

Optimizing Entanglement and Bell Inequality Violation in $t\bar{t}$ Events

Kun Cheng, Tao Han, and Matthew Low arXiv:2311.09166 & work in progress

Presenter: Kun Cheng

chengkun@pku.edu.cn

Introduction: Quantum state and Bell inequalities

Bell inequality: For a local theory, the results of two-outcome measurements $\hat{A}_{1,2}$ and $\hat{B}_{1,2}$ satisfy

$$\left| \langle \hat{A}_1 \hat{B}_1 \rangle + \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_1 \rangle - \langle \hat{A}_2 \hat{B}_2 \rangle \right| \le 2$$

Next consider a quantum theory. The density matrix in $\mathcal{H}_A \otimes \mathcal{H}_B$ can be parametrized as



$$\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j \right)$$

When choosing \hat{A}_i and \hat{B}_i as the angular momentum measurements along direction \vec{a}_i and \vec{b}_i , $\hat{A}_i = \hat{\sigma} \cdot \vec{a}_i$, the Bell inequality is rewritten as:

$$\left| \vec{a}_1 \cdot C \cdot (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C \cdot (\vec{b}_1 + \vec{b}_2) \right| \le 2$$

$$\mathscr{B}(\rho) = \max_{\vec{a}_i, \vec{b}_i} \left| \vec{a}_1 \cdot C \cdot (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C \cdot (\vec{b}_1 + \vec{b}_2) \right| = 2\sqrt{\mu_1^2 + \mu_2^2}$$

 μ_1^2, μ_2^2 are the largest two eigenvalue of C^TC When C_{ij} is symmetric, μ_i is its eigenvalue

Reconstruct density matrix produced at collider — quantum tomography

One qubit:
$$\rho^t = \frac{1}{2}(I_2 + B_i\sigma_i)$$
, $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_i} \approx \frac{1}{2}(1 + \overrightarrow{B} \cdot \overrightarrow{\ell}) \implies B_i = 3\langle \ell_i \rangle_{av}$ $\begin{cases} \ell_i = \cos\theta_i : \text{cosine of the} \\ \text{angle between } \overrightarrow{\ell} \text{ and axis } \hat{e}_i \end{cases}$

Bi-qubit system, $\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \sigma_j \right)$. The density matrix constructed from $t \to \ell^+ \nu b, \ \bar{t} \to \ell^- \bar{\nu} \bar{b}$ decay channel is

$$B_i^+ = 3\langle \ell_i^+ \rangle, \quad B_i^- = -3\langle \ell_i^- \rangle, \quad C_{ij} = -9\langle \ell_i^+ \ell_j^- \rangle$$

Measure the momentum

$$C_{ij} = -9\langle \ell_i^+ \ell_j^- \rangle_{av}$$

Obtain a density matrix, and test entanglement...

Quantum tomography: the processes to reconstruct a density matrix using measurements on an ensemble of events

$$\overline{\rho} = \frac{1}{N} \sum_{a=1}^{N} \rho_a,$$

$$\bar{\rho}^{\text{fic}} = \frac{1}{N} \sum_{a} U_a^{\dagger} \rho_a U_a$$
 (event-dependent basis choice \Longrightarrow fictitious state)

Current studies at the LHC are utilizing fictitious states, and the average $\langle \ell_i^+ \ell_i^- \rangle_{av}$ is basis dependent.

Event-by-event basis at collider

$$\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \sigma_j \right)$$

$$C_{ij} = -9 \langle \mathcal{E}_i^+ \mathcal{E}_j^- \rangle_{\text{av}}$$

Beam basis:

the spin basis $|\uparrow\rangle$ and $|\downarrow\rangle$ are define as spin eigenstates along \hat{z} -direction

Helicity basis:

the spin basis $|\uparrow\rangle$ and $|\downarrow\rangle$ are define as spin eigenstates along the moving direction of top quark.

Example (fictitious state is basis-dependent): Near threshold, the $q_R \bar{q}_L / e_R^+ e_L^- \to t\bar{t}$ processes produces a pure state $|\uparrow_z\uparrow_z\rangle$

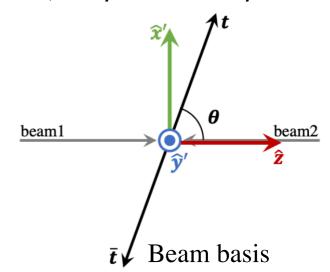
Physical state

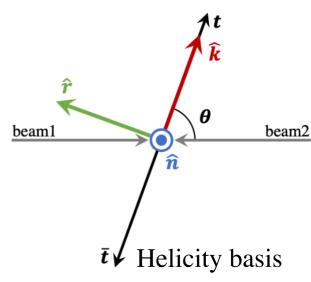
$$\operatorname{Tr}[(\bar{\rho}^{\operatorname{fixed}})^2] = 1$$

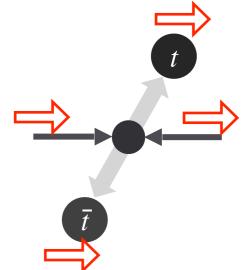
Fictitious state

$$\text{Tr}[(\bar{\rho}^{\text{fixed}})^2] = 1$$
 $\text{Tr}[(\bar{\rho}^{\text{helicity}})^2] \approx 0.7 < 1$

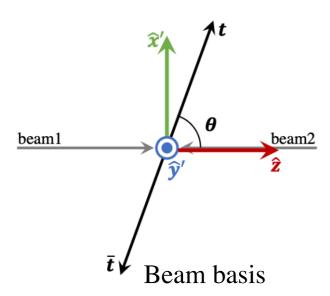
In the c.m. frame of $t\bar{t}$ $\mathbf{k} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$

