Type II seesaw leptogenesis

中山大学

第十七届TeV物理工作组学术研讨会 东南大学 2023.12.16

粒子物理标准模型/宇宙学标准模型

three generations of matter interactions / force carriers (fermions) (bosons) Ш Ш =2.2 MeV/c² =1.28 GeV/c² =173.1 GeV/c² =124.97 GeV/c² mass charge 0 34 н С g u τ 3/4 spin 3/up charm top gluon higgs S ≃4.18 GeV/c² S =4.7 MeV/c² ≈96 MeV/c^a SCALAR BOSON OUARK S b d Y ₩. 3/2 strange bottom down photon =0.511 MeV/c² ≈105.66 MeV/c² ≃1.7768 GeV/c² =91.19 GeV/c2 SON -1 Z е Ц τ 3/2 Z boson electron tau muon Õ ≌ Sous EPTONS <1.0 eV/c² <0.17 MeV/c² <18.2 MeV/c^a ≈80.433 GeV/c² ±1 Ve Vμ ντ **GAUG** VECTOR I 3/2 Ð electron muon tau W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

∧CDM+Inflation

物质的基本组成及其相互作用

物质的起源与演化

Common problems: what is the Universe made of?

正反物质不对称性(重子不对称性)

- Why is there baryon asymmetry? If not $n_b/n_\gamma = n_{\bar{b}}/n_\gamma \sim 10^{-20}$
- Why the asymmetry is so small? In the early universe (T > 1 GeV) $n_b, n_{ar{b}} \sim n_\gamma$

正反物质不对称什么时候产生?

不能晚于原初核合成,否则元素丰度不一致

不能早于暴胀,因为宇宙在很短时间内膨胀 了 e⁶⁰ 倍,任何早期的不对称性都变的极小

如何产生正反物质不对称性?

Sakharov 三条件

● 重子数破坏

● C和CP破坏

● 脱离热平衡

● 无法提供脱离热平衡条件(QCD相变和电弱相变均为 cross over)

● 即使有强一阶相变, 夸克部分提供CP破坏太小(10⁻¹⁹), 需要新的CP破坏源

标准模型

 \checkmark

X

New Physics beyond SM!

Standard Model of Elementary Particles

中微子振荡实验表明,中微子有微小的质量(~0.05eV), 因此必须对标准模型的粒子进行扩充

轻子部分提供了新的CP破坏源(T2K 3 sigma), 正 反物质不对称性从轻子部分开始——轻子生成机制 (由sphaleron过程传递给重子)

中微子质量起源——跷跷板机制

Simplest extension, not found yet, all possible

Type I seesaw leptogenesis

Baryogenesis Without Grand Unification (4000+ citations), Fukugita and Yanagida, 1986'

脱离热平衡条件由右手中微子 在宇宙早期热退耦来实现

$$\mathcal{L}_{I} = \mathcal{L}_{SM} + i\overline{N_{R_{i}}} \not \partial N_{R_{i}} - \left(\frac{1}{2}M_{i}\overline{N_{R_{i}}^{c}}N_{R_{i}} + \epsilon_{ab}Y_{\alpha i}\overline{N_{R_{i}}}\ell_{\alpha}^{a}H^{b} + h.c.\right)$$

$$\overset{H}{\underset{\ell_{\alpha}}{\overset{\ell_{\ell_{\alpha}}}{\overset{\ell_{\alpha}}{\overset{\ell_{\alpha}}}}}}}}}}}}}}$$

$$n_B = rac{28}{79} (\mathcal{B} - \mathcal{L})_i$$

一般要求右手中微子质量超过10⁷GeV, 很难进行检验

Type II seesaw

$$H(2, 1/2), \ \Delta(3, 1), \ L(2, -1/2)$$

$$H = \begin{pmatrix} h^+ \\ h \end{pmatrix}, \quad \Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

EW precision measurement $\mathcal{O}(1)~{
m GeV} > |\langle\Delta^0
angle|\gtrsim 0.05~{
m eV}$

required by neutrino masses

Type II seesaw leptogenesis?

Type II seesaw leptogenesis

希格斯三重态是标量粒子,在宇宙早期拥有大的真空期望值(提供暴胀),满足脱离热平衡条件,从而 实现轻子生成机制

PHYSICAL REVIEW LETTERS **128**, 141801 (2022) **Affleck-Dine Leptogenesis from Higgs Inflation** Neil D. Barrie⁽⁾,^{1,*} Chengcheng Han⁽⁾,^{2,†} and Hitoshi Murayama⁽⁾,^{3,4,5,‡}

We find that the triplet Higgs of the type-II seesaw mechanism can simultaneously generate the neutrino masses and observed baryon asymmetry while playing a role in inflation. We survey the allowed parameter space and determine that this is possible for triplet masses as low as a TeV, with a preference for a small

