Sterile Neutrino Portal Dark Matter with Z3 Symmetry

Zhi-Long Han

School of Physics and Technology, University of Jinan

December 16,2023

Based on Phys.Rev.D 108 (2023) 7, 075021 [2306.14091 [hep-ph]]

Zhi-Long Han (UJN)

Sterile Neutrino portal Z3 DM

December 16,2023 1/15

4 3 5 4 3 5

Relations between Sterile Neutrino and Dark Matter

1 The sterile neutrino can be decaying dark matter when $m_N \sim \text{keV}$. Tightly constrained by $N \rightarrow \nu \gamma$

(2) The sterile neutrino can be stable dark matter and act as mediator for neutrino mass.

Scotogenic mechanism, LFV constraints

★ The most popular dark matter candidate: WIMP.

Tightly constrained by direct detection

- 3 The sterile neutrino can be the mediator for dark sector:
 - Small nucleon scattering cross section for direct detection.
 - Large cosmic flux for indirect detection.
 - Promising signature of *N* at colliders.
- ★ The interactions are determined by the symmetry :

Z2, <u>**Z3**</u>, $U(1)_{B-L}$, **A4**,...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Model

★ The Dark Sector : a scalar singlet ϕ and a fermion singlet χ , which transform as $\chi \rightarrow e^{i2\pi/3}\chi$, $\phi \rightarrow e^{i2\pi/3}\phi$. ★The Yukawa interaction takes the form of

$$-\mathcal{L}_{Y} = \left(y_{\nu}\overline{L}\widetilde{H}N + y_{N}\phi\overline{\chi}N + h.c.\right) + y_{\chi}\phi\overline{\chi^{c}}\chi.$$
 (1)

*The scalar potential under the exact Z_2/Z_3 symmetry is

$$V = -\mu_H^2 H^{\dagger} H + \mu_{\phi}^2 \phi^{\dagger} \phi + \lambda_H (H^{\dagger} H)^2 + \lambda_{\phi} (\phi^{\dagger} \phi)^2$$

$$+ \lambda_{H\phi} (H^{\dagger} H) (\phi^{\dagger} \phi) + \left(\frac{\mu}{2} \phi^3 + h.c.\right).$$
(2)

The blue terms are interactions in the Z_2 symmetry, and the red terms are new in the Z_3 symmetry.

Z3 Fermion DM

Figure: The secluded channel $\chi\chi \rightarrow NN$ appears in Z_2 model, meanwhile the semi-annihilation channel $\chi\chi \rightarrow N\chi$ is new in Z_3 model.

Sterile Neutrino portal Z3 DM

• • • • • • • • • • • •

$$\frac{\mathrm{d}Y_{\chi}}{\mathrm{d}z} = -\frac{\lambda}{z^2} \langle \sigma v \rangle_{\chi\chi \to NN} \left(Y_{\chi}^2 - (Y_{\chi}^{\mathrm{eq}})^2 \right) - \frac{\lambda}{2z^2} \langle \sigma v \rangle_{\chi\chi \to N\chi} \left(Y_{\chi}^2 - Y_{\chi}^{\mathrm{eq}} Y_{\chi} \right) \quad (3)$$

Figure: The evolution of fermion dark matter abundance in different major annihilation channels. The orange horizontal lines correspond to the Planck observed abundance for $m_{\rm DM} = 500$ GeV.

December 16,2023 5/15

Samples with correct relic density for fermion DM.

4 3 > 4 3

Z3 Scalar DM

Figure: Z_2 model: $\phi\phi \rightarrow SM, NN$, new in Z_3 model: $\phi\phi \rightarrow \chi N, h\phi$.

< 🗇 🕨

$$\frac{\mathrm{d}Y_{\phi}}{\mathrm{d}z} = -\frac{\lambda}{z^{2}} \langle \sigma v \rangle_{\phi\phi \to \mathrm{SM}} \left(Y_{\phi}^{2} - (Y_{\phi}^{\mathrm{eq}})^{2} \right) - \frac{\lambda}{2z^{2}} \langle \sigma v \rangle_{\phi\phi \to h\phi} \left(Y_{\phi}^{2} - Y_{\phi}^{\mathrm{eq}} Y_{\phi} \right) \quad (4)$$
$$-\frac{\lambda}{z^{2}} \langle \sigma v \rangle_{\phi\phi \to NN} \left(Y_{\phi}^{2} - (Y_{\phi}^{\mathrm{eq}})^{2} \right) - \frac{\lambda}{2z^{2}} \langle \sigma v \rangle_{\phi\phi \to N\chi} \left(Y_{\phi}^{2} - \frac{(Y_{\phi}^{\mathrm{eq}})^{2}}{Y_{\chi}^{\mathrm{eq}}} Y_{\chi} \right)$$

Figure: The evolution of Scalar dark matter abundance

Zhi-Long Han (UJN)

Sterile Neutrino portal Z3 DM

December 16,2023 8/15

Samples with correct relic density for scalar DM.

Invisible Higgs decay.

- * ATLAS limit on invisible Higgs decay: $Br_{inv} < 0.11$.
- \star The theoretical Higgs invisible decay widths into dark matter :

$$\Gamma(h \to \phi \phi) = \frac{\lambda_{H\phi}^2 v^2}{8\pi m_h} \sqrt{1 - \frac{4m_{\phi}^2}{m_h^2}},$$
(5)

$$\Gamma(h \to \bar{\chi}\chi) = \frac{m_h (\lambda_{H\chi}^{eff})^2}{8\pi} \left(1 - \frac{4m_{\chi}^2}{m_h^2}\right)^{3/2},$$
(6)

where the one-loop effective $h\bar{\chi}\chi$ coupling is

$$\lambda_{H\chi}^{eff} = \lambda_{H\phi} \frac{y_N^2}{16\pi^2} \frac{m_N}{(m_{\phi}^2 - m_N^2)^2} \left(m_{\phi}^2 - m_N^2 + m_N^2 \log \frac{m_N^2}{m_{\phi}^2} \right).$$
(7)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Invisible Higgs decay.

Zhi-Long Han (UJN)

Sterile Neutrino portal Z3 DM

December 16,2023 11/15

イロト イヨト イヨト イヨト

Indirect Detection

Direct Detection

Figure: Elastic scattering diagrams. The cross sections are:

$$\sigma_{\phi n}^{\rm SI} = \frac{\lambda_{H\phi}^2}{\pi m_h^4} \frac{m_n^4 f_n^2}{(m_\phi + m_n)^2} , \qquad (8)$$

$$\sigma_{\chi n}^{\rm SI} = \frac{(\lambda_{H\chi}^{eff})^2}{\pi m_h^4} \frac{m_n^4 m_\chi^2 f_n^2}{(m_\chi + m_n)^2} , \qquad (9)$$

Zhi-Long Han (UJN)

Sterile Neutrino portal Z3 DM

December 16,2023 13/15

Direct Detection

* The Z_3 symmetry leads to new terms as $y_{\chi}\phi\overline{\chi^c}\chi$ and $(\frac{\mu}{2}\phi^3 + h.c.)$. * Semi-annihilation channels $\chi\chi \to N\chi, \phi\phi \to \chi N, h\phi$ enlarge the viable parameter space.

Dark Matter	Symmetry	$h \rightarrow inv$	$m_{ m DM} \lesssim 50~{ m GeV}$	Future CTA	Beyond CTA	Direct Detection
χ	Z_2	X	X	1	×	X
	Z_3	X	1	1	1	X
ϕ	Z_2	X	X	1	X	~
	Z3	1	1	1	×	1

Table: Different signatures for the Z_2 and Z_3 symmetric model.