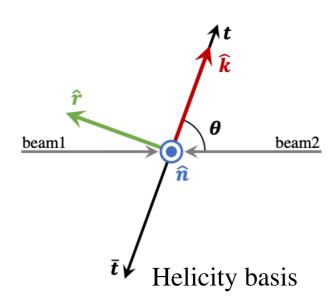


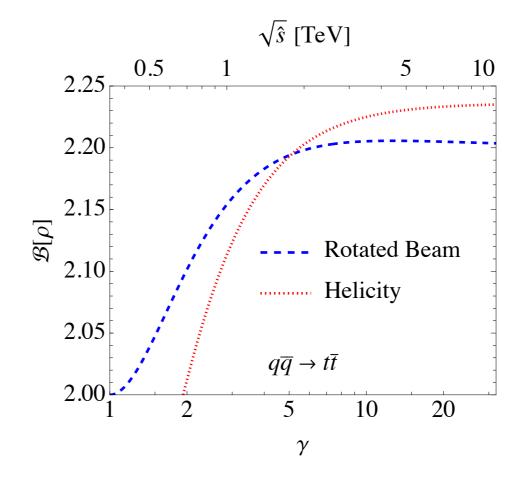




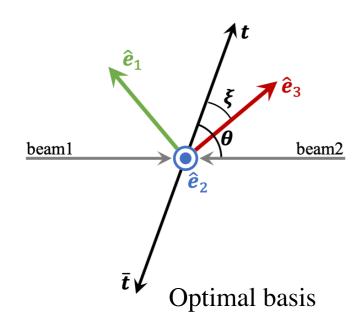
Basis dependence of Bell inequality violation



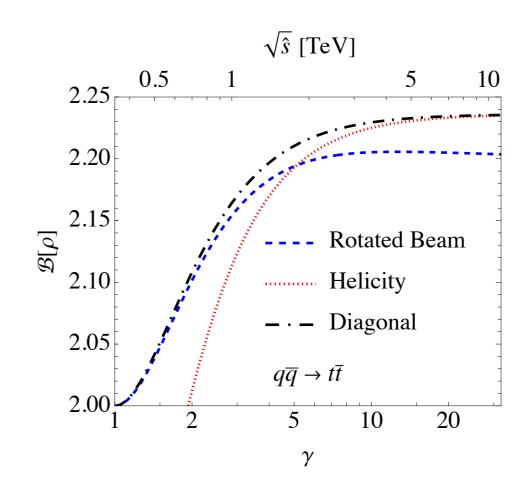




Basis dependence of Bell inequality violation



$$C^{ ext{diag}}(\mathbf{k}) = egin{pmatrix} \mu_1(\mathbf{k}) & 0 & 0 \ 0 & \mu_2(\mathbf{k}) & 0 \ 0 & 0 & \mu_3(\mathbf{k}) \end{pmatrix}$$



The basis that diagonalized the spin-spin correlation matrix C_{ij} maximize Bell inequality violation arXiv: 2311.09166

Parton-level processes: $e^+e^- \rightarrow t\bar{t}$

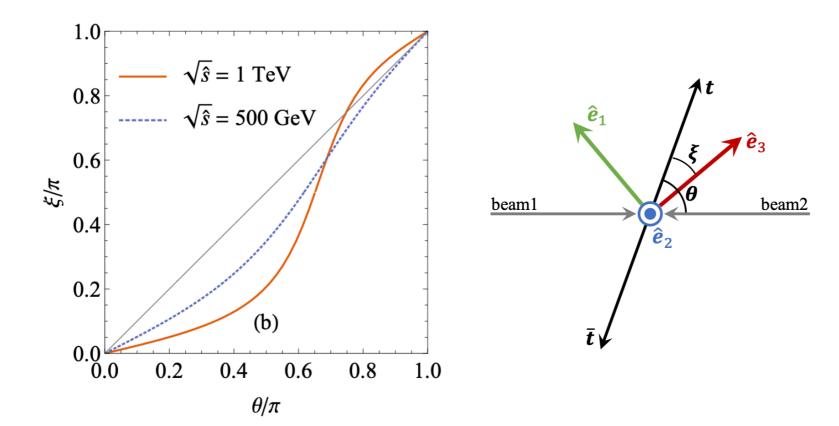
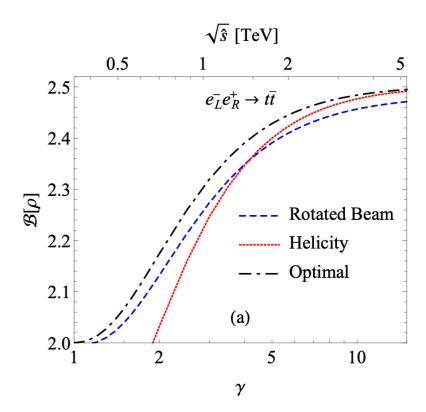
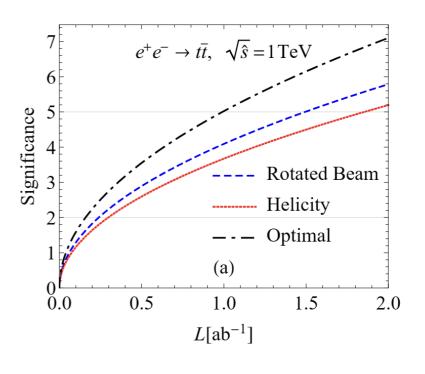
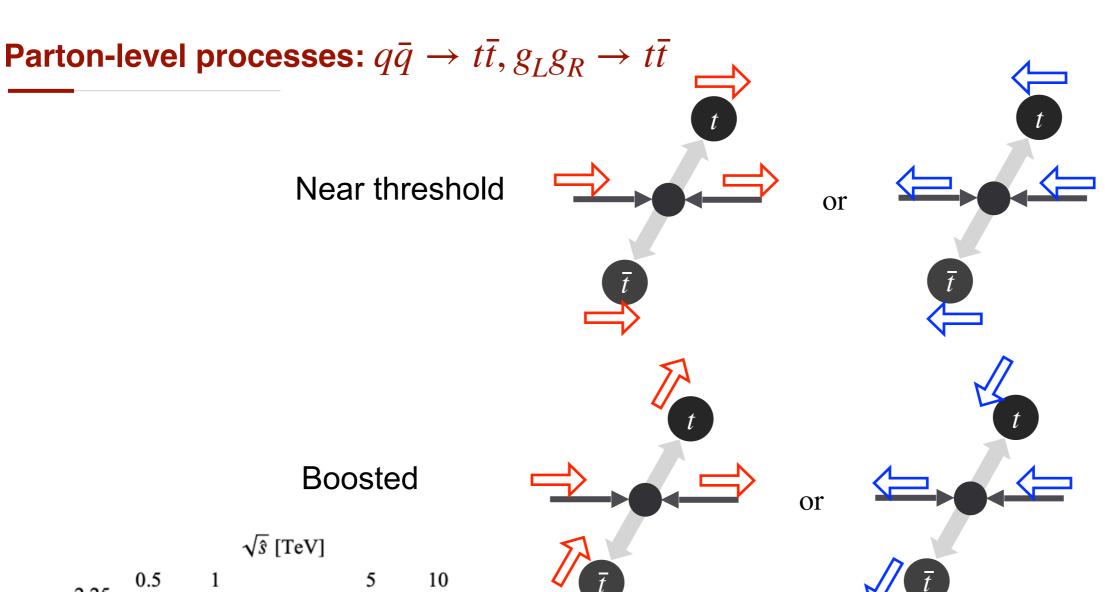


