-even, α = 0)
- 1) ttH parameterized: $|k_t|$ < 1.8 (1.6 expected), 2) ttH not parameterized: $|k_t|$ < 2.2 (1.8 expected)

2D contour of CP-even ($|k_{t} \cos(\alpha)|$) and CP-odd ($|k_{t} \sin(\alpha)|$) contributions are compatible with the SM.

Tri-top and Four-top measurements

- The tri-top production (ttt+W, ttt+j) is another rare top production, $\sigma_{ttt}^{\text{SM}} \sim 1.67 \text{ fb (NLO)}$
	- Tri-top is sensitive to different new theories, like FCNC, 2HDM models
- In the four-top observation, there is strong anti-correlations between tri-top and four-top
- The simultaneous measurement is compatible with SM within 2.1 standard deviation
- Limits are set on tri-top cross-sections assuming four

83 (2023) 496

Total width measurement with top-Higgs coupling

The differential cross section of any decay particle is given by a Breit-Wigner

On-shell: ggH and ttH productions

$$
\frac{d\sigma}{dm^2}=\frac{g_i^2g_f^2}{(m^2-m_H^2)^2+m_H^2\Gamma^2}
$$

Off-shell*: simultaneous production of four top quarks

The combination of onand off-shell Higgs measurements with top-Higgs coupling provides a new way to measure the total width (Gamma) of Higgs boson

$$
\overbrace{\text{BERKELEY} }^{\text{max}}_{\text{BERKELEY} } \left\| \begin{matrix} 1 \\ 0 \\ 0 \\ 0 \end{matrix} \right\|
$$

BERKELEY LAB

Outlook

Run3 and HL-LHC

- Run-3 (ongoing, 2022-2025) : expect 300 fb⁻¹ at 13.6 TeV
- Long shutdown for the HL-LHC (2026-2028): ATLAS phase-II upgrade
- $HL-LHC$ (Run 4+, 2029-): expect 3000 fb⁻¹ at 14 TeV

The Higgs couplings at HL-LHC

- \bullet HL-LHC is expected to measure k_t within 3.4% total uncertainty (now 10%)
	- This will be the most accurate result for very long time (even with CEPC/FCC-ee approved)
- However, the top-Higgs coupling measurement will be dominated by systematic uncertainties, there are more challenges in the HL-LHC studies (next page)

Shuo Han

CEPC-CDR: k_t cannot be directly measured with e+ecollision at 250 GeV, but if ECM > 500 GeV or in SPPC, the significance can be largely improved

[CERN-LPCC-2018-04](https://arxiv.org/pdf/1902.00134.pdf)

Higgs self-coupling with top-Higgs interaction

- The Higgs self-coupling is one of the most important yet-to-be-determined SM properties. It decides the Higgs potential distribution, which connects to the evolution of the early universe, though the Electroweak Phase Transition (EWPT)
	- There can be direct measurements of EWPT with gravitational waves (e.g. LISA experiment)
	- While at LHC, we can measure Higgs self-coupling by the production of Di-Higgs process

Higgs self-coupling with top-Higgs interaction

- The top-Higgs interaction is also very important for the Di-Higgs measurements
	- At LHC and future pp colliders, the leading production mode of Di-Higgs is via gluons fusion, which is dominated by the top loops
	- \circ The H(\rightarrow γγ) + H channel will remain to be one of the leading decay channels of Di-Higgs measurements, where the H→γγ decays is also dominated by the top loops
- We expect $~50\%$ uncertainty at HL-LHC, and $~5\%$ for FCC-hh/SPPC
	- \circ In the HL-LHC time scale, the ATLAS + CMS combination is important for the self-coupling

34

New solutions for HL-LHC and future

There will be many challenges in the HL-LHC and future analyses, but there are also new solutions

- The upgrade of the ATLAS and CMS detector (e.g. HGTD for ATLAS, MTD for CMS)
	- It can solve the problems caused by the high pile-up (interaction per bunch crossing) at HL-LHC

- More accurate theoretical calculations
	- It can solve the problems caused by mis-modeling, theo. uncertainties and cross-section calculations

New solutions for HL-LHC and future

- Novel implementations of machine learning (many recent publications in ATLAS/CMS communities)
	- Graph Neural Network:
		- The GNN at event level (e.g. 4top analysis)
		- GNN tracking : EPJC 81, 876 (2021)
		- GNN flavor tagging : ATL-PHYS-PUB-2022-027, ATL-PHYS-PUB-2022-047
	- Attention mechanism:
		- SPANet for ttbar and other object combinatorics: SciPost Phys. 12, 178 (2022), PRD 105, 112008 (2022), arxiv:2309.01886
		- CPT for the top regression and parton labeling: PRD 107 (2023) 114029, arxiv:2304.09208
		- Passwd-ABC for the BSM heavy resonance: arXiv:2309.05728
	- Generative models:
		- Normaling Flow for background templates generation: arxiv: 2303.10148
		- Normaling Flow for neutrino regression: arxiv: 2207.00664

