Axion Haloscope Meets the \overline{E} Field

高宇 (Yu Gao) 高能物理研究所 (IHEP, CAS)

第十七届TeV工作组 学术研讨会 南京 2023/12/17 2012.13946 2201.08291 2204.14033 2206.13543 2305.00877

Outline

- Resonance in the 'haloscope', at QM level
- Axio-electric current in an \overrightarrow{E} field
- \vec{E} field as conversion medium
- \vec{E} field as signal: capability study

Axion / ALPs as DM

Axion as a fast oscillating field at the bottom of the its instanton potential $V(\varphi) \sim (\varphi - \varphi_0)^2$ behaves on ave. as matter-like: $\rho(z) \sim (1+z)^3$

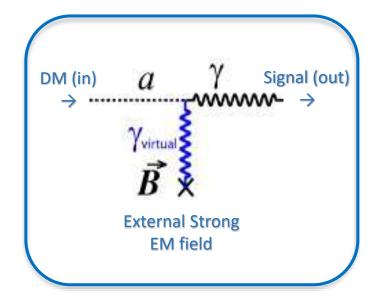
- ➤ `Wave-like' DM candidates via misalignment mech.
- ► Nearly monochromatic signal: $\delta f/f \sim 10^{-6}$.

For terrestrial labs, as a coherent wave:

$$a(x,t) \approx a_0 \cos \left[m_a \vec{v}_a \cdot \vec{x} - \left(m_a + \frac{m_a}{2} v_a^2 \right) t \right]$$

Can coherently convert into photon/EM fields via 'axion-like' interaction

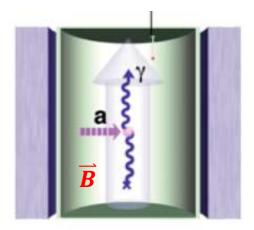
$$\mathcal{L}_{a\gamma\gamma} = -g_{a\gamma}a\vec{E}\cdot\vec{B}$$



Axion Haloscope:

A resonant DM axion -> photon converter (P. Sikivie, 83')

- Primakoff Effect: a under a strong EM field
- DM in QCD axion theory predicts a microwave frequency band.
- High `Quality factor' given by DM energy dispersion
- Tunable resonator to scan over a mass range



A new f^{-1} frontier:

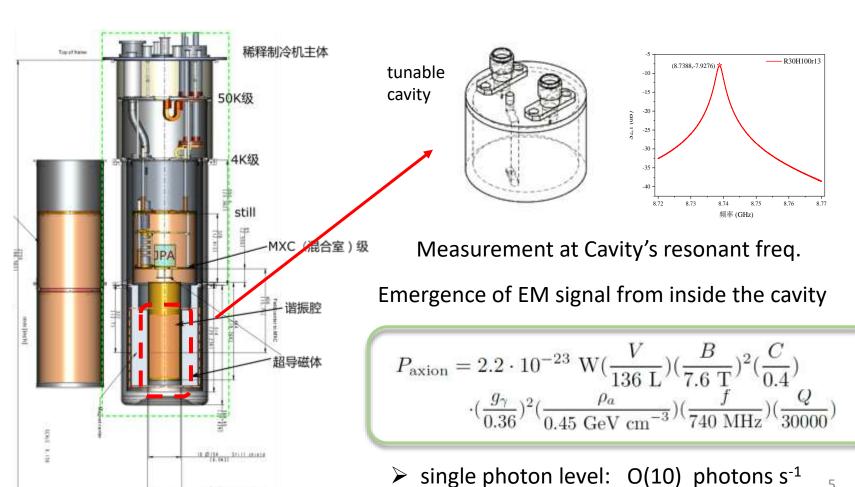
Search for high U(1)_{PQ} scale physics at a low $\sim \frac{\Lambda_{QCD}^2}{\Lambda_{PQ}}$ scale

QCD axion dark matter: typically \sim O(50) μ eV. General ALP(s): m_a - f_a not restricted.