Fig. Optimal basis choice for $e^+e^- \rightarrow t\bar{t}$ processes. work in progress







2.25

2.20

2.15

2.10

2.10

2.05

2.00

$$qq \rightarrow t\bar{t}$$

2.00

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.10

2.1

 γ

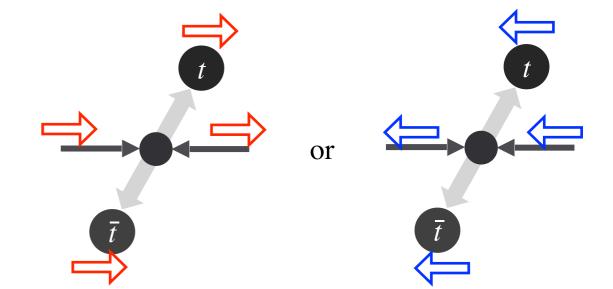
$$q\bar{q}
ightarrow t\bar{t}$$
 : positive spin correlation, $\xi = \frac{\tan \theta}{\gamma}$

Reproduces the basis in Phys. Rev. D 53, 4886 (1996)

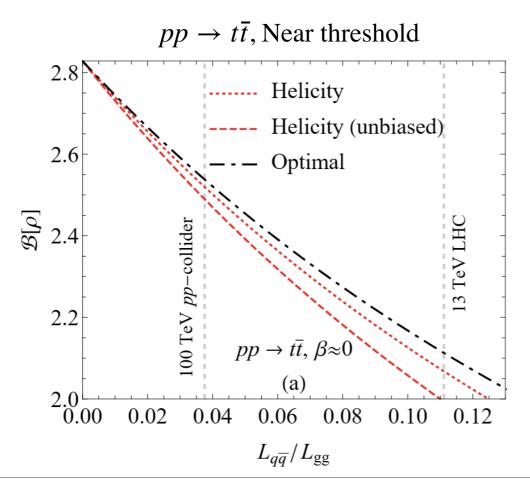
LHC:
$$\rho^{t\bar{t}} = \omega^{q\bar{q}} \rho^{q\bar{q} \to t\bar{t}} + \omega^{gg} \rho^{gg \to t\bar{t}}$$

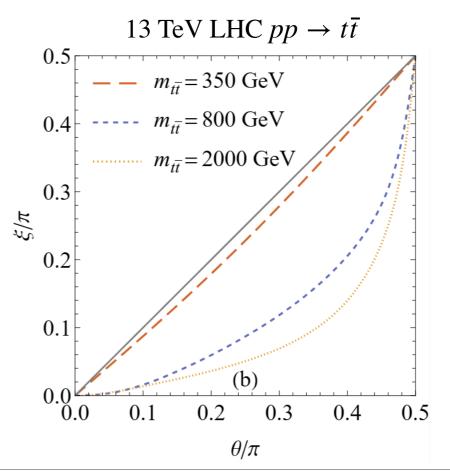
Boosted region: unlike-helicity gluon dominates, $gg \to t\bar{t}$ and $q\bar{q} \to t\bar{t}$ produce the same spin correlation.

Near threshold: like-helicity gluon dominates, $gg \to t\bar{t}$ and $q\bar{q} \to t\bar{t}$ produce different spin correlation. The spin correlation from different initial state cancel with each other.



 $q \bar{q} o t \bar{t}$: positive spin correlation $g_L g_L / g_R g_R o t \bar{t}$: spin singlet $|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$





9

Summary

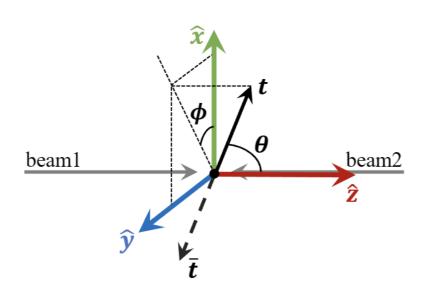
By looking at the distribution of $t\bar{t}$ decay products, which quantum state we are studying?

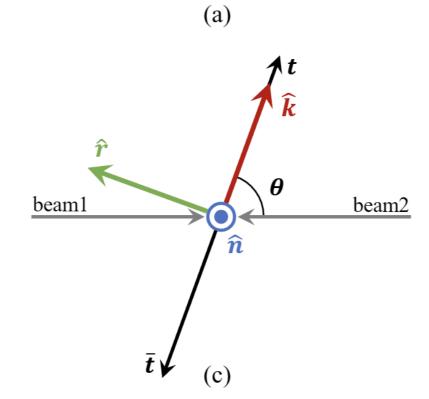
- Using angular-averaged state in event-by-event basis $(\hat{e}_1(\mathbf{k}), \hat{e}_2(\mathbf{k}), \hat{e}_3(\mathbf{k}))$:
 - Fictitious state instead of physical state.
 - Basis dependent
 - Optimal basis exists
- Current studies of $t\bar{t}$ at the LHC:
 - Entanglement (concurrence) is easier to test than Bell violation. (ATLAS-CONF-2023-069)
 - Helicity basis is mostly used.
 - At boosted region, e.g. $m_{t\bar{t}} > 1\,\mathrm{TeV}$, the optimal basis can give 20% improvement on the signal of Bell inequality violation. Near threshold, there is Bell inequality violation in the optimal basis but not in the helicity basis.
 - An improvement on testing the Bell inequality violation can be very useful.

