

The Top-Higgs Coupling: A Key to Inferring Higgs Physics

Shuo Han 韩朔 Oct 12th 2023 IHEP, EPD seminar

Why are Higgs properties important?

Standard Model (SM) describes 3 fundamental interactions, but leaves several questions, including

- Hierarchy: why the weak scale << Planck scale ?
- What is the particle nature of Dark Matter?
- Why there is much more Matter than Antimatter?

Measuring Higgs boson properties

- a well established solution of the above questions
 - Hierarchy origins from Higgs boson properties
 - Dark Matter particles can obtain mass with Higgs mechanism
 - There can be CP violation in Higgs couplings

Experimental approaches for Higgs properties

Three experimental approaches towards the new physics with Higgs properties:

- Measuring on-shell Higgs boson
 - Higgs boson as physics particle in the final state
- Measuring off-shell Higgs boson
 - Higgs boson as mediator in the physics process
- Searching for beyond SM (BSM) processes

I'll introduce how to use the 3 approaches for specific Higgs properties later

Experimental landscape of Higgs properties **SATLAS**

Why top-Higgs coupling important

It's the heaviest

top quark mass (172 GeV) is 10⁴-10⁵ times as u/d and electrons

In marco world, the adult human weight: 15 - 635 kg, scale difference is 10² e.g. top loops dominants the ggF Higgs and Di-Higgs productions

• the top-Higgs coupling strength is remarkably close to 1

 $y_t = \sqrt{2} m_t / vev = \sqrt{2} (172 \text{ GeV}) / (246 \text{ GeV}) \approx 0.99$

Study top-Higgs coupling can answer unsolved questions, by testing

- can top-Higgs coupling violate CP symmetry?
- can top-Higgs coupling strength modified by the new physics?
- can top mass comes from other interactions than Higgs mechanism?

The questions will be addressed by the physics analyses I introduce today

How to measure top-Higgs couplings

The top-Higgs Yukawa couplings and CP properties can be constrained

- directly, with tops in the final states (ttH/tH)
- indirectly, with tops as mediators

- In the SM, the Yukawa interactions are CP-even. In BSM models, CP-odd component arises
- The Lagrangian for top-Higgs interaction can be written as

$$\mathscr{L}_{t} = -\frac{m}{\nu} \kappa_{t} (\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_{5}t)H,$$
CP even CP odd

Standard model : $\alpha = 0$, $\kappa_{+} = 1$

CP properties can be directly measured with top-Higgs coupling

The publications in this talk

With the 3 experimental approaches, I'll introduce the following analyses today

- top-Higgs coupling with on-shell Higgs boson
 - A direct measurement of CP properties in top-Higgs Yukawa coupling <u>PRL 125 (2020) 061802</u>
 - Top-Higgs coupling with simplified template cross-section (STXS) measurements <u>JHEP 07 (2023) 088</u>
- Searching for new physics that may arises with new top-Higgs sectors
 - Higgs($\rightarrow \gamma \gamma$) + X searches <u>JHEP 07 (2023) 176</u>
- top-Higgs coupling with off-shell Higgs boson
 - Observation of the four-top-quark production EPJC 83 (2023) 496

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model

24 MARCH, 2023 | By Naomi Dinmore

plays of four-top-quark production from ATLAS (Jeft) and CMS (right)

BERKELEY LAB

ATLAS/CMS Detectors and Run-2 data

This talk: 140 fb⁻¹ pp collision data at 13 TeV with ATLAS (ATLAS Run-2)

IHEP ATLAS contribution: High-Granularity Timing Detector (HGTD), Inner Tracker (ITk) strip detector, leading various physics analyses

IHEP CMS contribution: High Granularity Calorimeter (HGCal), leading various physics analyses

with on-shell Higgs boson

The yy channel of Higgs decay

- Higgs decays to a pair of photons via loop decays. It's one of the "golden channel" for precise
 Higgs property measurements.
- With relatively low branching ratio of 0.227%, the γγ signature is very "clean"
 - The high reconstruction eff. and low energy resolution of photons allows the search/measurements directly on the mass of γγ.

CP in top-Higgs coupling with $H\to\gamma\gamma$

H→vv

 $t/b/\tau$

g 000000

- CP properties has an impact on both ttH/tH cross-section, and ttH/tH kinematics, so we delivered the measurement on CP properties with H $\rightarrow \gamma\gamma$ <u>PRL 125 (2020) 061802</u>
 - a. Select ttH/tH, $H \rightarrow \gamma \gamma$ events, extract the number of signal events
 - b. Parameterise ttH/tH productions with top-Higgs coupling modifier κ_t , and CP mixing angle α
 - c. Interpret the result and measure (κ_t , α)

ttH and tH cross-section as function of (κ_t , α)

CP in top-Higgs coupling: categorization

The ttH/tH, H \rightarrow $\gamma\gamma$ events are selected with two event classifiers ttH/tH CP odd vs CP even

