Probing Inelastic Dark Matter at the LHC, FASER and STCF

卢致廷 Chih-Ting Lu

06285@njnu.edu.cn

Collaborators:

Jianfeng Tu, Lei Wu

第十七届TeV工作组学术研讨会

e-Print: 2309.00271 [hep-ph] (accepted by PRD)

Contents

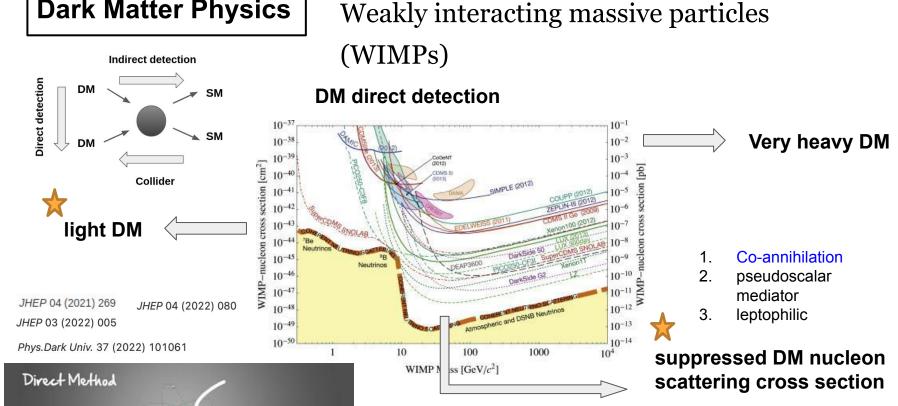
1. Motivation for inelastic DM models

2. Review of inelastic DM models

3. Search for inelastic DM at the LHC, FASER and STCF

4. Conclusion

Contents


1. Motivation for inelastic DM models

2. Review of inelastic DM models

3. Search for inelastic DM at the LHC, FASER and STCF

4. Conclusion

Dark Matter Physics

Motivation: Sub-GeV DM

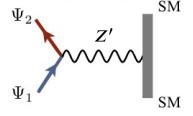
The fermionic DM:

(1) Vector mediators:

$$\chi\chi \to A'A', \chi\chi \to A' \to f\overline{f}$$
 (s-wave) $\Rightarrow m_\chi \gtrsim 10 {
m GeV}$ from CMB constraint

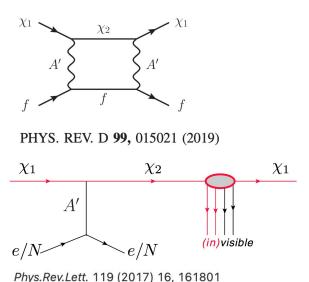
Solutions : asymmetric DM, inelastic DM, forbidden DM, freeze-in mechanism models, etc ...

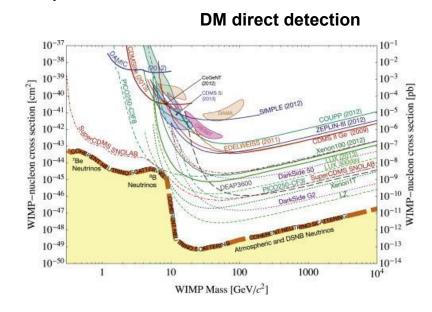
(2) Scalar meidators:


$$\chi\chi \to SS, \chi\chi \to S \to f\overline{f}$$
 (p-wave)
$$\Rightarrow m_\chi \gtrsim 10 {\rm MeV} \ \ {\rm from\ BBN\ constraint}$$

Motivation: Inelastic DM

- 1. The inelastic (or excited) DM model with extra $U(1)_D$ gauge symmetry is one of the most popular dark sector models with light DM candidate.
- 2. There are at least two states in the dark sector and there is an inelastic transition between them via the new $U(1)_D$ gauge boson.
- 3. If the mass splitting between these two states are small enough the co-annihilation channel could be the dominant one of DM relic density in early Universe.


 Dark matter has 2 nearly


degenerate states $\delta m \ll m_{\Psi_1}$ $\Psi_2 \longrightarrow$

Motivation: Inelastic DM

The constraint from DM and nucleon inelastic scattering is much weaker than the elastic one in the direct detection experiments.