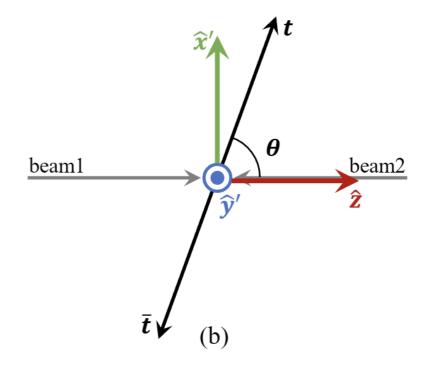
Backup

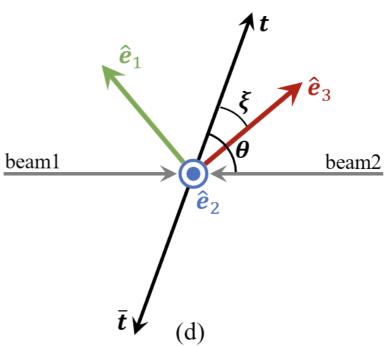
Choose a basis to maximize the entangle of angular-averaged state

- (a) Fixed beam basis
- (b) Rotated beam basis
- (c) Helicity basis
- (d) Optimal basis??









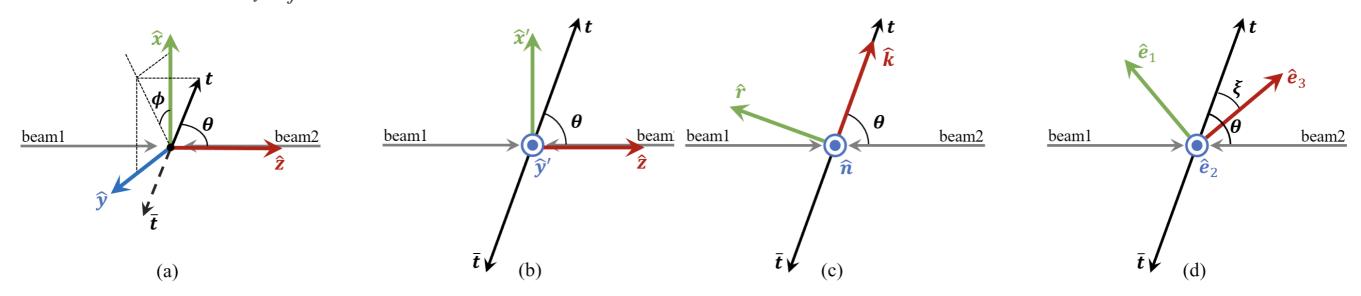
Physical states and fictitious states

$$\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \sigma_j \right)$$

$$C_{ij} = -9 \langle \ell_i^+ \ell_j^- \rangle_{av}$$

Averaging $\langle \ell_i^+ \ell_j^- \rangle_{\rm av}$ in fixed basis \Longrightarrow physical state.

Averaging $\langle \ell_i^+ \ell_j^- \rangle_{\rm av}$ in an event-by-event basis \Longrightarrow fictitious state



1. Can we use the angular-averaged states in event-by-event basis? Not ideal, but fine

$$\bar{\rho}_{\alpha\bar{\alpha},\beta\bar{\beta}}^{\mathrm{fic}} = \frac{1}{\sigma_{\Pi}} \int_{\Omega \in \Pi} \mathrm{d}\Omega \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \rho(\mathbf{k})_{\alpha\bar{\alpha},\beta\bar{\beta}}$$

2. Is there an optimal basis to use?

It is still fine to use angular-averaged state (fictitious state)

Assume $C(k)_{ij}$ is the correlation matrix written in a event-by-event basis, then the angular averaged state is

$$\bar{C}_{ij}^{\text{fic}} = \frac{1}{\sigma_{\Pi}} \int_{\Omega \in \Pi} d\Omega \, \frac{d\sigma}{d\Omega} C(\mathbf{k})_{ij}.$$

If the Bell inequality is not violated for any quantum sub-states, then for any directions $(\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2)$

$$\vec{a}_1 \cdot C(\mathbf{k})(\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C(\mathbf{k})(\vec{b}_1 + \vec{b}_2) \in [-2, 2]$$

Then the Bell inequality is also conserved for the angular averaged state.

$$\frac{1}{\sigma_{\Pi}} \int_{\Omega \in \Pi} d\Omega \frac{d\sigma}{d\Omega} \left(\vec{a}_1 \cdot C(\mathbf{k}) (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot C(\mathbf{k}) (\vec{b}_1 + \vec{b}_2) \right)$$

$$= \vec{a}_1 \cdot \bar{C} \cdot (\vec{b}_1 - \vec{b}_2) + \vec{a}_2 \cdot \bar{C} \cdot (\vec{b}_1 + \vec{b}_2)$$

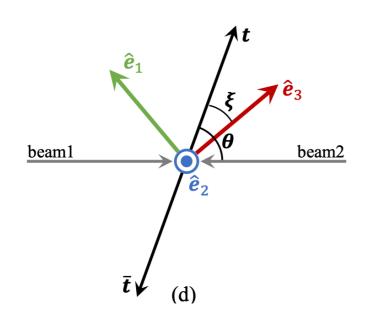
$$\in [-2, 2],$$

The Bell inequality violation of the angular-averaged state implies the Bell inequality violation in some quantum sub-states