These are only part of the recent progresses in ATLAS community, people are still building the ML community for the HEP experiments

Recap

We discussed why the top-Higgs Yukawa coupling and Higgs CP properties are important, and

- With on-shell Higgs
	- \circ CP and top-Higgs couplings with H \rightarrow γγ [PRL 125 \(2020\) 061802](https://arxiv.org/abs/2004.04545)
	- STXS measurements with top-Higgs couplings [JHEP 07 \(2023\) 088](https://arxiv.org/abs/2207.00348)
- BSM searches: $H(\rightarrow \gamma \gamma)$ + X searches for new t-H sectors [JHEP 07 \(2023\) 176](https://arxiv.org/abs/2301.10486)
- With off-shell Higgs: Four tops observation [EPJC 83 \(2023\) 496](https://arxiv.org/abs/2303.15061)
- More challenges and opportunities with HL-LHC and future colliders
	- top-Higgs coupling at \sim 3% uncertainty level at HL-LHC
	- Higgs self-coupling at \sim 50% uncertainty level with ATLAS + CMS, and \sim 5% for future colliders
	- The detector upgrades
	- New analysis techniques (many novel ML applications)

Thanks IHEP for hosting the seminar!

backup

●

The CMS result (2LSS/3L/4L)

$$
\bullet S_{\rm t\bar{t}t\bar{t}} = 5.5\,\,(4.9)\,\sigma
$$

•
$$
\sigma_{\text{tīti}}/\sigma_{\text{tīti}}^{\text{th.}} = 1.3 \pm 0.3
$$

•
$$
\sigma_{ttW}/\sigma_{ttW}^{\text{th.}} = 1.4 \pm 0.1
$$

• $\sigma_{\text{trZ}}/\sigma_{\text{trZ}}^{\text{th}} = 1.3 \pm 0.1$

in agreement with SM **Differences**

- CMS has a 4-lepton channel (tiny contribution), lepton channels are split, ATLAS merged 2LSS/3L channels.
- CMS is using multi-class BDT, ATLAS is using GNN
- CMS merged tri-top contribution with all the minor top productions, with a 20% uncertainty.
- CMS used data-driven method to estimate the non-prompt (ttbar) backgrounds, ATLAS used MC ttbar, with profiled normalizations.
- CMS measures four-top, ttW and ttZ simultaneously, ATLAS measures four-top, ttW and non-prompt (ttbar) simultaneously

Shuo Han 39 and 39

H+X search: results

The detector efficiencies of each BSM models are reported to utilize the visible limits

Systematic uncertainties

Experimental uncertainty(159 NPs):

Luminosity, lepton, Jets, b-tagging, missing ET, others

Signal modeling uncertainties (4 NP)

QCD scale, parton shower, generator (Sherpa vs Madgraph), PDF

Background modeling uncertainties:

- Irreducible background (35 NPs): tt + W/Z/H, tri-top, others
- Reducible background (8 NPs): ttbar shape systematics, charge misID systematics

Statistical uncertainties

- Intrinsic stat. uncertainties
- ttW modeling

(**Green:** larger impact than 5%, **Red:** larger than 10%)

STXS categorization

Region ttH, $p^H \geq 300 \text{ GeV}$ ttH, $200 \le p_{+}^{H} < 300 \text{ GeV}$ ttH, $120 \le p^{\rm H}$ < 200 GeV třH, $60 \le p_{-}^{\rm H} < 120 \text{ GeV}$ tiH, $p^H < 60$ GeV Ő HII. $p^V \ge 150$ GeV HII, p_*^V < 150 GeV $\alpha a \rightarrow H/v.$ $a^V \ge 150$ GeV $aa \rightarrow H/v, p'' < 150$ GeV $qq \rightarrow Hqq$, \geq 2-jets, $m \geq 1000$ GeV, $p^H \geq 200$ GeV $qq \rightarrow Hqq$, \geq 2-jets, 350 \leq m $<$ 1000 GeV, p $^{H}_{+} \geq$ 200 GeV $qq \to Hqq, \geq 2$ -jets, m $\geq 1000, p^{H}_{+} < 200$ GeV qq → Hqq, ≥ 2-jets, 700 ≤ m < 1000 GeV, p " < 200 GeV qq \rightarrow Hqq, \geq 2-jets, 350 \leq m, $<$ 700 GeV, p $^{H}_{*}$ < 200 GeV gg → Hgg, VH hadronic ga → Hgg, ≤ 1-jet, VH veto $gg \rightarrow H, p_{\tau}^H \geq 450 \text{ GeV}$ $gg \rightarrow H$, 300 $\leq p_{+}^{H} < 450$ GeV $gg \to H$, 200 $\leq p_{+}^{H}$ < 300 GeV $qq \rightarrow H$, \geq 2-jets, m, \geq 350 GeV, p^{HM}_{-} < 200 GeV $gg \to H$, \geq 2-jets, m₁ < 350 GeV, 120 $\leq p_{\tau}^{H}$ < 200 GeV gg \rightarrow H, \geq 2-jets, m₁ < 350 GeV, p $_{\tau}^{H}$ < 120 GeV $gg \to H$, 1-jet, 120 $\leq p^H$ < 200 GeV $gg \to H$, 1-jet, 60 $\leq p^H$ < 120 GeV $gg \rightarrow H$, 1-jet, p^H < 60 GeV $gg \rightarrow H$, 0-jet, $p^H \ge 10 \text{ GeV}$ $9|94|16$ 4 $gg \rightarrow H$, 0-jet, p_T^H < 10 GeV