Contents

Motivation for inelastic DM models

2. Review of inelastic DM models

3. Search for inelastic DM at the LHC, FASER and STCF

4. Conclusion

Fermion inelastic DM model

$$Q_{D}(\Phi) = +2 \text{ and } Q_{D}(\chi) = +1.$$

$$\mathcal{L}_{\text{scalar}} = |D_{\mu}H|^{2} + |D_{\mu}\Phi|^{2} - V(H, \Phi),$$

$$V(H, \Phi) = -\mu_{H}^{2}H^{\dagger}H + \lambda_{H}(H^{\dagger}H)^{2} - \mu_{\Phi}^{2}\Phi^{*}\Phi + \lambda_{\Phi}(\Phi^{*}\Phi)^{2} + \lambda_{H\Phi}(H^{\dagger}H)(\Phi^{*}\Phi),$$

$$\mathcal{L}_{\chi} = \overline{\chi}(i\partial + g_{D}X - M_{\chi})\chi - \left(\frac{f}{2}\overline{\chi^{c}}\chi\Phi^{*} + H.c.\right),$$

$$\mathcal{L}_{\chi} = \frac{1}{2}\overline{\chi_{2}}(i\partial - M_{\chi_{2}})\chi_{2} + \frac{1}{2}\overline{\chi_{1}}(i\partial - M_{\chi_{1}})\chi_{1} - i\frac{g_{D}}{2}(\overline{\chi_{2}}X\chi_{1} - \overline{\chi_{1}}X\chi_{2}) - \frac{f}{2}h_{D}(\overline{\chi_{2}}\chi_{2} - \overline{\chi_{1}}\chi_{1}),$$

$$\chi_{1,2}(x) = \frac{1}{\sqrt{2}}(\chi(x) \mp \chi^{c}(x)).$$

Review of inelastic DM models

In the unitrary gauge, the scalar fields can be expanded as

$$H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$
 , $\Phi(x) = \frac{1}{\sqrt{2}} (v_D + h_D(x))$

Expand the kinematic mixing term in the first order of epsilon:

$$\mathcal{L}_{X,gauge} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sin\epsilon}{2} B_{\mu\nu} X^{\mu\nu}$$

$$\mathcal{L}_{Z'f\overline{f}} = -\epsilon e c_W \sum_f x_f \overline{f} Z'f \qquad m_{Z'} \simeq g_D Q_D(\Phi) v_D$$

$$x_l = -1, \ x_\nu = 0, \ x_q = \frac{2}{3} \text{ or } \frac{-1}{3}$$

Review of inelastic DM models

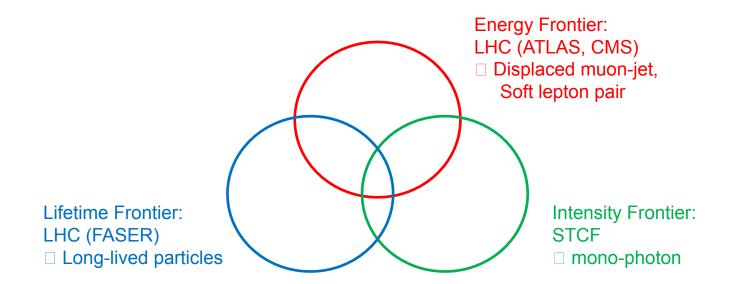
After the SSB of this $U(1)_D$ gauge symmetry, we expect the accidentally residual Z_2 symmetry, $\chi_1 \to -\chi_1$, can be left such that χ_1 are stable and become DM candidates in our University.

Gauge interaction :
$$-i\frac{g_D}{2}(\overline{\chi_2}X\chi_1-\overline{\chi_1}X\chi_2)$$

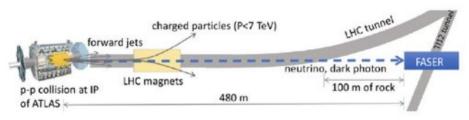
The term to trigger the mass splitting :
$$-\left(\frac{f}{2}\overline{\chi^c}\chi\Phi^* + H.c.\right)$$

$$M_{\chi_{1,2}} = M_{\chi} \mp f v_D$$
 $\Delta_{\chi} \equiv (M_{\chi_2} - M_{\chi_1}) = 2f v_D$