- A boosted decision tree (BDT)
- Using kinematics of γγ system and the top candidates
- For the top candidates, using a top-reconstruction method combining the 3 objects (tri-jets or j, e/µ, v) from top decay

Signal vs background

- A BDT distinguish the ttH/tH from background (other Higgs, $\gamma\gamma$, γ +j, tt $\gamma\gamma$)
- Using γ , e/ μ , j and missing ET kinematics

12 categories for tophadronic decays+ 8 more categories for thetop leptonic decays

Hadronic Bkg. Rej. Discriminant

Shuo Han

CP in top-Higgs coupling with $H\to\gamma\gamma$

- Top quark kinematics are used to distribute events in categories
- Signal + background fit on the m(γγ) in each category
- 3. Extract ttH/tH, $H \rightarrow \gamma \gamma$ events

CP in top-Higgs coupling with $H\to\gamma\gamma$

• The measurement ttH/tH cross-section is

 $\mu = 1.43^{+0.33}_{-0.31} \text{(stat.)}^{+0.21}_{-0.15} \text{(syst.)} \quad \text{Observation of ttH/tH firstly in single channel (sig. = 5.2\sigma)}$

- κ_t , α are measured
 - \circ total CP-odd (α =90°) is excluded by 3.9 σ , 95% CL limit on CP mixing: $|\alpha| < 43^{\circ}$
 - $\circ \quad \text{2D 95\% CL limits on } [\kappa_t sin(\alpha), \, \kappa_t cos(\alpha)]$

The STXS measurements with $H\to\gamma\gamma$

- Simplified Template Cross Sections (STXS) divides cross-section measurements in phase spaces (<u>arxiv</u> <u>1906.02754</u>), which is sensitive to measure Higgs couplings
 - The ttH/tH cross-section in pTH bins with H $\rightarrow \gamma\gamma JHEP 07 (2023) 088$ further constrain the top-Higgs Yukawa coupling, and also probe the impacts from new physics like CP-odd processes

ttH/tH selection with STXS

- 1. ttH/tH vs Higgs boson production in other phase spaces
 - The five ttH, and two tH (tWH, tHjb) phase spaces are selected with multi-class BDT
- 2. After various STXS regions are split
 - In the ttH and tWH classes, train another ttH/tH vs background BDT
 - In the tHjb class, we optimized the categorization to separate CP-even/-odd, using 3 NN scores
 - CP even vs CP odd
 - CP even vs background
 - CP odd vs background

The input variables are from γγ system, top candidates, top + Higgs system and forward jets

Finally, 9 categories targeting to the 6 ttH/tH phase spaces

STXS measurement result

The analysis extracted signal events with S+B fits on $m(\gamma\gamma)$

The Higgs \rightarrow yy STXS measurement has highest sensitivity to constrain ttH/tH cross-sections among all Higgs decay channels in the combined measurement

ttH differential cross-section is compatible with SM tH cross-section 95% CL limit is 10 times SM expectation

17

Model independent H+X search

- STXS measurement covers various phase spaces, but there are many regions uncovered..
- Various of BSM models, like EW or strong SUSY and Flavor Changing Neutral Currents (FCNC) expect the production of Higgs boson and new particles
 - Including the new physics that arise with the top-Higgs sector
- A search (<u>JHEP 07 (2023) 176</u>) for $H(\rightarrow\gamma\gamma)+X$ process is model-independent

H+X search: results

- 22 cut-based categories are defined with different final states the searches are performed independently in all the signal regions, by S+B fits on the m(γγ)
- no obvious excess for H+X production.
 - The largest deviation from SM has a local significance 1.8σ in the HT > 1000 GeV region
 - \circ There's 1.7 σ local significance in the top hadronic decay region
- The detector level limits are set on the H+X cross-sections, and the detector efficiencies of various BSM models are reported to utilize the limits

with off-shell Higgs boson - the observation of tttt

Top-Higgs Yukawa couplings with four-tops

- There are various motivations of four-top cross-section measurement: SUSY (2HDM, Gluino), ttbar + X, composite top models, composite Higgs models (CERN-TH-2020-166)
- Among which, top-Higgs Yukawa coupling has unique impacts on the four top cross-section with quartic terms, so it is independent from Higgs coupling measurements with Higgs production/decays
 - σ_{tttt} parameterization (<u>arXiv:1901.04567</u>) in terms of [$a_t = k_t \cos(\alpha)$, $b_t = k_t \sin(\alpha)$] shows flat behavior for small couplings and rise above 1.5.

The four-top decays

Each top quark decays to b quark + W boson The most sensitive channels for four-top are:

- 2 leptons same sign and 3 leptons (2LSS/3L), 13% branching ratio, highest sensitivity -- observation.
- 1 lepton and 2 leptons opposite sign (1L/2LOS), 57% branching ratio, large ttbar background.

