

Search for Higgs Boson Pairs in the $bb\tau\tau$ Final State with the ATLAS Experiment

第十七届TeV工作组学术研讨会 2023.12.15-19

Higgs Discovery in 2012

Higgs Potential Not Determined Yet

- New physics (e.g. first order electroweak phase transition) can cause a significant deviation away from SM predicted Higgs potential
- Measurements of Higgs self-coupling can provide discrimination between different scenarios/models

Tadpole-Induced Higgs

Ref: Phys. Rev. D 101, 075023 (2020)

Higgs Self-coupling and HH Production

- Higgs potential: $V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$
 - > In SM, $\lambda \approx 0.13$ give m_H ≈ 125 GeV
- HH productions provide directly access to Higgs self-coupling $\kappa_{\lambda} (\lambda_{HHH} / \lambda_{SM})$
- SM non-resonant HH: σ_{HH}^{ggF} = 31.05 fb, σ_{HH}^{VBF} = 1.72 fb
 - $\succ~$ Direct access to κ_{λ} and Higgs potential
 - > VBF: unique process to probe HHVV coupling (κ_{2V})

x,

н

bbττ Final State

- $bb\tau\tau$: moderate BR, relatively clean signature
- Split into two channels depending on τ decay: $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$

 $au_{
m had}^{
m vis}$

Our "Camara": ATLAS Detector

did you say cheese?

Run 2 Dataset at ATLAS Experiment

- Great operation of the LHC and performance of ATLAS detector
- 139 fb⁻¹ of 13 TeV pp collision data collected for physics by the ATLAS detector during the LHC Run 2

Event Selection for HH \rightarrow bb $\tau\tau$

• Signal signature: two b-jets (DNN-based tagger, 77%) and $\tau_{had}\tau_{had}/\tau_{lep}\tau_{had}$ with opposite charge

Signal region	Tau/Lepton	Trigger
$ au_{had} au_{had}$	2 hadronic <i>τ</i>	Single or Di-tau Trigger (STT/DTT)
$ au_{lep} au_{had} SLT$	1 hadronic τ + 1 e/µ	Single lepton trigger (SLT)
$ au_{lep} au_{had} LTT$	1 hadronic τ + 1 e/µ	Lepton+tau trigger (LTT)

- Trigger-dependent thresholds on $e/\mu/\tau_{had}$ and jets
- e/ μ veto for $\tau_{had}\tau_{had}$; exactly 1 e/ μ for $\tau_{lep}\tau_{had}$
- $m_{\tau\tau}^{MMC}$ > 60 GeV for all channels; m_{bb} < 150 GeV for $\tau_{lep}\tau_{had}$

ggF vs VBF Categorization BDT

- BDT trained to separate ggF HH from VBF HH on events with 4 jets (two VBF-jet candidates + two H→bb)
- Input variables: m_{jj}^{VBF} , ΔR_{jj}^{VBF} , $\eta_{j1} \times \eta_{j2}$, etc
- BDT cuts optimized in each SR to achieve the best limit on HH as well as constraint for κ_{λ} and κ_{2V}

Discriminant BDTs

- In each SR, BDTs trained in low m_{HH}, high m_{HH} and VBF categories respectively and used as final discriminants
 - > Input variables: m_{HH} , m_{bb} , $m_{\tau\tau}^{MMC}$, $\Delta R(b,b)$, $\Delta R(\tau,\tau)$, E_T^{miss} , etc

Discriminant BDTs in $\tau_{lep} \tau_{had}$

Background Estimation

- ttbar and Z+heavy-flavor processes: shape from simulation, normalizations determined from the control region
- Single Higgs and other processes: estimated from simulation
- Jets → fake τ_{had} background: estimated with data-driven approach

Upper Limit on Non-resonant HH XS

- No significant excess seen above the SM prediction (µ=1)
- Obs. (exp.) limit on HH XS is 5.9 (3.1) $\times \sigma_{SM}$
 - The exp. limit represents the best constraint on HH XS in single channel
- Obs. limit higher than exp. due to a statistical fluctuation in the $\tau_{\rm lep} \tau_{\rm had}$ SLT high m_{HH} region

Major uncertainties coming from data/MC statistics as well as theory unc. on top and single Higgs processes

Constraints for κ_{λ} and κ_{2V}

- Presented the latest search for non-resonant HH \rightarrow bb $\tau\tau$ based on the Run 2 dataset at ATLAS: no deviation from SM prediction seen
- Sensitive probe of HH production and Higgs self-coupling obtained: 20% improvement on expected limit on HH XS/signal strength w.r.t. previous publication (JHEP 07 (2023) 040)
- Run 3 and HL-LHC provide more room for exploring the Higgs potential and self-coupling!