Type II Seesaw leptogenesis

Neil D. Barrie,^a Chengcheng Han^b and Hitoshi Murayama^{c,d,e,1}

Type II seesaw leptogenesis

- 三重态质量可以轻至 TeV,适合对撞机探测
- 轻子味改变的耦合 y > 10⁻⁵, 轻子味改变信号
- 真空期望值 < 10 keV (对比传统type II seesaw < 1 GeV)
- 中微子为Majorana粒子

Standard Model of Elementary Particles

Decay of the triplet Higgs

希格斯三重态质量可以低至TeV,可以通过对撞机进行验证

ATLAS, Eur. Phys. J. C 78 (2018) 199 100 ----- $B(\mathsf{H}_{\mathsf{L}}^{\pm\pm} \to \mathsf{H}^{\mathsf{H}}) = 1 \cdot B(\mathsf{H}_{\mathsf{L}}^{\pm\pm} \to \mathsf{X}) \, [\%]$ minimum limit 40 30 20 10 | ATLAS √s=13 TeV, 36.1 fb⁻¹ lower limit of m(H^{±±}) 4 - Observed 95% CL limit 3 ---- Expected 95% CL limit 2 Expected limit ±1o Expected limit ±20 300 400 500 600 700 800 900 1000 m(H^{±±}) [GeV]

轻子味破坏过程

N.D. Barrie, S.T. Petcov, JHEP 01 (2023) 001

真空稳定性

CCH, S. Huang, Z. Lei, Phys.Rev.D 107 (2023) 1, 015021

$$V(H,\Delta) = -m_H^2 H^{\dagger} H + m_{\Delta}^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_H (H^{\dagger} H)^2 + \lambda_1 (H^{\dagger} H) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_2 (\operatorname{Tr}(\Delta^{\dagger} \Delta))^2 + \lambda_3 \operatorname{Tr}(\Delta^{\dagger} \Delta)^2 + \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H + [\mu (H^T i \sigma^2 \Delta^{\dagger} H)]^2$$

真空稳定性条件

 $C_1, C_2, C_3, C_4, C_5 > 0$ and $[C_6 > 0 \text{ or } C'_6 > 0]$

$$\begin{array}{ll} C_{1} &= \lambda_{H} \; , \\ C_{2} &= \lambda_{2} + \lambda_{3} \; , \\ C_{3} &= \lambda_{2} + \frac{1}{2} \lambda_{3} \; , \\ C_{4} &= \lambda_{1} + 2 \sqrt{\lambda_{H} (\lambda_{2} + \lambda_{3})} \; , \\ C_{5} &= \lambda_{1} + \lambda_{4} + 2 \sqrt{\lambda_{H} (\lambda_{2} + \lambda_{3})} \; , \\ C_{6} &= |\lambda_{4}| \sqrt{\lambda_{2} + \lambda_{3}} - 2 \lambda_{3} \sqrt{\lambda_{H}} \; , \\ C_{6}' &= 2 \lambda_{1} + \lambda_{4} + \sqrt{(8 \lambda_{H} \lambda_{3} - \lambda_{4}^{2})(2 \lambda_{2} / \lambda_{3} + 1)} \end{array}$$

- 修正以往文献真空稳定性的条件
- 解决希格斯真空不稳定的问题

Type II seesaw leptogenesis along the ridge

CCH, Z. Lei, J. M. Yang, Type II seesaw leptogenesis along the ridge, arXiv:2312.01718

● 在标准模型基础上只增加一个希格斯三重态,可以同时解决三个问题:

暴胀,中微子质量和正反物质不对称

在对撞机、轻子味破坏、天文宇宙学实验都有独特的预言信号,可以
 对模型进行检验

THANK YOU

电弱重子生成

- 在电弱标度增加新的标量粒子(电弱强一阶相变)
- 额外的CP破坏

Is electroweak baryogenesis dead?

James M. Cline^{1,2} 2017'

¹CERN, Theoretical Physics Department, Geneva,

Switzerland

²Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8

- 对撞机信号
- 电子EDM偏离

No any evidence yet!

真空稳定性

CCH, S. Huang, Z. Lei, Phys.Rev.D 107 (2023) 1, 015021

$$V(H,\Delta) = -m_H^2 H^{\dagger} H + m_{\Delta}^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_H (H^{\dagger} H)^2 + \lambda_1 (H^{\dagger} H) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_2 (\operatorname{Tr}(\Delta^{\dagger} \Delta))^2 + \lambda_3 \operatorname{Tr}(\Delta^{\dagger} \Delta)^2 + \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H + [\mu (H^T i \sigma^2 \Delta^{\dagger} H)]^2$$