The complicated final state is a challenge

MENT

V

GNN multivariate analysis

- After the selections of 2LSS or 3L, Njet>=6, Nbjet>=2, HT>500 GeV, the S/B is around 10%
 - The main challenge of the four-top signal extraction is the complicated final state
- The **Graph Neural Network (GNN,** <u>arxiv 1806.01261 [graph_nets]</u>) combines information about all objects (jets, leptons, MET) from an event into a graph, with node, edge and global properties.
 - Message passing architecture allows network to learn complex features of the four top process
- "global score" is used and chosen as the event classifier and the observable in the pre-selected region
 - ~10% higher sensitivity compared with the best BDT methods after fine tuning.

Background modelings

SM physics processes: (~75%)

- ttW: a data-driven parameterization with 4 ttW control regions
- ttZ, ttH and others: using MC

Instrumental and fake backgrounds (~25%)

- Charge mis-ID: data-driven method
- Non-prompt leptons and (virtual) photon conversions: ttbar MC distributions, but correct the normalization with 4 non-prompt/fake control regions

NF _{Mat. Conv.}	$NF_{Low m_{\gamma^*}}$	$NF_{HF} e$	$\rm NF_{\rm HF}\mu$
$1.80^{+0.47}_{-0.41}$	$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$	$1.27^{+0.53}_{-0.46}$

• Fake leptons from light mesons, quark/gluon jets, others: using MC

8 control regions + 1 signal region, 8 background parameters

a_0	a_1	$NF_{t\bar{t}W^+(4jet)}$	$NF_{t\bar{t}W^-(4jet)}$
0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	$1.27^{+0.25}_{-0.22}$	$1.11_{-0.28}^{+0.31}$

Standard model σ_{tttt}

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$$
(stat) $^{+4.6}_{-3.4}$ (syst) fb = 22.5 $^{+6.6}_{-5.5}$ fb.

- The expectation σ^{SM} = 12.0 ± 2.4 fb , so $\sigma_{tttt} / \sigma^{SM}$ = 1.9
- Background only hypothesis is rejected with
 6.1σ (4.3σ)

observed (expected) EPJC 83 (2023) 496

$$\sigma_{t\bar{t}t\bar{t}} = 17.9^{+3.7}_{-3.5} \text{ (stat.)} ^{+2.4}_{-2.1} \text{ (syst.) fb} \quad \bullet \mathbf{S}_{t\bar{t}t\bar{t}} = 5.5 \text{ (4.9) } \sigma$$

CERN-EP-2023-090 (PLB) in agreement with SM

Top-Higgs coupling and CP

K.

Two scenarios (k_t , α) measurements

- 1) both four-top and ttH parameterized as a function of (k_t, α)
- 2) only four-top parameterized, ttH normalization is profiled as background parameter
- 95% CL limits on $|k_t|$ (assuming CP-even, $\alpha = 0$)
 - 1) ttH parameterized: $|k_{t}| < 1.8$ (1.6 expected), 2) ttH not parameterized: $|k_{t}| < 2.2$ (1.8 expected)

2D contour of CP-even ($|k_t \cos(\alpha)|$) and CP-odd ($|k_t \sin(\alpha)|$) contributions are compatible with the SM.

Tri-top and Four-top measurements

- The tri-top production (ttt+W, ttt+j) is another rare top production, $\sigma_{ttt}^{SM} \sim 1.67$ fb (NLO)
 - Tri-top is sensitive to different new theories, like FCNC, 2HDM models
- In the four-top observation, there is strong anti-correlations between tri-top and four-top
- The simultaneous measurement is compatible with SM within 2.1 standard deviation
- Limits are set on tri-top cross-sections assuming four

Processes	95% CL cross section interval [fb]		
	$\mu_{t\bar{t}t\bar{t}} = 1$	$\mu_{t\bar{t}t\bar{t}}=1.9$	
tīt	[4.7, 60]	[0, 41]	
tītW	[3.1, 43]	[0, 30]	
tītq	[0, 144]	[0, 100]	

Total width measurement with top-Higgs coupling

• The differential cross section of any decay particle is given by a Breit-Wigner

On-shell: ggH and ttH productions

$$\frac{d\sigma}{dm^2} = \frac{g_i^2 g_f^2}{(m^2 - m_H^2)^2 + m_H^2 \Gamma^2}$$

 $\frac{d\sigma}{dm^2} \propto \frac{g_i g_j}{(m^2 - m_H^2)^2}$

Off-shell*: simultaneous production of four top quarks

The combination of onand off-shell Higgs measurements with top-Higgs coupling provides a new way to measure the total width (Gamma) of Higgs boson

Outlook

Run3 and HL-LHC

- Run-3 (ongoing, 2022-2025) : expect 300 fb⁻¹ at 13.6 TeV
- Long shutdown for the HL-LHC (2026-2028): ATLAS phase-II upgrade
- HL-LHC (Run 4+ , 2029-) : expect 3000 fb⁻¹ at 14 TeV

