

CMS new physics search highlights

— A lens on recent experimental innovations

Congqiao Li (李聪乔) (Peking University) on behalf of the CMS Collaboration

第十七届 TeV 工作组学术研讨会 · 南京 16 December, 2023

The CMS collaboration

stat. from <u>link</u>

The CMS collaboration

The CMS detector

17th Workshop on TeV Physics

CMS publications

LHC / HL-LHC schedule

LHC / HL-LHC Plan

0 20 0

Typical CMS experiment workflow

borrow the figure from link

Typical CMS experiment workflow

summary plots from link

Typical CMS experiment workflow

- Typical innovations often emerge from theory/ pheno studies, e.g.
 - BSM models, new interactions...
 - unexplored channel that can enhance specific measurements

summary plots from link

Highlight: experimental innovations

Highlight: experimental innovations

from 2023 P5 report

The most direct way of answering these questions is by discovering new fundamental particles. If these are very massive they can only be produced directly in high-energy colliders, as the higher the collider energy the higher the mass that can be produced. Another possibility is that these particles are produced at lower energy but very rarely, for example in decays of known particles such as the Higgs boson. This requires accelerators that produce very high numbers of particles, including neutrino experiments with their high intensity beams and massive detectors.

These complementary approaches provide access to an extensive theoretical parameter space that covers both higher mass scales and new physics that is weakly coupled to the Standard Model. Overall, these searches can be broadly categorized into those that are guided by specific theoretical ideas, searches driven by questions resulting from experimental data (e.g. dark matter), and searches that are model-agnostic and perform a general exploration of the unknown. Together, these approaches provide comprehensive coverage of the Beyond the Standard Model (BSM) landscape and have the potential to yield groundbreaking insights into the universe.

- theory-motivated search
- experimental data-driven search
- model-agnostic search

Focus of this talk

- → In addition to sharing new CMS results, we want to highlight more on experimental innovations achieved these years
 - broadly driver by the rapid advancement in machine learning
- → Cover two aspects
 - modern deep learning to process low-level data
 - model-agnostic resonance search
- → Hope to share experimental insights with the broader HEP community

Modern deep learning for low-level input

 W_{lep}/Z_{lep}

Recent CMS results in Higgs sector

- → We start with two recent CMS results
- → CMS measures κ_c via VH(→cc̄) production mode, including the mergedjet topology
 - in merged-jet topology: leveraging advanced jet neural network (ParticleNet) to identify H→cc̄ jets and reconstruct H mass
 - ♦ obtain the most stringent direct limit (95% C.L.) on κ_c : 1.1 < $|\kappa_c|$ < 5.5
 - ATLAS results: $|\kappa_c| < 8.5 [EPJC 82 (2022) 717]$

largely improved sensitivity!

Congqiao Li (Peking University)

Background efficiency

PRL 131 (2023) 061801

Recent CMS results in Higgs sector

- \rightarrow Higgs self-coupling & quartic VVHH coupling (κ_{2V}) measured via HH→4b channel
 - novel boosted-jet phase space explored by CMS *
 - advanced NN (ParticleNet) for $H \rightarrow b\bar{b}$ jet identification and \bigstar mass regression
 - *first time* excluding $\kappa_{2V} = 0$ (by 6.3 σ) *

PRL 131 (2023) 041803

10

10³

10²

10

10⁻¹

2.0

1.5 1.0 0.5 0.0

Data / pred.

CMS

VBF cat.

LP

800-1200

Events / bin

Interpreting the improvement

- → Sophisticated networks have huge experimental potential when dealing with complex hadronic boosted-jet final states
 - sophisticated: modern NN designs brought by the ML era (since ~2015)
 - complex: a boosted jet contains O(50-100) constituents

Interpreting the improvement

- → Sophisticated networks have huge experimental potential when dealing with complex hadronic boosted-jet final states
 - sophisticated: modern NN designs brought by the ML era (since ~2015)
 - complex: a boosted jet contains O(50-100) constituents

- "ParticleNet" is a benchmark algorithm that leads the experimental advancement
 - sensitivity highly improved (~2-5 greater background rejection)
 - view a jet as a point cloud
 - allow message passing between neighbouring particles