Parton-level processes: $q\bar{q} \rightarrow t\bar{t},~gg \rightarrow t\bar{t}$

initial state	$\overline{\sum} \mathcal{M} ^2$	Correlation matrix	ξ
$qar{q}$	$\kappa_q \left(2-eta^2 s_{ heta}^2 ight)$	$ \begin{pmatrix} \frac{(2-\beta^2)s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 & -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} \\ 0 & \frac{-\beta^2s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 \\ -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} & 0 & \frac{2c_{\theta}^2+\beta^2s_{\theta}^2}{2-\beta^2s_{\theta}^2} \end{pmatrix} $	$\tan \xi = \frac{1}{\gamma} \tan \theta$
g_Lg_R	$\kappa_g eta^2 s_{ heta}^2 (2 - eta^2 s_{ heta}^2)$	$ \begin{pmatrix} \frac{(2-\beta^2)s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 & -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} \end{pmatrix} $	$ \tan \xi = \frac{1}{\gamma} \tan \theta $
g_Lg_L/g_Rg_R	$\kappa_g(1-eta^4)$	$egin{pmatrix} rac{eta^2-1}{eta^2+1} & 0 & 0 \ 0 & rac{eta^2-1}{eta^2+1} & 0 \ 0 & 0 & -1 \end{pmatrix}$	$\xi = 0$

Same spin correlation

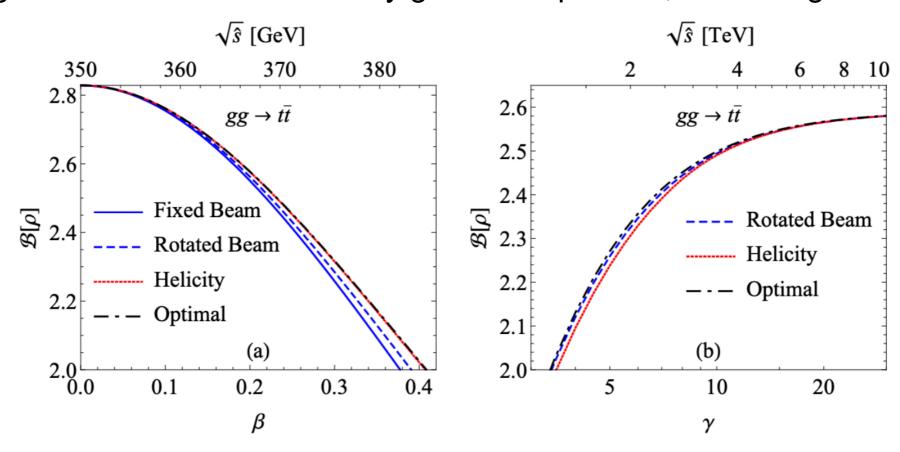


The third direction (with the largest eigenvalue of correlation matrix) is exactly the optimal basis of spin correlation found by Parke, Shadmi and Mahlon.

Parton-level processes: $gg \rightarrow t\bar{t}$

 $tar{t}$ spin correlation from like-helicity gluon and unlike-helicity gluon cancel with each other

- Near threshold like-helicity gluon scattering $|S_z| = 0$ dominates, a spin singlet is produced and correlation matrix ~ diag(-1,-1,-1)
- High-pt region, unlike-helicity gluon scattering $|S_z| = 2$ dominates, a spin triplet $|\psi_2\rangle$ is produced and the correlation matrix ~ diag(1,-1,1)
- Other region: like- and unlike-helicity gluon comparable, no entanglement.



Backup: basis transformation

The spin density matrix of a spin-1/2 particle is a 2×2 trace-1 hermitian matrix, therefore can be always expanded as $\rho = \frac{1}{2}(I_2 + B_i\sigma_i)$. Likewise, the density matrix in $\mathcal{H}_A \otimes \mathcal{H}_B$ can be parametrized as

$$\rho_{t\bar{t}} = \frac{1}{4} \left(I_2 \otimes I_2 + B_i^+ \sigma_i \otimes I_2 + B_i^- I_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j \right)$$

 B_i^\pm parametrize the polarization of each particle; $\langle \sigma_i^t \rangle = B_i^+, \qquad \langle \sigma_i^{ar{t}} \rangle = B_i^-$

 C_{ij} parametrize their spin correlation $\langle \sigma_i^t \sigma_j^{ar{t}}
angle = C_{ij}$

It is convenient to discuss different basis choices using this parametrization.

$$\sigma_1 = |\uparrow\rangle \langle\downarrow| + |\downarrow\rangle \langle\uparrow|, \qquad \sigma_2 = -i|\uparrow\rangle \langle\downarrow| + i|\downarrow\rangle \langle\uparrow|, \qquad \sigma_3 = |\uparrow\rangle \langle\uparrow| - |\downarrow\rangle \langle\downarrow|$$

The basis transformation $U\otimes U$ on $ho_{tar{t}}$ is now a simple rotation on C_{ij}

Treating $t\bar{t}$ produce at colliders as quantum states

In the c.m. frame of $t\bar{t}$ $\mathbf{k} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$

The quantum state produced at collider is defined in $\mathcal{H}_k \otimes \mathcal{H}_{\rm spin} \otimes \mathcal{H}_{\rm color}$, we can expand it in terms of $|\mathbf{k}, \alpha \bar{\alpha}\rangle$

$$|t\bar{t}\rangle \propto \int d\mathbf{k} \sum_{\alpha\bar{\alpha}} |\mathbf{k}, \alpha\bar{\alpha}\rangle \langle \mathbf{k}, \alpha\bar{\alpha}| T |I, \lambda\rangle = \int d\mathbf{k} \sum_{\alpha\bar{\alpha}} \mathcal{M}_{\alpha\bar{\alpha}}^{\lambda}(\mathbf{k}) |\mathbf{k}, \alpha\bar{\alpha}\rangle$$

To obtain a physical density matrix in the spin space:

1) Project the states to a momentum eigenstate

$$\rho(\mathbf{k}) = \langle \mathbf{k} | \rho | \mathbf{k} \rangle$$
$$= \rho(\mathbf{k})_{\alpha \bar{\alpha}, \alpha' \bar{\alpha}'} | \alpha \bar{\alpha} \rangle \langle \alpha' \bar{\alpha}' |$$

Need infinitesimal bins "Quantum sub-states"

2) Trace in the momentum space.

$$\rho_{\Pi} = \operatorname{Tr}_{\mathbf{k} \in \Pi} \left(\rho \, | \mathbf{k} \rangle \, \langle \mathbf{k} | \, \right)$$

$$= \frac{1}{\sigma_{\Pi}} \int_{\Omega \in \Pi} d\Omega \, \frac{d\sigma}{d\Omega} \rho(\mathbf{k})_{\alpha \bar{\alpha}, \alpha' \bar{\alpha}'} \, |\alpha \bar{\alpha} \rangle \, \langle \alpha' \bar{\alpha}' |$$