The Higgs couplings at HL-LHC

- HL-LHC is expected to measure k_t within 3.4% total uncertainty (now 10%)
 - This will be the most accurate result for very long time (even with CEPC/FCC-ee approved)
- However, the top-Higgs coupling measurement will be dominated by systematic uncertainties, there are more challenges in the HL-LHC studies (next page)

CEPC-CDR: k_t cannot be directly measured with e+ecollision at 250 GeV, but if ECM > 500 GeV or in SPPC, the significance can be largely improved

CERN-LPCC-2018-04

Higgs self-coupling with top-Higgs interaction

- The Higgs self-coupling is one of the most important yet-to-be-determined SM properties. It decides the Higgs potential distribution, which connects to the evolution of the early universe, though the Electroweak Phase Transition (EWPT)
 - There can be direct measurements of EWPT with gravitational waves (e.g. LISA experiment)
 - While at LHC, we can measure Higgs self-coupling by the production of Di-Higgs process

Higgs self-coupling with top-Higgs interaction

- The top-Higgs interaction is also very important for the Di-Higgs measurements
 - At LHC and future pp colliders, the leading production mode of Di-Higgs is via gluons fusion, which is dominated by the top loops
 - The $H(\rightarrow\gamma\gamma)$ + H channel will remain to be one of the leading decay channels of Di-Higgs measurements, where the $H\rightarrow\gamma\gamma$ decays is also dominated by the top loops
- We expect ~50% uncertainty at HL-LHC, and ~5% for FCC-hh/SPPC
 - In the HL-LHC time scale, the ATLAS + CMS combination is important for the self-coupling

New solutions for HL-LHC and future

There will be many challenges in the HL-LHC and future analyses, but there are also new solutions

- The upgrade of the ATLAS and CMS detector (e.g. HGTD for ATLAS, MTD for CMS)
 - It can solve the problems caused by the high pile-up (interaction per bunch crossing) at HL-LHC

- More accurate theoretical calculations
 - It can solve the problems caused by mis-modeling, theo. uncertainties and cross-section calculations

New solutions for HL-LHC and future

- Novel implementations of machine learning (many recent publications in ATLAS/CMS communities)
 - Graph Neural Network:
 - The GNN at event level (e.g. 4top analysis)
 - GNN tracking : EPJC 81, 876 (2021)
 - GNN flavor tagging : ATL-PHYS-PUB-2022-027, ATL-PHYS-PUB-2022-047
 - Attention mechanism:
 - SPANet for ttbar and other object combinatorics: SciPost Phys. 12, 178 (2022), PRD 105, 112008 (2022), arxiv:2309.01886
 - CPT for the top regression and parton labeling: PRD 107 (2023) 114029, arxiv:2304.09208
 - Passwd-ABC for the BSM heavy resonance: arXiv:2309.05728
 - Generative models:
 - Normaling Flow for background templates generation: arxiv:2303.10148
 - Normaling Flow for neutrino regression: arxiv:2207.00664

These are only part of the recent progresses in ATLAS community, people are still building the ML community for the HEP experiments

Recap

We discussed why the top-Higgs Yukawa coupling and Higgs CP properties are important, and

- With on-shell Higgs
 - \circ CP and top-Higgs couplings with H $\rightarrow \gamma\gamma$ PRL 125 (2020) 061802
 - STXS measurements with top-Higgs couplings JHEP 07 (2023) 088
- BSM searches: $H(\rightarrow \gamma\gamma)$ + X searches for new t-H sectors <u>JHEP 07 (2023) 176</u>
- With off-shell Higgs: Four tops observation EPJC 83 (2023) 496
- More challenges and opportunities with HL-LHC and future colliders
 - top-Higgs coupling at ~3% uncertainty level at HL-LHC
 - Higgs self-coupling at ~50% uncertainty level with ATLAS + CMS, and ~5% for future colliders
 - The detector upgrades
 - New analysis techniques (many novel ML applications)

Thanks IHEP for hosting the seminar!

backup

•

The CMS result (2LSS/3L/4L)

$$\bullet S_{t\bar{t}t\bar{t}} = 5.5 (4.9) \sigma$$

•
$$\sigma_{t\bar{t}t\bar{t}t}/\sigma_{t\bar{t}t\bar{t}}^{th.} = 1.3 \pm 0.3$$

•
$$\sigma_{\rm ttW}/\sigma_{\rm ttW}^{\rm th.} = 1.4 \pm 0.1$$

• $\sigma_{\rm ttZ}/\sigma_{\rm ttZ}^{\rm th.} = 1.3 \pm 0.1$

Differences

- CMS has a 4-lepton channel (tiny contribution), lepton channels are split, ATLAS merged 2LSS/3L channels.
- CMS is using multi-class BDT, ATLAS is using GNN
- CMS merged tri-top contribution with all the minor top productions, with a 20% uncertainty.
- CMS used data-driven method to estimate the non-prompt (ttbar) backgrounds, ATLAS used MC ttbar, with profiled normalizations.
- CMS measures four-top, ttW and ttZ simultaneously, ATLAS measures four-top, ttW and non-prompt (ttbar) simultaneously