Contents

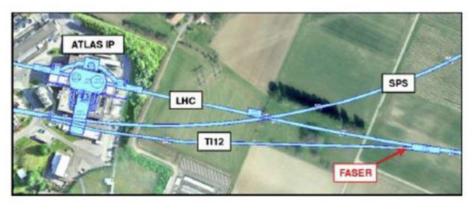

1. Motivation for inelastic DM models

2. Review of inelastic DM models


3. Search for inelastic DM at the LHC, FASER and STCF

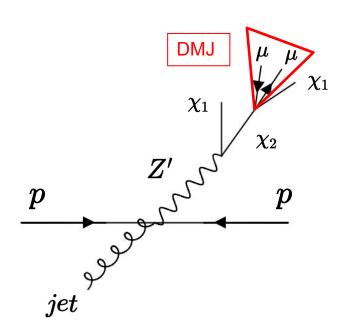
4. Conclusion

Search for inelastic DM from three frontier experiments



FASER (ForwArd Search ExpeRiment)

 $pp \to \chi_2 + \chi_1, \ \chi_2 \text{ travels} \sim 480 \text{m},$ then $\chi_2 \to \chi_1 f \overline{f}$.

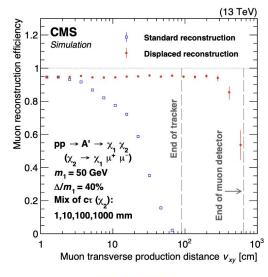

FASER: L = 1.5 m, R = 0.1 m,

FASER 2: L = 5m, R = 1m.

$$E_{\rm vis} > 100 \,{\rm GeV}$$

the integrated luminosity, \mathcal{L} , for FASER and FASER 2 is 150 fb⁻¹ and 3 ab⁻¹

Displaced Muon-Jet (DMJ)


Event selections:

$$p_T^j > 120 \text{ GeV}$$

$$p_T^{\mu} > 5 \text{ GeV}$$

$$d_{\mu} > 1 \text{ mm}$$

$$R_{\chi_2}^{xy} < 30 \text{ cm}$$



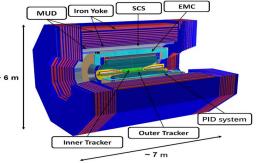
e-Print: 2305.11649 [hep-ex]

Soft lepton pair

The compressd mass spectrum search at the LHC is closely related to the DM co-annihilation mechanism.

Co-annihilation LHC signature (soft leptons) $\chi_1 \qquad \qquad f \qquad \qquad q \qquad \qquad \chi_1 \qquad \qquad \chi_2 \qquad \qquad f \qquad \qquad q \qquad \qquad \chi_2 \qquad \qquad \chi_1 \qquad \qquad \chi_2 \qquad \qquad \chi_3 \qquad \qquad \chi_3 \qquad \qquad \chi_4 \qquad \qquad \chi_5 \qquad$

We recast the following ATLAS analysis for the inelastic DM models:


G. Aad et al. (ATLAS),

Phys. Rev. D **101**, 052005 (2020), 1911.12606.

中国超级陶-粲装置

Super Tau-Charm Facility (STCF)

Designed STCF:

- 1. Peak luminosity $0.5-1 \times 10^{35}$ cm⁻²s⁻¹ at 4 GeV.
- 2. Energy rang $E_{cm} = 2-7$ GeV.
- 3. Single Beam Polarization (Phase II)

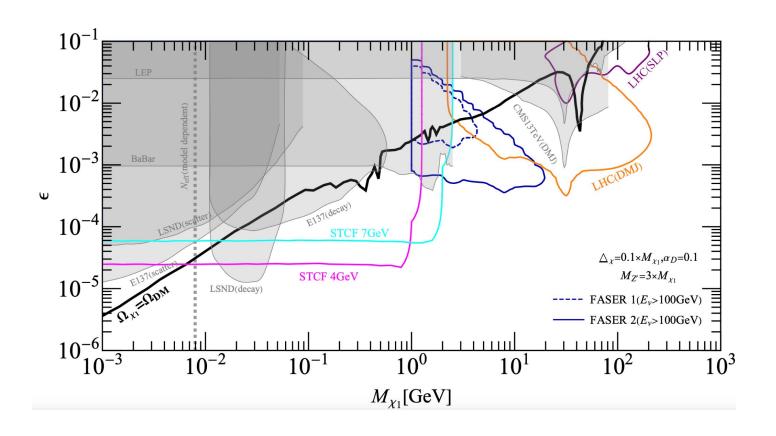
Process: Mono-photon

$$e^+e^- \to \gamma Z' \to \gamma(\underline{\chi_1\chi_2})$$
missing energy

Event selections:

In the barrel region $(|z_{\gamma}| < 0.8)$

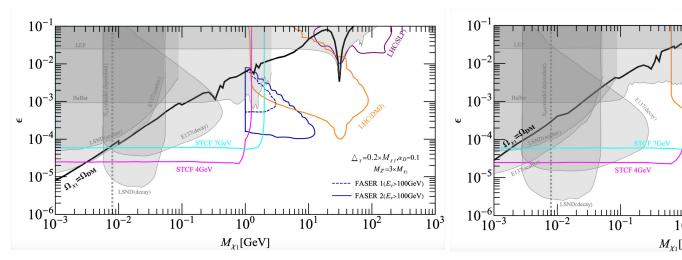
$$E_{\gamma} > 25 \text{ MeV}$$

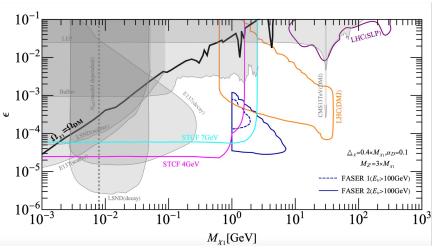

In the end-caps region

$$(0.92 > |z_{\gamma}| > 0.86)$$

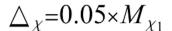
$$E_{\gamma} > 50 \text{ MeV}$$

$$z_{\gamma} \equiv \cos \theta_{\gamma}$$

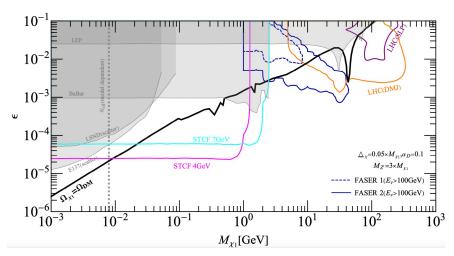

Projected Sensitivities of Three Frontier Experiments

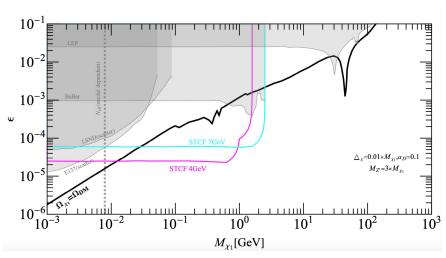


Projected Sensitivities of Three Frontier Experiments


$$\triangle_{\chi} = 0.2 \times M_{\chi_1}$$

$$\triangle_{\chi} = 0.4 \times M_{\chi_1}$$





Projected Sensitivities of Three Frontier Experiments

$$\triangle_{\chi}$$
=0.01× M_{χ_1}

Contents

Motivation for inelastic DM models

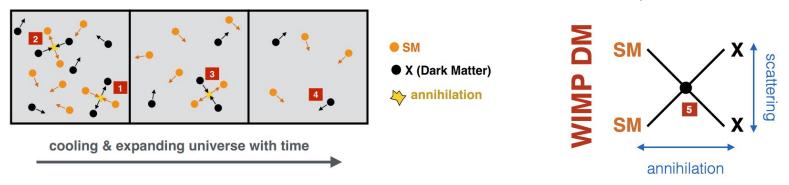
2. Review of inelastic DM models

3. Search for inelastic DM at the LHC, FASER and STCF

4. Conclusion

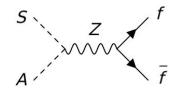
Conclusion

- The inelastic DM model is one kind of simple UV complete DM model to allow the sub-GeV DM candidate. Besides, this model can easily escape the strong DM direct detection constraints.
- We consider the Energy Frontier (LHC), Lifetime Frontier (FASER) and Intensity Frontier (STCF) experiments to search for inelastic DM for the DM mass from 1 MeV to 210 GeV.
- In our benchmark settings, we found that the parameter space for the observed DM relic density can be covered by the combination of these experiments.