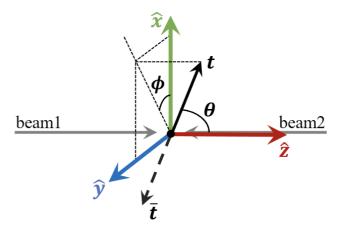
The basis $|\,\alpha\bar{\alpha}\rangle$ can be take out of the integral if it is defined in a fixed reference axis independent of k

$$\rho^{\Pi}_{\alpha\bar{\alpha},\alpha'\bar{\alpha}'} = \frac{1}{\sigma} \int_{\Omega \in \Pi} d\Omega \, \frac{d\sigma}{d\Omega} \rho(\mathbf{k})_{\alpha\bar{\alpha},\alpha'\bar{\alpha}'}$$

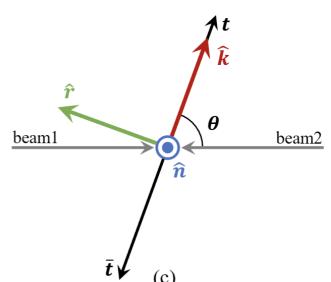
However, it is a usual practice to average the density matrix in an event-by-event basis such as the helicity basis

$$\bar{\rho}_{\alpha\bar{\alpha},\alpha'\bar{\alpha}'}^{\text{helicity}} = \frac{1}{\sigma} \int d\Omega \, \frac{d\sigma}{d\Omega} U_{\alpha\bar{\alpha},\beta\bar{\beta}}^{\dagger} \rho(\mathbf{k})_{\beta\bar{\beta},\beta'\bar{\beta}'} U_{\beta'\bar{\beta}',\alpha'\bar{\alpha}'}$$

Fictitious state



 $|\uparrow\rangle$: defined along \hat{e}_3 -direction



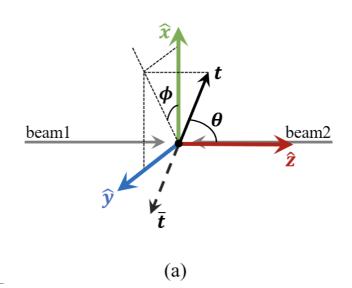
From angular momentum conservation, the $t\bar{t}$ quantum state can be written as

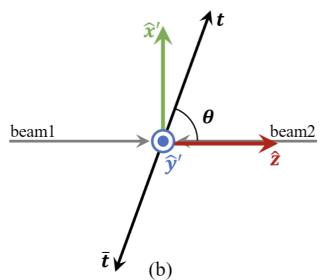
$$e^{iS_z^I\phi}\left(e^{-i\phi}\mathcal{M}_{\uparrow\uparrow}\left|\uparrow\uparrow\right\rangle+\mathcal{M}_{\uparrow\downarrow}\left|\uparrow\downarrow\right\rangle+\mathcal{M}_{\downarrow\uparrow}\left|\downarrow\uparrow\right\rangle+e^{i\phi}\mathcal{M}_{\downarrow\downarrow}\left|\downarrow\downarrow\right\rangle\right)$$

At leading order, the helicity amplitudes are real. After rotating the azimuthal angle ϕ to zero, the correlation matrix C_{ij} is diagonal in the second direction.

$$C^{\text{fixed}} \propto \begin{pmatrix} 2(\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow}\cos(2\phi) + \mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\downarrow}) & 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow}\sin(2\phi) & 2\cos(\phi)\left(\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\uparrow} - \mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\downarrow}\right) \\ 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow}\sin(2\phi) & 2\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\downarrow} - 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow}\cos(2\phi) & 2\sin(\phi)\left(\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\uparrow} - \mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\downarrow}\right) \\ 2\cos(\phi)\left(\mathcal{M}_{\uparrow\downarrow}\mathcal{M}_{\uparrow\uparrow} - \mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\downarrow\uparrow}\right) & 2\sin(\phi)\left(\mathcal{M}_{\uparrow\downarrow}\mathcal{M}_{\uparrow\uparrow} - \mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\downarrow\uparrow}\right) & \mathcal{M}_{\downarrow\downarrow}^2 - \mathcal{M}_{\downarrow\downarrow}^2 - \mathcal{M}_{\uparrow\downarrow}^2 + \mathcal{M}_{\uparrow\uparrow}^2 \end{pmatrix}$$

$$C^{\text{rotated}} \propto \begin{pmatrix} 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow} + 2\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\downarrow} & 0 & 2\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\uparrow} - 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\downarrow} \\ 0 & 2\mathcal{M}_{\downarrow\uparrow}\mathcal{M}_{\uparrow\downarrow} - 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\uparrow\uparrow} & 0 \\ 2\mathcal{M}_{\uparrow\downarrow}\mathcal{M}_{\uparrow\uparrow} - 2\mathcal{M}_{\downarrow\downarrow}\mathcal{M}_{\downarrow\uparrow} & 0 & \mathcal{M}_{\downarrow\downarrow}^2 - \mathcal{M}_{\downarrow\uparrow}^2 - \mathcal{M}_{\uparrow\downarrow}^2 + \mathcal{M}_{\uparrow\uparrow}^2 \end{pmatrix}$$





19

Maximizing spin correlation vs. Maximizing entanglement of angular averaged state

The coordinate $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ that diagonalizes the correlation matrix maximizes the Bell inequality violation of angular averaged states $C^{\text{diag}}(\mathbf{k}) = \begin{pmatrix} \mu_1(\mathbf{k}) & 0 & 0 \\ 0 & \mu_2(\mathbf{k}) & 0 \\ 0 & 0 & \mu_3(\mathbf{k}) \end{pmatrix}$ violation of angular averaged states.

$$C^{\text{diag}}(\mathbf{k}) = \begin{pmatrix} \mu_1(\mathbf{k}) & 0 & 0 \\ 0 & \mu_2(\mathbf{k}) & 0 \\ 0 & 0 & \mu_3(\mathbf{k}) \end{pmatrix}$$