H+X search: results

• The detector efficiencies of each BSM models are reported to utilize the visible limits

SR	Relevant processes	Range of ϵ
	Heavy flavour	
$\geq 3b$	$ ilde{b} ilde{b}, ilde{b} ightarrow ilde{\chi}_{0}^{0}b, ilde{\chi}_{0}^{0} ightarrow ilde{\chi}_{1}^{0}H, ilde{\iota}_{2} ilde{\iota}_{2} ilde{\iota}_{2} ightarrow ilde{\iota}_{1}h, ilde{\iota}_{1} ightarrow ilde{\chi}_{0}^{0}bqar{q}/b\ell u$	0.68-0.81
$\geq 4b$	$ ilde{b} ilde{b}, ilde{b} o ilde{\chi}_{0}^{5}b, ilde{\chi}_{0}^{0} o ilde{\chi}_{1}^{0}b, ilde{z}_{1}^{2} ilde{z}_{2}, ilde{t}_{2} o ilde{t}_{1}+ ilde{t}_{1} o ilde{\chi}_{0}^{0}bqar{q}/b\ell u$	0.64-0.97
	High jet activity	
≥4j	$t\bar{t}H, \tilde{b}\tilde{b}, \tilde{b} \to \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0}H, \tilde{\iota}_{2}\tilde{\iota}_{2}, \tilde{\iota}_{2} \to \tilde{\iota}_{1}H, \tilde{\iota}_{1} \to \tilde{\chi}_{1}^{0}bq\bar{q}/b\ell\nu, tWH$	0.60-0.70
≥6j	$t\bar{t}H, \tilde{b}\tilde{b}, \tilde{b} \to \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0}H, \tilde{\iota}_{2}\tilde{\iota}_{2}, \tilde{\iota}_{2} \to \tilde{\iota}_{1}H, \tilde{\iota}_{1} \to \tilde{\chi}_{2}^{0}bq\bar{q}/b\ell\nu, tWH$	0.64-0.80
≥8j	$t\tilde{t}H, \tilde{b}\tilde{b}, \tilde{b} ightarrow \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} ightarrow \tilde{\chi}_{1}^{0}H, \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} ightarrow \tilde{t}_{1}H, \tilde{t}_{1} ightarrow \tilde{\chi}_{1}^{0}bqar{q}/b\ell v$	0.65-0.90
$H_{\rm T} > 500 { m ~GeV}$	$t\bar{t}H, \tilde{b}\tilde{b}, \tilde{b} \to \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0}H, \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1}H, \tilde{t}_{1} \to \tilde{\chi}_{1}^{0}b\dot{q}\bar{q}/b\ell\nu, tWH$	0.52-0.66
$H_{\rm T}$ > 1000 GeV	$t\bar{t}H, \tilde{b}\tilde{b}, \tilde{b} \to \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0}H, \tilde{\iota}_{2}\tilde{\iota}_{2}, \tilde{\iota}_{2} \to \tilde{\iota}_{1}H, \tilde{\iota}_{1} \to \tilde{\chi}_{1}^{0}bq\bar{q}/b\ell\nu, tWH$	0.51-0.72
$H_{\rm T} > 1500 {\rm ~GeV}$	$t\bar{t}H, \tilde{b}\tilde{b}, \tilde{b} o ilde{\chi}_{0}^{0} \tilde{b}, ilde{\chi}_{0}^{0} o ilde{\chi}_{1}^{0}H, ilde{t}_{2}\tilde{t}_{2}, ilde{t}_{2} o ilde{t}_{1}H, ilde{t}_{1} o ilde{\chi}_{1}^{0}bq\bar{q}/b\ell\nu$	0.41-0.73
	$E_{\mathrm{T}}^{\mathrm{miss}}$	
$E_{\rm T}^{\rm miss} > 100 { m GeV}$	$t\bar{t}H, tWH, WH, ZH, \tilde{\chi}_1^+ \tilde{\chi}_2^0 \to W/Z/H$	0.60-0.78
$E_{\rm T}^{\rm miss} > 200 { m GeV}$	$t\bar{t}H, tWH, WH, ZH, \tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0} \rightarrow W/Z/H$	0.60-0.79
