Non-perturbative Effect on Fermionic DM Electromagnetic Dipole Moments

in collaboration with Yi Liao, Xiao-Dong Ma, and Hao-Lin Wang arXiv: 2312.xxxx

Jinhan Liang South China Normal University

> 第十七届TeV工作组学术研讨会 2023.12.16 Nanjing

ER and NR signals at DM direct detection (DMDD) experiments

Two phase xenon detector

WIMP, $\rho \simeq 0.3 \text{ GeV/cm}^3$, $v \simeq 10^{-3}c$

Talk of Evan Shockley, 2020

Current constraints on DM-nucleon interaction

DM-Nucleon operators for NR signal

$$\begin{split} \mathcal{O}_1^N &= \mathbb{1}_{\chi} \mathbb{1}_N \,, \\ \mathcal{O}_3^N &= \mathbb{1}_{\chi} \, \vec{S}_N \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_N} \right) \,, \\ \mathcal{O}_5^N &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i \vec{q}}{m_N} \right) \mathbb{1}_N \,, \\ \mathcal{O}_7^N &= \mathbb{1}_{\chi} \left(\vec{S}_N \cdot \vec{v}_{\perp} \right) \,, \\ \mathcal{O}_9^N &= \vec{S}_{\chi} \cdot \left(\frac{i \vec{q}}{m_N} \times \vec{S}_N \right) \,, \\ \mathcal{O}_{11}^N &= - \left(\vec{S}_{\chi} \cdot \frac{i \vec{q}}{m_N} \right) \mathbb{1}_N \,, \\ \mathcal{O}_{13}^N &= - \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp} \right) \left(\vec{S}_N \cdot \frac{i \vec{q}}{m_N} \right) \,, \end{split}$$

$${\cal O}_{15}^N = -igg(ec{S_\chi}\cdot rac{ec{q}}{m_N}igg)$$

$$\begin{split} \mathcal{O}_2^N &= \left(v_{\perp}\right)^2 \mathbb{1}_{\chi} \mathbb{1}_N, \\ \mathcal{O}_4^N &= \vec{S}_{\chi} \cdot \vec{S}_N, \\ \mathcal{O}_6^N &= \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right) \left(\vec{S}_N \cdot \frac{\vec{q}}{m_N}\right), \\ \mathcal{O}_8^N &= \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp}\right) \mathbb{1}_N, \\ \mathcal{O}_{10}^N &= -\mathbb{1}_{\chi} \left(\vec{S}_N \cdot \frac{i\vec{q}}{m_N}\right), \\ \mathcal{O}_{12}^N &= \vec{S}_{\chi} \cdot \left(\vec{S}_N \times \vec{v}_{\perp}\right), \\ \mathcal{O}_{14}^N &= -\left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_N}\right) \left(\vec{S}_N \cdot \vec{v}_{\perp}\right), \\ &= \left(\left(\vec{S}_N \times \vec{v}_{\perp}\right) \cdot \frac{\vec{q}}{m_N}\right) \end{split}$$

N = n, p

Anand, Fitzpatrick, Haxton, 1308.6288

DM-quark and DM-gluon EFT operators Dim-6 operators

$$\mathcal{Q}_{1,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q) ,$$
$$\mathcal{Q}_{3,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q) ,$$

Dim-7 operators

5

$$\begin{aligned} \mathcal{Q}_{1}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi}\chi) G^{a\mu\nu} G^{a}_{\mu\nu} ,\\ \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} ,\\ \mathcal{Q}_{5,q}^{(7)} &= m_{q} (\bar{\chi}\chi) (\bar{q}q) ,\\ \mathcal{Q}_{7,q}^{(7)} &= m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) ,\\ \mathcal{Q}_{9,q}^{(7)} &= m_{q} (\bar{\chi}\sigma^{\mu\nu}\chi) (\bar{q}\sigma_{\mu\nu}q) , \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{2,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}q)\,, \\ \mathcal{Q}_{4,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)\,, \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi}i\gamma_{5}\chi) G^{a\mu\nu} G^{a}_{\mu\nu}, \\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi}i\gamma_{5}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu}, \\ \mathcal{Q}_{6,q}^{(7)} &= m_{q} (\bar{\chi}i\gamma_{5}\chi) (\bar{q}q), \\ \mathcal{Q}_{8,q}^{(7)} &= m_{q} (\bar{\chi}i\gamma_{5}\chi) (\bar{q}i\gamma_{5}q), \\ \mathcal{Q}_{10,q}^{(7)} &= m_{q} (\bar{\chi}i\sigma^{\mu\nu}\gamma_{5}\chi) (\bar{q}\sigma_{\mu\nu}q). \\ &\qquad \text{Bishara, Brod, Grinstein, Zupan, 1} \end{aligned}$$