Choosing a basis to maximize the entanglement of angular-averaged state is different from choosing a basis to maximize spin correlation

The spin correlation $\langle S_3^t \otimes S_3^{\bar{t}} \rangle$ is simply a function of reference axis \hat{e}_3 , while the basis dependence of entanglement is introduced from angular averaging. When using event-by-event basis $\hat{e}_i(\mathbf{k})$, the entanglement of angular averaged state is basis dependent is because the angular averaged state is a functional of $\hat{e}_i(\mathbf{k})$

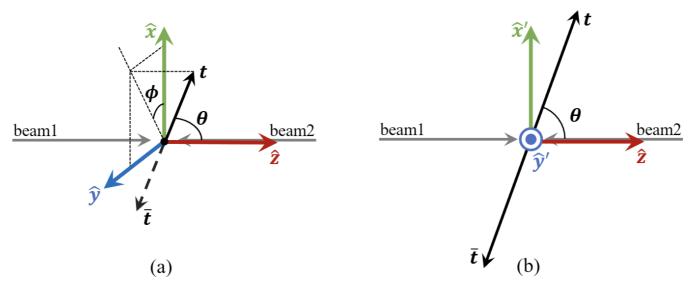
$$\bar{C}_{ij} \propto \int d\mathbf{k} |\mathcal{M}|^2 \hat{e}_i(\mathbf{k}) \cdot C(\mathbf{k}) \cdot \hat{e}_j(\mathbf{k})$$

Maximizing spin correlation vs. Maximizing entanglement of angular averaged state

The coordinate $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ that diagonalizes the correlation matrix maximizes the Bell inequality violation of angular averaged states.

$$C^{\text{diag}}(\mathbf{k}) = \begin{pmatrix} \mu_1(\mathbf{k}) & 0 & 0 \\ 0 & \mu_2(\mathbf{k}) & 0 \\ 0 & 0 & \mu_3(\mathbf{k}) \end{pmatrix}$$

Choosing a basis to maximize the entanglement of angular-averaged state is different from choosing a basis to maximize spin correlation



Maximizing the spin correlation only need to find a proper z direction to define $|\uparrow\rangle$ and $|\downarrow\rangle$, and the phase of $|\uparrow\rangle$ and $|\downarrow\rangle$ (the direction of \hat{x} and \hat{y}) is irrelevant.

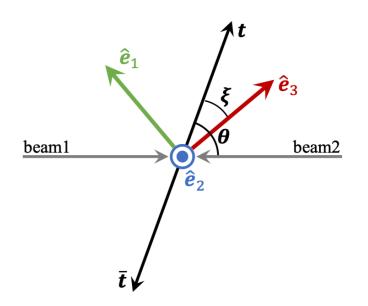
Rotated beam basis:
$$ar{
ho}_{triplet}^{
m rotated} = rac{1}{2\pi} \int \mathrm{d}\phi \ket{\Psi_0} ra{\Psi_0} = \ket{\Psi_0} ra{\Psi_0}$$

The optimal basis for angular averaged state

The correlation matrix C_{ij} is symmetric for unpolarized final states,

eigenvalues
$$\left(C_{ij}(\mathbf{k})\right) = \left(\mu_1(\mathbf{k}), \mu_2(\mathbf{k}), \mu_3(\mathbf{k})\right)$$

Diagonal basis:
$$C^{\mathrm{diag}}(\mathbf{k}) = \begin{pmatrix} \mu_1(\mathbf{k}) & 0 & 0 \\ 0 & \mu_2(\mathbf{k}) & 0 \\ 0 & 0 & \mu_3(\mathbf{k}) \end{pmatrix}$$



The diagonal basis maximizes the signal of entanglement of angular averaged states.

The angular averaged state in the diagonal basis:

$$C^{ ext{basis1}}(\mathbf{k}) = R^T(\mathbf{k})C^{ ext{basis2}}(\mathbf{k})R(\mathbf{k})$$

$$\bar{C}^{\mathrm{diag}} = \left\langle C^{\mathrm{diag}}(\mathbf{k}) \right\rangle_{\mathbf{k} \in \Pi} = \begin{pmatrix} \bar{\mu}_1 & 0 & 0 \\ 0 & \bar{\mu}_2 & 0 \\ 0 & 0 & \bar{\mu}_3 \end{pmatrix} \qquad \bar{\mu}_i = \left\langle \mu_i(\mathbf{k}) \right\rangle_{\mathbf{k} \in \Pi}$$

$$\bar{\mu}_i = \langle \mu_i(\mathbf{k}) \rangle_{\mathbf{k} \in \Pi}$$

The angular averaged state in any other basis: (denote the eigenvalues of $\bar{C}^{\rm basis}$ as \bar{c}_i)

$$\bar{C}^{\text{basis}} = \langle C^{\text{basis}}(\mathbf{k}) \rangle_{\mathbf{k} \in \Pi}$$
 $\bar{c}_1 + \bar{c}_2 + \bar{c}_3 = \bar{\mu}_1 + \bar{\mu}_2 + \bar{\mu}_3 = \text{Tr}(\bar{C}),$

The diagonal terms of a matrix are always bounded by its eigenvalues

$$\bar{\mu}_1 \geq \bar{c}_i \geq \bar{\mu}_3.$$

To show that the diagonal basis maximize the violation of Bell inequalities, we need to prove that for any $i \neq j$, $\bar{c}_i^2 + \bar{c}_j^2 \leq \max_{k \neq \ell} \left[\bar{\mu}_k^2 + \bar{\mu}_\ell^2 \right]$

$$\bar{c}_1 + \bar{c}_2 + \bar{c}_3 = \bar{\mu}_1 + \bar{\mu}_2 + \bar{\mu}_3 = \operatorname{Tr}(\bar{C}), \qquad \qquad i \neq j \\
\bar{\mu}_1 \geq \bar{c}_i \geq \bar{\mu}_3. \qquad \qquad \bar{c}_i^2 + \bar{c}_j^2 \leq \max_{k \neq \ell} \left[\bar{\mu}_k^2 + \bar{\mu}_\ell^2 \right]$$