Flavor Tagging Improvement

<u>t</u> Identification Improvement</u>

RNN ID shows 2x improvement compared with BDT Moved from "medium" to "loose" WP Per-tau efficiency: 1-prong: $75\% \rightarrow 85\%$ 3-prong: $60\% \rightarrow 75\%$

Resonant Signal Extraction

- Parametrized neural networks (PNN) used as discriminant
 - > Parametrized in mass of scalar ($\theta = m_X$)
 - Training variables same as non-resonant
- It provides near-optimal sensitivity and continuity over the entire range

<u>Resonant HH→bbττ Results</u>

Obs. (exp.) upper limits: 920-23 fb (840-12 fb) depending on the mass region Local (global) significance for 1 TeV is 3.0σ (2.0σ)

Results from HH+H Combination

Obs. (exp.) κ_{λ} constraint: $-0.4 \le \kappa_{\lambda} \le 6.3$ (-1.9 $\le \kappa_{\lambda} \le 7.6$)

The best constraints on HH signal strength and κ_{λ} to date

Resonant HH Combination Result

HL-LHC Projection

ATL-PHYS-PUB-2022-053

	Significance $[\sigma]$			Combined signal	
Uncertainty scenario	$bar{b}\gamma\gamma$	$bar{b} au^+ au^-$	bbbb	Combination	strength precision [%]
No syst. unc.	2.3	4.0	1.8	4.9	-21/+22
Baseline	2.2	2.8	0.99	3.4	-30/+33
Theoretical unc. halved	1.1	1.7	0.65	2.1	-47/+48
Run 2 syst. unc.	1.1	1.5	0.65	1.9	-53/+65

Uncertainty scenario	<i>κ</i> _λ 68% CI	κ _λ 95% CI
No syst. unc.	[0.7, 1.4]	[0.3, 1.9]
Baseline	[0.5, 1.6]	[0.0, 2.5]
Theoretical unc. halved	[0.3, 2.2]	[-0.3, 5.5]
Run 2 syst. unc.	[0.1, 2.4]	[-0.6, 5.6]

We Were Doing Better than Projection

Higgs Pair Production in the $H(\rightarrow \tau\tau)H(\rightarrow b\bar{b})$ channel at theHigh-Luminosity LHCATL-PHYS-PUB-2015-046

ing SM background and SM signal, we expect to set an upper limit of the cross section for the di-Higgs production of $4.3 \times \sigma (HH \rightarrow b\bar{b}\tau^+\tau^-)$ at 95% Confidence Level. Using an effective Lagrangian for the Higgs potential, and allowing its trilinear self-coupling to vary, we can project an exclusion of $\lambda_{HHH}/\lambda_{SM} \leq -4$ and $\lambda_{HHH}/\lambda_{SM} \geq 12$.

We Were Doing Better than Projection

Higgs Pair Production in the $H(\rightarrow \tau\tau)H(\rightarrow b\bar{b})$ channel at theHigh-Luminosity LHCATL-PHYS-PUB-2015-046

ing SM background and SM signal, we expect to set an upper limit of the cross section for the di-Higgs production of $4.3 \times \sigma(HH \rightarrow b\bar{b}\tau^+\tau^-)$ at 95% Confidence Level. Using an effective Lagrangian for the Higgs potential, and allowing its trilinear self-coupling to vary, we can project an exclusion of $\lambda_{HHH}/\lambda_{SM} \leq -4$ and $\lambda_{HHH}/\lambda_{SM} \geq 12$.

Obs. (exp.) limit on HH: 4.7 (3.9) × σ_{SM} Obs. (exp.) κ_{λ} constraint: -2.4 ≤ κ_{λ} ≤ 9.2 (-2.0 ≤ κ_{λ} ≤ 9.0) The HL-LHC projection (3 ab⁻¹) in 2015 was surpassed with just 139 fb⁻¹ data