Matching via ChPT

 $\mathcal{O}_{\chi q}^{\text{T1}} \equiv m_q \left(\bar{\chi} \sigma^{\mu\nu} \chi \right)$

 $\mathcal{O}_{\chi q}^{\text{T2}} \equiv m_q \left(\bar{\chi} i \sigma^{\mu\nu} \gamma_5 \chi \right) \left(\bar{q} \sigma_{\mu\nu} q \right) \rightarrow \frac{-2m}{m_{\gamma}}$ -2κ

$$\frac{n_N}{n_N} F_{T,0}^{q/N} \mathcal{O}_{10}^N + 2(F_{T,0}^{q/N} - F_{T,1}^{q/N}) \mathcal{O}_{11}^N - 8F_{T,0}^{q/N} \mathcal{O}_{12}^N$$

Bishara, Brod, Grinstein, Zupan, 1707.06998

6

ChPT with tensor current

Cata & Mateu, 0705.2948

$f_+^{\mu\nu}$: External field strength tensor $t^{\mu\nu}_{,}$: External tensor current field

Non-perturbative effects in fermion electromagnetic moments

Dekens, Jenkins, Manohar, Stoffer, 1810.05675

Chen, Zheng, Zhang, 2206.13122

 $\bar{\chi}\sigma^{\mu\nu}(\gamma_5)\chi\bar{q}\sigma_{\mu\nu}q \to \bar{\chi}\sigma^{\mu\nu}(\gamma_5)\chi F_{\mu\nu}$

$t_{\perp}^{\mu\nu}$ with different external fermions

 $\bar{\mu}\sigma^{\mu\nu}(\gamma_5)e\bar{q}\sigma_{\mu\nu}q \to \bar{\mu}\sigma^{\mu\nu}(\gamma_5)eF_{\mu\nu}$

 $\bar{\nu}\sigma^{\mu\nu}(\gamma_5)\nu\bar{q}\sigma_{\mu\nu}q \to \bar{\nu}\sigma^{\mu\nu}(\gamma_5)\nu F_{\mu\nu}$

Neutrino experiment

Quark level

Q

Nucleon level

Nucleus level

DMDD

Convert constraints on DM dipole moments into constraints on DM-quark tensor operators

Constraints from LD ER are stronger than those from the Migdal effect

LD NR gives stronger constraint for EDM case

JL,YL, XM, HW, 2312.xxxx

Interference effect for NR in high mass region

Obvious interference effect when $m_{\gamma} \gtrsim 10$ GeV

Long distance distribution dominates for EDM case **JL**,YL, XM, HW, 2312.xxxx 12

Interference effect for NR in low mass region

Constraints with only one flavor contribution

 $\mathcal{O}_{\chi q}^{\text{T1}} = m_q \left(\bar{\chi} \sigma^{\mu\nu} \chi \right) \left(\bar{q} \sigma_{\mu\nu} q \right)$

(2) Short distance distribution becomes weaker due to no valence strange quark in nucleons.

(1) Long distance dominates for MDM case with only s quark contribution

Constraints with only one flavor contribution

Up quark

 $\mathcal{O}_{\chi q}^{\mathrm{T2}} = m_q \left(\bar{\chi} i \sigma^{\mu\nu} \gamma_5 \chi \right) \left(\bar{q} \sigma_{\mu\nu} q \right)$

Down quark

Strange quark

Conclusion

- By taking into the tensor current in ChPT, DM-quark tensor operators can induce DM electromagnetic dipole moment operators.
- In previous unconstrained low-mass regions, the DM-quark tensor operators receive constraints from electron recoil signals at DMDD experiments.
- For the DMDD constraints on DM-quark tensor operators from nuclear recoil signals, one has to consider both short-distance and long-distance contributions. The interference effect becomes significant for EDM case when $m_{\chi} \gtrsim 10 \text{ GeV}$.