Philosophy of "event selection" and advanced NNs

- → <u>A theoretical upper bound exists to the "optimal event selection"</u>
 - signal and bkg cannot be 100% distinguished: overlapping between signal and bkg phase space; ambiguity caused by detector resolution/reconstruction efficiency...
 - but an optimal selection exists, and it is defined on the signal and bkg likelihood ratio (although intractable due to its complexity)

Philosophy of "event selection" and advanced NNs

- → <u>A theoretical upper bound exists to the "optimal event selection"</u>
 - signal and bkg cannot be 100% distinguished: overlapping between signal and bkg phase space; ambiguity caused by detector resolution/reconstruction efficiency...
 - but an optimal selection exists, and it is defined on the signal and bkg likelihood ratio (although intractable due to its complexity)
- → The big question for experimentalists: where is that limit, and how close are we now?
 - this is still an open question current results imply that the data we collected at the LHC has not been fully explored (especially for hadronic final states)

Philosophy of "event selection" and advanced NNs

- → <u>A theoretical upper bound exists to the "optimal event selection"</u>
 - signal and bkg cannot be 100% distinguished: overlapping between signal and bkg phase space; ambiguity caused by detector resolution/reconstruction efficiency...
 - but an optimal selection exists, and it is defined on the signal and bkg likelihood ratio (although intractable due to its complexity)
- → The big question for experimentalists: where is that limit, and how close are we now?
 - this is still an open question current results imply that the data we collected at the LHC has not been fully explored (especially for hadronic final states)
- → Advanced NN can serve as a powerful fitter to approach the theoretical limit
 - the training target of NN guarantees an optimum in classification/regression under present NN's capability
 - better NN: better data representation (an ML+physics problem [backup])

Congqiao Li (Peking University)

Selected CMS BSM searches $(X \rightarrow YH \rightarrow b\bar{b}b\bar{b})$

PLB 842 (2023) 137392

- → Search for scalar particles in $X \rightarrow YH \rightarrow b\bar{b}b\bar{b}$ final states
 - reconstruct H and Y in each in a large-R jet
 - ♦ use advanced NN (ParticleNet) to select $H \rightarrow b\bar{b}$ and $Y \rightarrow b\bar{b}$ jets
 - * maximum likelihood fit on (m_{JJ}, m_J^Y) , model-independent constraint on the cross-section

Selected CMS BSM searches ($H \rightarrow AA \rightarrow 4\gamma$)

→ Search for low mass (0.1–1.2 GeV) ALPs

- first direct search for Higgs exotic decay to ALPs with ALP to 2γ
- merged γγ reconstructed as a single photon-like object Γ,
 regress on m(Γ) using low-level ECAL energy deposit as input
- set limit on $B(H \rightarrow AA \rightarrow 4\gamma)$

Η

Modern model-agnostic searches

Modern model-agnostic searches

→ Begin of journey in the modern (machine-learning-based) model-agnostic searching scheme at LHC

Anomaly Detection for Resonant New Physics with Machine Learning			
Jack H. Collins (Mar Berkeley)	yland U. and Johns Hopkins U.), Kiel Howe (Fe	rmilab), Benjamin Nachman (UC, Berkeley and LBL,	
May 7, 2018	PRL, 121 (2018) 24, 241803	→ 161 citations	

Modern model-agnostic searches

→ Begin of journey in the modern (machine-learning-based) model-agnostic searching scheme at LHC

Anomaly Detection for Resonant New Physics with Machine Learning			
Jack H. Collins (Maryla Berkeley)	nd U. and Johns Hopkins U.), Kiel Howe (Fo	ermilab), Benjamin Nachman (UC, Berkeley and LBL,	
May 7, 2018	PRL, 121 (2018) 24, 241803	→ 161 citations	

- → A "general method" for resonant search with minimal requirements
 - resonance localised in a mass window
 - can be reconstructed by two hadronic large-*R* jets
- → General strategy:
 - ☆ scan on the mass spectrum → <u>apply model-independent selection</u> → purify the signal
- → With no significant evidence of new physics found at LHC, a broader search strategy will be a meaningful

Weakly-supervised approach

JHEP 10 (2017) 174

Equivalent effect for training S vs B

- ➔ Proposed "CWoLa (classification without labels) Hunting"
 - allow to detect anomalies purely from data
 - <u>train a classifier for mass window vs mass sideband</u> (mixed sample 1 vs 2)
 - can prove that the effect is equivalent to training S vs B