42

28 classes for the measurements are clearly distinguished with 101 categories with correlations controlled, including the 9 ttH/tH categories

100 $\frac{1}{\sqrt{2}}$

90 $\frac{1}{\sqrt{2}}$

80 $\frac{1}{\sqrt{2}}$

70

60

50

40

30

20

 10

 Ω

The top-Higgs coupling with STXS

Top-Higgs coupling $(κ_t)$ is directly measured

- tH yields are parameterized as function of κ_k $y_i = \kappa_t^2 A + \kappa_V^2 B + \kappa_t \kappa_V C$
- $\kappa = 1.01\pm0.09$ if resolve the ggF and H \rightarrow γγ processes with κ .
- \bullet Remove assumptions by taking ratios among loop vertices (κ_γ, κ_g), total width (κ_H), vector and top couplings (κ_ν, κ_t)

H+X search: event selection

- 22 cut-based categories are defined with different final states, they are triggered by different BSM models
- The additional top-Higgs sectors can results in multiple b-jets, jets, leptons, high HT (scalar sum of jet pT), high missing ET and additional top candidates
- The searches are performed independently in all the signal regions, by S+B fits on the m(γγ)

The publications before the observation

Before observation, both ATLAS and CMS measured four-top with Run-2 data, we declared evidences

Then, both analyses decided to re-optimize with the same data, eventually there are observations in the single channel of 2LSS/3L

ATLAS+CMS Preliminary Run 2, \sqrt{s} = 13 TeV, November 2022 **LHCtopWG** σ_{eff} = 12.0 $^{+2.2}_{-2.5}$ (scale) fb tot. stat. JHEP 02 (2018) 031 NLO QCD+EW Obs. (Exp.) Sig. σ_{diff} ± tot. (stat. ± syst.) ATLAS, 2LSS/3L, 139 fb⁻¹ 24^{+7}_{-6} (5⁺⁵) fb $4.3(2.4)$ σ EPJC 80 (2020) 1085 ATLAS, 1L/2LOS, 139 fb⁻¹ 26_{-15}^{+17} (8 $_{-13}^{+15}$) fb $1.9(1.0)$ σ JHEP 11 (2021) 118 ATLAS, comb., 139 fb⁻¹ 24^{+7}_{-6} (4⁺⁵) fb 4.7 (2.6) σ JHEP 11 (2021) 118 CMS, 2LSS/3L, 137 fb⁻¹ 12.6 $^{+5.8}_{-5.2}$ fb 2.6 (2.7) σ EPJC 80 (2020) 75 CMS, 1L/2LOS, 35.8 fb⁻¹ 0^{+20} fb $0.0(0.4)\sigma$ JHEP 11 (2019) 082 CMS, 1L/2LOS/all-had, 138 fb⁻¹ 38_{-11}^{+13} fb $3.7(1.5)$ σ CMS-PAS-TOP-21-005 * CMS, comb., 138 fb⁻¹ 17 $^{+5}_{-5}$ fb $3.9(3.2)$ σ CMS-PAS-TOP-21-005 * *Preliminary 80 $\mathbf 0$ 20 40 60 100 120 σ_{eff} [fb]

Object and event selections

SR

 130 ± 40

 $t\bar{t}W$

GNN multivariate analysis

- "global score" is used and chosen as the event classifier and the observable in the pre-selected region
	- 10% higher sensitivity compared with the best BDT methods after fine tuning.

Good data/mc agreements on the GNN score are observed

Data vs MC when GNN > 0.6

 \geq 10 $_{\mathsf{N}}$

 $\overline{\mathbf{3}}$ Number of b-tagged jets

Higgs potential and phase transition

Phase Transition