$E_{\rm T}^{\rm miss}$ > 300 GeV	$t\bar{t}H, tWH, WH, ZH, \tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0} \rightarrow W/Z/H$	0.66-0.84
	Lepton	
$\geq 1\ell$	$WH, t\bar{t}H, tWH, FCNC, \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W/Z/H$	0.40-0.48
2ℓ	$ZH, t\bar{t}H, \tilde{t}_2\tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1H, \tilde{t}_1 \to \tilde{\chi}_1^0 bq\bar{q}/b\ell\nu, \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp \to H \tilde{\ell}^\pm H \ell^\mp, \tilde{\chi}_1^\pm \tilde{\chi}_1^0, \tilde{\chi}_1^\pm \to H \ell^\pm, \tilde{\chi}_1^0 \to W \ell/Z\nu/H\nu$	0.21-0.48
2 <i>ℓ</i> -Z	$t\bar{t}H, \tilde{t}_2\tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1H, \tilde{t}_1 \to \tilde{\chi}_1^0 bq\bar{q}/b\ell\nu, \tilde{\chi}_1^\pm\tilde{\chi}_1^\mp \to H\ell^\pm H\ell^\mp, \tilde{\chi}_1^\pm\tilde{\chi}_1^0, \tilde{\chi}_1^\pm \to H\ell^\pm, \tilde{\chi}_1^0 \to W\ell/Z\nu/H\nu$	0.20-0.46
$\geq 3\ell$	$ ilde{t}_2 ilde{t}_2, ilde{t}_2 o ilde{t}_1H, ilde{t}_1 o ilde{\chi}_1^0 bq ilde{q}/b\ell u, ilde{\chi}_1^\pm ilde{\chi}_1^\mp o H\ell^\pm H\ell^\mp, ilde{\chi}_1^\pm ilde{\chi}_1^0, ilde{\chi}_1^\pm o H\ell^\pm, ilde{\chi}_1^0 o W\ell/Z u/H u$	0.18-0.33
SS-2ℓ	$ ilde{t}_2 ilde{t}_2, ilde{t}_2 otatin{} ilde{t}_1H, ilde{t}_1 otatin{} ilde{\chi}_1^0bqar{q}ar{/}b\ell u, ilde{\chi}_1^+ ilde{\chi}_1^0, ilde{\chi}_1^+ otatin{} otatin{} ilde{t}_1H^+, ilde{\chi}_1^0 otatin{} otatin{} ilde{t}_1H^+, ilde{\chi}_1^0 otatin{} otatin{} ilde{t}_1H^+, ilde{t}_1H^+, ilde{t}_2H^+, ilde{t}_2H^+$	0.29-0.49
$\geq 2\tau$	$ZH, \tilde{\iota}_{2}\tilde{\iota}_{2}, \tilde{\iota}_{2} \rightarrow \tilde{\iota}_{1}H, \tilde{\iota}_{1} \rightarrow \tilde{\chi}_{1}^{0}bq\bar{q}/b\ell\nu, \tilde{b}\tilde{b}, \tilde{b} \rightarrow \tilde{\chi}_{2}^{0}b, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}H, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \rightarrow H\ell^{\pm}H\ell^{\mp}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow H\ell^{\pm}, \tilde{\chi}_{1}^{0} \rightarrow W\ell/Z\nu/H\nu$	0.04-0.09
	Top quark	
t _{lep}	FCNC with semileptonically decaying top	0.32-0.36
thad	FCNC with hadronically decaying top	0.29-0.30
lb	$t\bar{t}H$, $tHjb$, tWH , FCNC with semileptonically decaying top	0.41 - 0.52
	Photon	
$1\gamma - m_{\gamma\gamma}^{12}$	$ ilde{t}_2 ilde{t}_2, ilde{t}_2 o ilde{t}_1H, ilde{t}_1 o ilde{x}_1^{0}bqar{q}/b\ell v,ar{b}ar{b},ar{b} o ilde{x}_2^{0}b,ar{\chi}_2^{0} o ilde{\chi}_1^{0}H$	0.23-0.33
$1\gamma - m_{\gamma\gamma}^{23}$	$ ilde{t}_2 ilde{t}_2, ilde{t}_2 o ilde{t}_1H, ilde{t}_1 o ilde{\chi}_1^0bqar{q}/bar{t}_V$	0.35-0.40