真空稳定性条件

 $C_1, C_2, C_3, C_4, C_5 > 0$ and $[C_6 > 0 \text{ or } C'_6 > 0]$

$$\begin{array}{ll} C_{1} &= \lambda_{H} \; , \\ C_{2} &= \lambda_{2} + \lambda_{3} \; , \\ C_{3} &= \lambda_{2} + \frac{1}{2} \lambda_{3} \; , \\ C_{4} &= \lambda_{1} + 2 \sqrt{\lambda_{H} (\lambda_{2} + \lambda_{3})} \; , \\ C_{5} &= \lambda_{1} + \lambda_{4} + 2 \sqrt{\lambda_{H} (\lambda_{2} + \lambda_{3})} \; , \\ C_{6} &= |\lambda_{4}| \sqrt{\lambda_{2} + \lambda_{3}} - 2 \lambda_{3} \sqrt{\lambda_{H}} \; , \\ C_{6}' &= 2 \lambda_{1} + \lambda_{4} + \sqrt{(8 \lambda_{H} \lambda_{3} - \lambda_{4}^{2})(2 \lambda_{2} / \lambda_{3} + 1)} \end{array}$$

- 修正以往文献真空稳定性的条件
- 解决希格斯真空不稳定的问题
- 只在电弱标度附近要求真空稳定性是不够的

电弱重子生成(Electroweak baryogenesis)

Rubakov and Shaposhnikov, 1996, D. E. Morrissey and M. J. Ramsey-Musolf, 2012'

- Strong first order phase transition (through adding new scalars)
- Additional new CP sources

• New scalars close to electroweak scale, constrained by LHC searches

• New CP violation is highly constrained by electron EDM(< $4.1*10^{-30}$ e.cm)

Sphaleron solution for SM

$$\begin{split} W_i^a \sigma^a \mathrm{d}x^i &= -\frac{2\mathrm{i}}{g} f(\xi) \mathrm{d}U^\infty (U^\infty)^{-1}, \quad \varphi = \frac{v}{\sqrt{2}} h(\xi) U^\infty \begin{pmatrix} 0\\1 \end{pmatrix}, \quad i = 1, 2, 3, \\ U^\infty &= \frac{1}{r} \begin{pmatrix} x^3 & x^1 + \mathrm{i}x^2\\ -x^1 + \mathrm{i}x^2 & x^3 \end{pmatrix}, \quad r \equiv \sqrt{\sum_i x^{i^2}}, \quad \xi \equiv gvr. \end{split}$$

$$f(\xi) = \begin{cases} \frac{\xi^2}{\Xi(\Xi+4)} & \xi \leq \Xi\\ 1 - \frac{4}{\Xi+4} \exp\left[\frac{1}{2}(\Xi-\xi)\right] & \xi \geq \Xi, \end{cases}$$
$$h(\xi) = \begin{cases} \frac{\sigma\Omega+1}{\sigma\Omega+2}\frac{\xi}{\Omega} & \xi \leq \Omega\\ 1 - \frac{\Omega}{\sigma\Omega+2}\frac{1}{\xi} \exp\left[\sigma(\Omega-\xi)\right] & \xi \geq \Omega, \end{cases}$$

$$f(0) = h(0) = 0, \quad \lim_{r \to \infty} f(r) = \lim_{r \to \infty} h(r) = 1,$$

$$Q(t) \equiv N_{\rm CS}(t) - N_{\rm CS}(0) = \frac{1}{32\pi^2} \int_0^t \mathrm{d}t' \int \mathrm{d}^3 x \epsilon_{\mu\nu\rho\sigma} \mathrm{Tr} W^{\mu\nu} W^{\rho\sigma}.$$

Instanton and Sphaleron

- 每次跃迁产生 $\Delta B = \Delta L = -3$ (只有左手粒子参与)
- 为标准模型提供重子数破坏的过程
- 可以把轻子物质的不对称转化为重子物质的不对称性(轻子生成机制)

Rubakov and Shaposhnikov, 1996, D. E. Morrissey and M. J. Ramsey-Musolf, 2012' 电弱重子生成

- 在电弱标度增加新的标量粒子(电弱强一阶相变)
- 额外的CP破坏

- 对撞机限制
- 电子EDM测量(< 4.1*10⁻³⁰ e.cm)

Is electroweak baryogenesis dead?

James M. Cline^{1,2} 2017'

¹CERN, Theoretical Physics Department, Geneva, Switzerland

²Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, Canada H3A 2T8

Finetuning of the parameters and challenge model building

EW baryogenesis within standard model

Phys.Rev.D 102 (2020) 7, 073003

Sphalerons, baryogenesis and helical magnetogenesis in the electroweak transition of the minimal standard model

Dmitri Kharzeev^{1,2}, Edward Shuryak¹ and Ismail Zahed¹

Phys.Rev.D 108 (2023) 6, 063502

Baryogenesis from sphaleron decoupling

Muzi Hong^{a,b1}, Kohei Kamada^{b2} and Jun'ichi Yokoyama^{a,b,c,d3}

- Large size sphaleron decoupling provides Sakharov third condition
- CP violation can be enhanced at low momentum
- The final baryon asymmetry is 2-3 order smaller than observed one

New source of CP violation is necessary!