Thank you for your attention

Back-up Slides

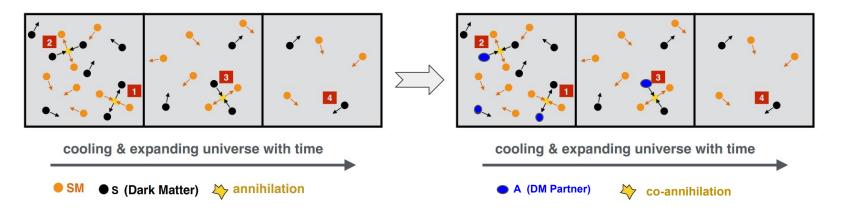
DM thermal history


Standard thermal relic

- (1) When the temperature $kT \gg m_X c^2$, both the SM and DM were in thermal equilibrium, $SM + SM \leftrightarrow X + X$
- (2) As the universe cools to $kT \lesssim m_X c^2$, only $X + X \to SM + SM$ is possible and drastically reducing DM abundance.
- (3) DM becomes so dilute and the abundance is frozen-out and survies to this day.

Dark Matter Co-annihilation Process

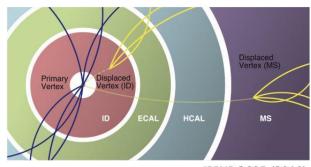
co-annihilation



relic density

$$\Omega_{DM}h^2 \propto \frac{1}{\langle \sigma v \rangle_f} \propto e^{2\frac{\Delta^0}{T_f}}$$

$$\Delta^0 = m_A - m_S \ll m_S$$

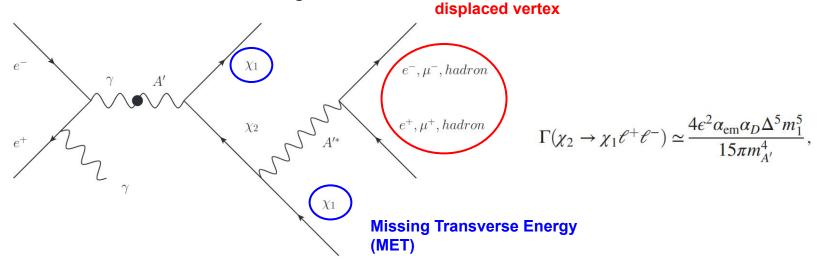

 T_f is the temperature at which the co-annihilation freeze-out.

Long-lived particles (LLPs)

LLPs in Standard Model (SM):

- 1. neutron : mean lifetime = 879.4(6) s $n^0 \to p^+ + e^- + \bar{\nu}_e + \gamma$
- 2. charged pion : mean lifetime = $2.6033+-0.0005 \times 10^{-8}$ S

JPPNP 3695 (2019)

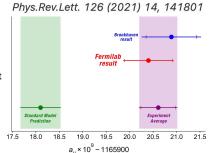

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
 $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$

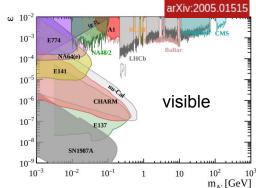
LLPs in the beyond Standard Model (BSM):

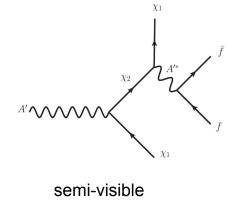
- 1. Heavy neutral leptons -> neutrino mass and mixing, matter-antimatter asymmetry.
- 2. Hidden mesons -> dark matter models, twin Higgs models, mirror fermion models.
- 3. The excited state in inelastic dark matter models.

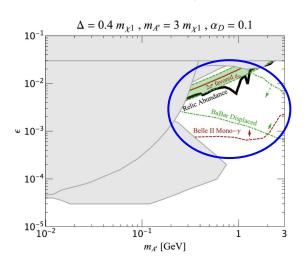
Motivation: Inelastic DM

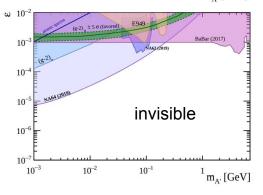
The excited DM state can naturally become long-lived and leave displaced vertex inside detectors after it has been produced at colliders such that we can search for such novel signatures!


Motivation: Inelastic DM


Muon g-2 anomaly


Revisiting the dark photon explanation of the muon anomalous magnetic moment $% \left(1\right) =\left(1\right) \left(1$


Gopolang Mohlabeng (Brookhaven) (Feb 13, 2019)


Published in: Phys.Rev.D 99 (2019) 11, 115001 • e-Print: 1902.05075 [hep-ph]