Systematic uncertainties

Experimental uncertainty(159 NPs):

• Luminosity, lepton, Jets, b-tagging, missing ET, others

Signal modeling uncertainties (4 NP)

• QCD scale, parton shower, generator (Sherpa vs Madgraph), PDF

Background modeling uncertainties:

- Irreducible background (35 NPs): tt + W/Z/H, tri-top, others
- Reducible background (8 NPs): ttbar shape systematics, charge misID systematics

Statistical uncertainties

- Intrinsic stat. uncertainties
- ttW modeling

(Green: larger impact than 5%, Red: larger than 10%)

Uncertainty source	$\Delta \sigma$ [fb]		$\Delta \sigma / \sigma$	$\Delta \sigma / \sigma [\%]$	
Signal modelling					
tītī generator choice	+3.7	-2.7	+17	-12	
$t\bar{t}t\bar{t}$ parton shower model	+1.6	-1.0	+7	-4	
Other tītī modelling	+0.8	-0.5	+4	-2	
Background modelling					
$t\bar{t}H$ +jets modelling	+0.9	-0.7	+4	-3	
$t\bar{t}W$ +jets modelling	+0.8	-0.8	+4	-3	
$t\bar{t}Z$ +jets modelling	+0.5	-0.4	+2	-2	
Other background modelling	+0.5	-0.4	+2	-2	
Non-prompt leptons modelling	+0.4	-0.3	+2	-2	
<i>tīt</i> modelling	+0.3	-0.2	+1	-1	
Charge misassignment	+0.1	-0.1	+0	-0	
Instrumental					
Jet flavour tagging (b-jets)	+1.1	-0.8	+5	-4	
Jet uncertainties		-0.7	+5	-3	
Jet flavour tagging (light-flavour jets)		-0.6	+4	-3	
Jet flavour tagging (c-jets)		-0.4	+2	-2	
Simulation sample size		-0.3	+2	-1	
Other experimental uncertainties	+0.4	-0.3	+2	-1	
Luminosity	+0.2	-0.2	+1	-1	
Total systematic uncertainty	+4.6	-3.4	+20	-16	
Statistical				6	
Intrinsic statistical uncertainty		-3.9	+19	-17	
$t\bar{t}W$ +jets normalisation and scaling factors		-1.1	+6	-5	
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})		-0.3	+2	-1	
Total statistical uncertainty	+4.7	-4.3	+21	-19	
Total uncertainty	+6.6	-5.5	+29	-25	

STXS categorization

Region tīH, p^H ≥ 300 GeV tłH, 200 $\leq p_{\tau}^{H} < 300 \text{ GeV}$ tĒH, 120 $\leq p_{\pi}^{H} < 200 \text{ GeV}$ tĨH, 60 $\leq p_{\tau}^{H} < 120 \text{ GeV}$ tīH, p_ < 60 GeV S Х HII, p^V ≥ 150 GeV HII, p₊^V < 150 GeV $qq \rightarrow Hlv, p_{*}^{V} \ge 150 \text{ GeV}$ $qq \rightarrow Hly, p^{\vee} < 150 \text{ GeV}$ qq → Hqq, ≥ 2-jets, m ≥ 1000 GeV, p^H ≥ 200 GeV $qq \rightarrow Hqq$, \geq 2-jets, 350 $\leq m_{e}$ < 1000 GeV, $p_{-}^{H} \geq$ 200 GeV $qq \rightarrow Hqq$, ≥ 2 -jets, $m_{\perp} \geq 1000$, $p_{\perp}^{H} < 200 \text{ GeV}$ $qq \rightarrow Hqq$, ≥ 2 -jets, 700 $\leq m < 1000 \text{ GeV}$, $p_{\pi}^{H} < 200 \text{ GeV}$ qq → Hqq, ≥ 2-jets. 350 ≤ m, < 700 GeV, p + < 200 GeV $qq \rightarrow Hqq$, VH hadronic ga → Hag, ≤ 1-jet, VH veto $gg \rightarrow H, p_{_{\rm T}}^{\rm H} \ge 450 \; GeV$ $gg \rightarrow H, 300 \le p_{\tau}^{H} < 450 \text{ GeV}$ $gg \rightarrow H, 200 \le p_{\tau}^{H} < 300 \text{ GeV}$ gg → H, ≥ 2-jets, m, ≥ 350 GeV, p_-HJJ < 200 GeV $gg \rightarrow H_{\star} \ge 2$ -jets, $m_{_2} < 350 \text{ GeV}, 120 \le p_{_T}^H < 200 \text{ GeV}$ $gg \rightarrow H, \ge 2$ -jets, $m_{_2} < 350 \text{ GeV}, p_{_T}^H < 120 \text{ GeV}$ $gg \rightarrow H, 1$ -jet, $120 \le p_{+}^{H} < 200 \text{ GeV}$ $gg \rightarrow H$, 1-jet, $60 \le p_{-}^{H} < 120 \text{ GeV}$ $gg \rightarrow H$, 1-jet, $p_{-}^{H} < 60 \text{ GeV}$ $gg \rightarrow H$, 0-jet, $p_{\tau}^{H} \ge 10 \text{ GeV}$ 9 94 16 4 $gg \rightarrow H$, 0-jet, $p_{\tau}^{H} < 10 \text{ GeV}$

28 classes for the measurements are clearly distinguished with 101 categories with correlations controlled, including the 9 ttH/tH categories

70

60

50

40

30

20

10

0

The top-Higgs coupling with STXS

Top-Higgs coupling (κ_t) is directly measured

- tH yields are parameterized as function of $\kappa_t y_i = \kappa_t^2 A + \kappa_V^2 B + \kappa_t \kappa_V C$
- $\kappa_t = 1.01 \pm 0.09$ if resolve the ggF and H $\rightarrow \gamma\gamma$ processes with κ_t
- Remove assumptions by taking ratios among loop vertices (κ_v, κ_a), total width (κ_H), vector and top couplings (κ_v, κ_t)