Weakly-supervised approach

JHEP 10 (2017) 174

- ➔ Proposed "CWoLa (classification without labels) Hunting"
 - allow to detect anomalies purely from data
 - <u>train a classifier for mass window vs mass sideband</u> (mixed sample 1 vs 2)
 - can prove that the effect is equivalent to training S vs B

Equivalent effect for training **S** vs **B**

Improved methods

- ➔ Improvement made to the weakly-supervised scheme
 - CWoLa: train mixed sample 1 vs 2, i.e. taking sideband as the background

Improved methods

Improvement made to the weakly-supervised scheme

- CWoLa: train mixed sample 1 vs 2, i.e. taking sideband as the background
- CATHODE (Classifying Anomalies THrough Outer Density Estimation): interpolate background from the sideband

PRD, 106 (2022) 5, 055006

Finally, <u>train a classifier</u> over mixed sample 1 vs generated background

Improved methods

- ➔ Improvement made to the weakly-supervised scheme
 - CWoLa: train mixed sample 1 vs 2, i.e. taking sideband as the background
 - CATHODE (Classifying Anomalies THrough Outer Density Estimation): interpolate background from the sideband
 - Tag N' Train: apply autoencoder preselection on each fatjet → target resonance from anomalous dijet

JHEP 01 (2021) 153

input jet

A view on (variational) autoencoder for anomaly detection

reconstructed jet

a compressed jet representation

Training on SM background jet

 \rightarrow **anomalous jet will produce outlier latent scores** \rightarrow make selection on the score

17th Workshop on TeV Physics

CMS model-agnostic resonant search

CMS-NOTE-2023-013

- → CMS systematically test all model-agnostic approaches to search for resonance
 - first performed on toy data (from simulation)
 - achieve comparable/better performance than conventional search using jet substructure selection (τ₂₁, τ₃₂)

→ Intermediate release results - to perform on data

ATLAS's model-agnostic search

4 5 6 7 8 m [TeV]

2 3

4 5 6 7 8 m [TeV]

3×10⁻

2

3

4 5 6 7 8

m [TeV]

3

3×10⁻

Conclusion

- → We introduce the latest CMS results from an angle of experimental innovations
 - ★ these aspects can be meaningful to a wide HEP community: better use/analysis of the collected LHC data → accelerate our next HEP discovery!
- → We share two innovations to showcase how they might bring general impacts to our physics programme
 - ★ advent of advanced NNs to process low-level data → change the way we put selections/define observables, leading to substantial sensitivity improvements
 - ★ advent of modern model-agnostic search → transform searching paradigm of BSM particles and still achieving optimal sensitivity
- → Novel results including **Run 3 data** to bring more excitement
 - improvement foreseeable brought by more collected data + improved strategies
- → Upgrade to HL-LHC is making good progress

Backup

Lepton flavour violating

PRD, 108 (2023) 7, 072004

- → Search LFV signature for H→eµ, also extending to $X \rightarrow e\mu$ (m_x: 100-160 GeV)
 - type III 2HDM predicts additional scalar bosons X, with LFV decays
- → Fitting $m_{e\mu}$ distribution in signal regions (classified by BDT)
- Largest excess: 3.8σ (2.8σ) local (global) at 146 GeV

New resonance in yy final state

- \rightarrow Search for new resonance in the clean $\gamma\gamma$ final state
- → Categories: 1 VBF + 3 classes defined by di-photon BDT
- Test statistic based on profile likelihood ratio constructed from the mass spectrum: 2.9σ local (1.3σ global) at 95.4 GeV

CMS exotic search results

summary plots from link

Congqiao Li (Peking University)

17th Workshop on TeV Physics

graph NN

Evolution of jet NNs

feed-forward NN (high-level inputs) ••• ••• 1D/2D CNN, RNN (low-level inputs)

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

- ✦ Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN

Graph structure

- ✦ Graph neural networks
 - treat a jet as a permutational-invariant set of particles (or, point cloud)

(low-level inputs)

- build "edges" between particles
- Transformer networks
 - modern architectural designs; like a full-connected graph

 Typical CNN
 Typical CNN

Typical graph

??

ParticleNet architecture