Case (a) $\bar{\mu}_1 \ge \bar{\mu}_2 \ge \bar{\mu}_3 \ge 0$

▶ If:
$$0 \le \bar{c}_i \le \bar{\mu}_2$$
 $\bar{c}_j \le \bar{\mu}_1$ \Longrightarrow $\bar{c}_i^2 + \bar{c}_j^2 \le \bar{\mu}_1^2 + \bar{\mu}_2^2$

▶ Else:
$$\bar{\mu}_2 \leq \bar{c}_i \leq \bar{\mu}_1$$

$$\bar{c}_i + \bar{c}_j \leq \bar{\mu}_1 + \bar{\mu}_2 \implies \bar{c}_i^2 + \bar{c}_j^2 \leq \bar{c}_i^2 + (\bar{\mu}_1 + \bar{\mu}_2 - \bar{c}_i)^2$$

We need to prove:

$$\bar{c}_i^2 + \bar{c}_j^2 \le \bar{c}_i^2 + (\bar{\mu}_1 + \bar{\mu}_2 - \bar{c}_i)^2 \le \underline{\bar{\mu}_1^2 + \bar{\mu}_2^2} \frac{f(\Delta_1)}{f(\Delta_2)}$$

Define
$$f(\Delta)=\frac{(\bar{\mu}_1+\bar{\mu}_2)^2}{2}+2\Delta^2$$

$$f(\Delta_1)< f(\Delta_2) \text{ when } |\Delta_1|<|\Delta_2|$$

$$\Delta_1=\frac{\bar{\mu}_1+\bar{\mu}_2}{2}-\bar{c}_i$$

 $\Delta_2 = \frac{\mu_1 - \mu_2}{2}$

Case (b)
$$0 \ge \bar{\mu}_1 \ge \bar{\mu}_2 \ge \bar{\mu}_3$$

Case (c) $\bar{\mu}_1 \ge 0 \ge \bar{\mu}_3$

Spin correlation matrix of different processes

$$\rho^{t\bar{t}} = \omega^{q\bar{q}} \rho^{q\bar{q} \to t\bar{t}} + \omega^{gg} \rho^{gg \to t\bar{t}},$$

$$\omega^{I} = \frac{L_{I} |\mathcal{M}_{I \to t\bar{t}}|^{2}}{L_{q\bar{q}} |\mathcal{M}_{q\bar{q} \to t\bar{t}}|^{2} + L_{gg} |\mathcal{M}_{gg \to t\bar{t}}|^{2}}, \quad I = q\bar{q}, gg,$$

TABLE I. Here, the correlation matrix is expressed in the helicity basis (r, n, k). The QCD color factor $\kappa_q = g_s^2 \frac{N^2 - 1}{N^2}$, $\kappa_g = \frac{2g_s^2}{(\beta^2 c_\theta^2 - 1)^2} \frac{N^2 (\beta^2 c_\theta^2 + 1) - 2}{N(N^2 - 1)}$, and N = 3 is the number of colors.

initial state	$\overline{\sum} \mathcal{M} ^2$	Correlation matrix	ξ
$qar{q}$	$\kappa_q \left(2-eta^2 s_ heta^2 ight)$	$\begin{pmatrix} \frac{(2-\beta^2)s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 & -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} \\ 0 & \frac{-\beta^2s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 \\ -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} & 0 & \frac{2c_{\theta}^2+\beta^2s_{\theta}^2}{2-\beta^2s_{\theta}^2} \end{pmatrix}$	$ \tan \xi = \frac{1}{\gamma} \tan \theta $
g_Lg_R	$\kappa_g \beta^2 s_\theta^2 (2 - \beta^2 s_\theta^2)$	$ \begin{pmatrix} \frac{(2-\beta^2)s_{\theta}^2}{2-\beta^2s_{\theta}^2} & 0 & -\frac{2c_{\theta}s_{\theta}\sqrt{1-\beta^2}}{2-\beta^2s_{\theta}^2} \end{pmatrix} $	$\tan \xi = \frac{1}{\gamma} \tan \theta$
g_Lg_L/g_Rg_R	$\kappa_g(1-eta^4)$	$\begin{pmatrix} \frac{\beta^2 - 1}{\beta^2 + 1} & 0 & 0 \\ 0 & \frac{\beta^2 - 1}{\beta^2 + 1} & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\xi = 0$

$$\tan 2\xi = \frac{(L_{qq}\kappa_q + L_{gg}\kappa_g\beta^2 s_{\theta}^2)s_{2\theta}\sqrt{1 - \beta^2}}{(L_{qq}\kappa_q + L_{gg}\kappa_g\beta^2 s_{\theta}^2)(c_{2\theta} + \beta^2 s_{\theta}^2) + L_{gg}\kappa_g\beta^2 (1 - \beta^2)}$$

arXiv: 2310.17696

Writing the truth distribution as a function of Θ we have

$$\vec{x}_{\text{truth}}(\Theta) \xrightarrow{\text{folding}} \vec{x}_{\text{predicted}}(\Theta) = R \cdot \vec{x}_{\text{truth}}(\Theta).$$
 (A.3)

The parameter Θ is now extracted by fitting $\vec{x}_{\text{predicted}}(\Theta)$ to $\vec{x}_{\text{detected}}$.

We perform this parameter extraction by a binned maximum likelihood fit where the likelihood function is

$$L(\Theta) = \prod_{\alpha=1}^{n_{bins}} Poisson\left(x_{detected,\alpha}, x_{predicted,\alpha}(\Theta)\right), \tag{A.4}$$

$$= \prod_{\alpha=1}^{n_{\text{bins}}} \text{Poisson}\left(x_{\text{detected},\alpha}, \sum_{\beta} R_{\alpha\beta} x_{\text{truth},\beta}(\Theta)\right), \tag{A.5}$$

where Poisson (x,λ) is the Poisson distribution for random variable x with mean λ . The response matrix R is calculated from simulation, the distribution $x_{\text{truth}}(\Theta)$ as a function of Θ is known analytically in all cases that we study. For example, for $\Theta = C_{ij}$, the truth distribution is given by Eq. (3.10). To obtain Θ we maximize the logarithm of the likelihood function.