H+X search: event selection

- 22 cut-based categories are defined with different final states, they are triggered by different BSM models
- The additional top-Higgs sectors can results in multiple b-jets, jets, leptons, high HT (scalar sum of jet pT), high missing ET and additional top candidates
- The searches are performed independently in all the signal regions, by S+B fits on the $m(\gamma\gamma)$

Target	Region	Detector Level
Heavy flavor	$\geq 3b$	$n_{b-\text{jet}} \ge 3,85\%$ W.P.
	$\geq 4b$	$n_{b-\text{jet}} \ge 4,85\%$ W.P.
	≥4j	$n_{\rm jet} \ge 4, \eta_{\rm jet} < 2.5$
	≥6j	$n_{\text{iet}} \geq 6, \eta_{\text{jet}} < 2.5$
High jet	≥8j	$n_{\text{jet}} \geq 8, \eta_{\text{jet}} < 2.5$
activity	$H_{\rm T}$ >500 GeV	$H_{\rm T} > 500 { m GeV}$
	$H_{\rm T}$ >1000 GeV	$H_{\rm T} > 1000 { m ~GeV}$
	$H_{\rm T}$ >1500 GeV	$H_{\rm T} > 1500 { m ~GeV}$
	$E_{\rm T}^{\rm miss}$ > 100 GeV	$E_{\rm T}^{\rm miss} > 100 { m ~GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ > 200 GeV	$E_{\rm T}^{\rm miss} > 200 { m GeV}$
	$E_{\rm T}^{\rm miss}$ > 300 GeV	$E_{\rm T}^{\rm miss} > 300 {\rm ~GeV}$
Тор	lb	$n_{\ell=e,\mu} \ge 1, n_{b-\text{iet}} \ge 1,70\%$ W.P.
	t _{lep}	$n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1,70\%$ W.P.
	t _{had}	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b-\text{jet}} = 1,$ 70% W.P., BDT _{top} >0.9
	$\geq 1\ell$	$n_{\ell=e,\mu} \ge 1$
	2ℓ	$ee, \mu\mu, \text{ or } e\mu$
Lepton	2ℓ-Z	$ee, \mu\mu$, or $e\mu, m_{\ell\ell} - m_Z > 10$ if leptons are same flavor
	SS-2ℓ	$ee, \mu\mu$, or $e\mu$ with the same charge
	$\geq 3l$	$n_{\ell=e,\mu} \geq 3$
	$\geq 2\tau$	$n_{\tau,had} \ge 2 \dagger$
Photon	$1 \gamma - m_{\gamma\gamma}^{12}$	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_1, γ_2
	$1 \gamma - m_{\gamma\gamma}^{23}$	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3

The publications before the observation

Before observation, both ATLAS and CMS measured four-top with Run-2 data, we declared evidences

Then, both analyses decided to re-optimize with the same data, eventually there are observations in the single channel of 2LSS/3L

ATLAS+CMS Preliminary Run 2, √s = 13 TeV, November 2022 LHC*top*WG $\sigma_{t\bar{t}t\bar{t}}$ = 12.0 $^{+2.2}_{-2.5}$ (scale) fb tot. stat. JHEP 02 (2018) 031 NLO QCD+EW Obs. (Exp.) Sig. $\sigma_{\rm min} \pm {\rm tot.} ({\rm stat.} \pm {\rm syst.})$ ATLAS, 2LSS/3L, 139 fb⁻¹ $24^{+7}_{-6}(5^{+5}_{4})$ fb 4.3 (2.4) σ EPJC 80 (2020) 1085 ATLAS, 1L/2LOS, 139 fb-1 26^{+17}_{-15} (8 $^{+15}_{-13}$) fb 1.9 (1.0) σ JHEP 11 (2021) 118 ATLAS, comb., 139 fb⁻¹ 24^{+7}_{-6} (4⁺⁵₄) fb 4.7 (2.6) σ H + H JHEP 11 (2021) 118 CMS, 2LSS/3L, 137 fb⁻¹ 12.6^{+5.8}_{-5.2} fb 2.6 (2.7) σ EPJC 80 (2020) 75 CMS, 1L/2LOS, 35.8 fb⁻¹ 0^{+20} fb 0.0 (0.4) σ JHEP 11 (2019) 082 CMS, 1L/2LOS/all-had, 138 fb⁻¹ 38 ⁺¹³₋₁₁ fb 3.7 (1.5) σ CMS-PAS-TOP-21-005 * CMS, comb., 138 fb⁻¹ 17 ⁺⁵ fb **3.9 (3.2)** σ CMS-PAS-TOP-21-005 * *Preliminary 80 0 20 40 60 100 120 $\sigma_{_{f\overline{t}f\overline{t}}}$ [fb]

Object and event selections

SR

 130 ± 40

tŦW

GNN multivariate analysis

- "global score" is used and chosen as the event classifier and the observable in the pre-selected region
 - 10% higher sensitivity compared with the best BDT methods after fine tuning.

Good data/mc agreements on the GNN score are observed

Data vs MC when GNN > 0.6

Higgs potential and phase transition

Phase Transition

