Search for DPDM with Tunable SRF Cavities

Outline

Motivation of ultra-light dark matter search using Superconducting Radio Frequency (SRF) Cavity **O SRF Cavity Project for DPDM search O SRF Cavity Project for cosmic DP? (preliminary) C** Experimental group O Summary and Outlook

Motivation of ultralight dark matter

Various DM candidate

Wave-like DM

particle-like DM

There's a broad spectrum of possible particles with varied masses and interaction strengths, making experimental searches challenging.

The ultra-light DM

 $QM:$ All matter exhibits both particle and wave properties.

Wavelengths at macroscopic scales, manifesting as a wavelike background field

(m~10-22 eV)

galactic scales(kpc)

Astronomical observation (time, position, velocity, polarization, etc)

Distinct from traditional dark matter detection (particle scattering)

enormous potential for development in this field

 $m_a \sim \text{GHz} \sim 10^{-6} \text{ eV}$

Current DPDM search

Haloscope sensitivity largely depends on Q: Superconducting cavity has Q~10^{10}

to detect

how to make use it? 5 orders more than traditional cavity.

Axion limit webpage: <https://github.com/cajohare/AxionLimits/blob/master/docs/dp.md>

7

Spectrum of Ultra-light Dark Matter

The Virial Theorem: the velocity of dark matter near Earth is approximately 10^{λ} -3 boosted by gravity.

$$
a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \cos(m_a t + \phi)
$$

$$
\text{Frequency:}~~\omega_a\simeq\text{GHz}~\frac{m_a}{10^{-6}\text{ eV}}
$$

$$
\text{Coherence:} \quad \tau_a \simeq \text{ms } \frac{10^{-6} \text{ eV}}{m_a}
$$

$$
\text{Max Exp. Size: } \lambda_a \simeq 200 \text{ m } \frac{10^{-6} \text{ eV}}{m_a}
$$

Axion DM as an example, same for other kinds (DPDM, etc)

$$
\tau_a \sim 1/m_a \langle v_{\rm DM}^2 \rangle \sim Q_a/m_a \sim 10^6/m_a
$$

Bandwidth of axion DM is 10° -6

Detector bandwidth $\leq 10^{n}$ -6 accelerate the scan rate

$$
\lambda_a \sim 1/m_a \sqrt{\langle v_{\rm DM}^2\rangle} \sim 10^3/m_a
$$

Momentum width $10^x - 3$

SRF Cavity Project for DPDM

SRF Cavity

- Significant $Q_0 > 10^{10}$ compared to copper cavity with $Q_0 \leq 10^6$.
- Superconducting Radio-Frequency (SRF) Cavities: extremely high $Q_0 \simeq 10^{10} \rightarrow$ improve SNR $\propto Q_0^{1/4}$
- \blacktriangleright 1-cell elliptical niobium cavity with mechanical tuner, immersed in liquid helium at $T \sim 2 K$
- TM₀₁₀ mode: z-aligned \vec{E} , maximizes the overlap for dark photon dark matter (DPDM)

$$
\epsilon \approx 10^{-16} \left(\frac{10^{10}}{Q_0}\right)^{\frac{1}{4}} \left(\frac{4 \, \text{L}}{V}\right)^{\frac{1}{2}} \left(\frac{0.5}{\text{C}}\right)^{\frac{1}{2}} \left(\frac{100 \, \text{s}}{t_{\text{int}}}\right)^{\frac{1}{4}} \left(\frac{1.3 \, \text{GHz}}{f_0}\right)^{\frac{1}{4}} \left(\frac{T_{\text{amp}}}{3 \, \text{K}}\right)^{\frac{1}{2}},
$$

SRF Cavity Searches for Dark Photon Dark Matter: First Scan Results

Zhenxing Tang, ^{1, 2, *} Bo Wang, ^{3, *} Yifan Chen, ⁴ Yanjie Zeng, ^{5, 6} Chunlong Li, ⁵ Yuting Yang, ^{5, 6} Liwen Feng, ^{1, 7} Peng Sha, ^{8, 9, 10} Zhenghui Mi, ^{8, 9, 10} Weimin Pan, ^{8, 9, 10} Tianzong Zhang, ¹ Jiankui Hao, ^{1, 7} Lin Lin, ^{1, 7} Fang Wang, ^{1, 7} Huamu Xie, ^{1, 7} Senlin Huang, ^{1, 7} and Jing Shu^{1, 2, 12, †}

arxiv: 2305.09711

Experimental operation

Parameters

microwave electronics for DPDM searches

Step 1: Measure Cavity property

1-2 connection: VTS measurement for the cavity property.

Step 2: calibration

1-3 connection: calibration by subtracting the line loss to get the total gain G net.

Step 3: Do experiment

2-3 connection: tune the cavity resonant frequency to do the experiment

Scan Search with Mechanical Tuning

Tuner arm

Piezo

Cavity

Motor

- \blacktriangleright Mechanical turner scans resonant frequency f_0 with the step $\sim f_0/Q_{\rm DM}$
- ► Calibrate f_0 and its stability range Δf_0 in each scan
- Frequency drift $\delta f_d \leq 1.5$ Hz and microphonics effect $\sigma_{f_0} \approx 4 \text{Hz}$

Conservatively choose $\Delta f_0 \approx 10 \text{Hz}$

Data analysis and constraints

- Total 1150 scan steps with each 100s integration time.
- Group every 50 adjacent bins and perform a constant fit to address small helium pressure fluctuation.
- Normal power excess shows Gaussian distribution: \blacktriangleright

First scan search with SRF and most stringent constraints in most \blacktriangleright exclusion space.

Few comment on $Q \gg Q$ {DM}

simple fit function (constant): attenuation factor almost 1

different from ADMX

Modulated Signal from Galactic Dark Photons

- Galactic dark photons from DM decay, e.g.: cascade decay from DM halo
- \triangleright Vectorial observable $\propto \vec{A'}$
	- \rightarrow angular-dependent signal $\propto C(\theta)$
	- \rightarrow modulation as the Earth rotates
- Production is polarization-dependent, modulations for longitude and transverse modes are opposite

SRF Constraints for Galactic Dark Photons

- Same dataset as DPDM search
- Scanned range within galactic dark photon bandwidth \rightarrow combine all scan steps to analyze
- ► Longitude mode has better sensitivity because of the larger spatial wavefunction

• Gradient color region represents exclusions for different DM mass

International SRF Campaigns

▶ Fermilab SQMS

•SERAPH:

Single-bin search and ongoing scan searches.

•Dark SRF:

Light-shining-wall search for dark photon.

DESY:

\bullet MAGO 2.0

Mode transition from GW-induced cavity deformation.

International SRF Campaigns

TWO PROTOTYPES [~ 1 YEAR]

Exermilab

arXiv:2207.11346

A brief introduction to the team member

SRF in Peking University

First 9-cell for ILC

Peking University developed China's first superconducting radio frequency (SRF) accelerator cavity. (1994)

- $Q \sim 1.6 2.4$ E^{\land} 10 ω 16MV/m。
- equivalent level of international laboratories

Experimental facilities

Liquid helium system 2K pumping system

Vertical DewarCavity suspension Magnetic shielding

Static heat leak: < 1 W residual magnetism<10 mGs Cooling power: >200W@2K

SRF in IHEP

26

Myself and other collaborations

Summary and outlook

Summary and outlook

High-Q SRF is extremely interesting in Haloscope wave-like DM searches (get deepest constraints).

ODP backgrounds has rich information (polarization & angular distribution).

 \bullet In the future (axion, GWs, quantum qubit, etc), much more can be done . (opening, need more people)

Thank you!