Cavity tuned to expected axion signal frequency

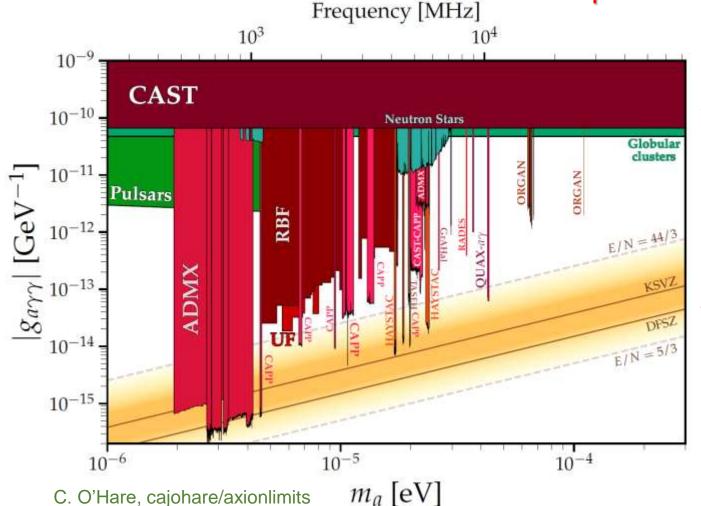
 m_a = 60–150 μeV (T. Hiramatsu, et.al. 2012') m_a = 26.5±3.4 μeV (Klaer, Moore, 2017')

Cryogenic resonant EM cavity



Haloscope with strong B field:

sharpest limits, so far.



ADMX,HAYSTAC: achieved sensitivity to theoretical par. space (DFSZ / KSVZ models)

Recent players: CAPP/IBS (2020) QUAX-aγ (2019) CAST-RADES(2021) TASEH (2022)

- *Higher freq. detectors (10 GHz or higher?)
- + many others.

C. O'Hare, cajohare/axionlimits (Figure from *PDG* 2024)

6

Success with a High-Q

>Key to cavity's achievements: high quality factor

$$R = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a^2} B_0^2 C_k V \cdot \mathbf{Q}$$

For classical, see P. Sikivie, 84'

 $Q \sim 10^6$ Provide both resonant $a \rightarrow \gamma$ enhancement & bkg suppression

Thermal noise power:
$$P_{Bkg} \sim 4k_BT \frac{m_a}{2\pi \cdot Q}$$

Quantum mechanically, interaction between a cavity-mode $\vec{E}(x)$ and the plane wave:

$$H_{I} = -\int d^{3}x \mathcal{L}_{a\gamma\gamma}$$

$$= \left(g_{a\gamma\gamma} \frac{\sqrt{2\rho_{a}}}{m_{a}} B_{0} \int dx^{3} \hat{z} \cdot \vec{E}\right) \cos(\omega_{a}t)$$

$$= \left(g_{a\gamma\gamma} \frac{\sqrt{2\rho_{a}}}{m_{a}} B_{0} \int dx^{3} \hat{z} \cdot \vec{E}\right) \cos(\omega_{a}t)$$

So at the QM level!

Cavity's $|0\rangle \rightarrow |1\rangle$ rate is enhanced by the incident wave's Q – factor.

Cavity's $|0\rangle \rightarrow |1\rangle$ state transition rate is **indeed enhanced** by the cavity quality factor that matches with the DM wave's.

2201.08291

^{*} This is consistent with classical oscillation calculations.

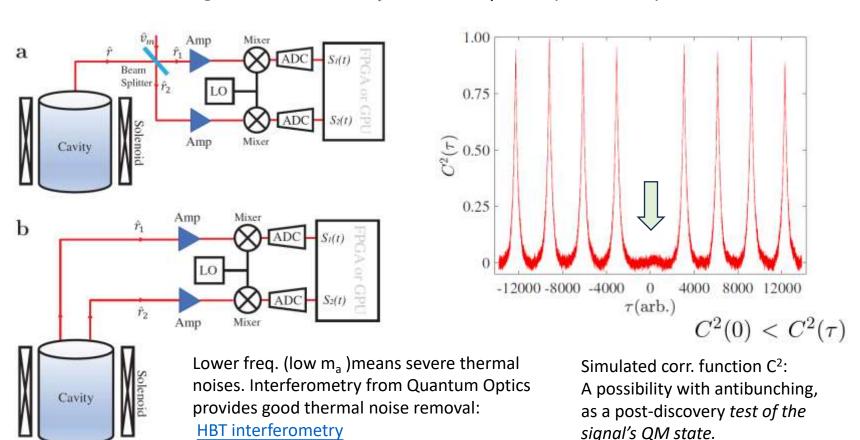
^{*} Opens up new methods based on single photons: dual-path HBT, antibunching...

Inter-disciplinary:

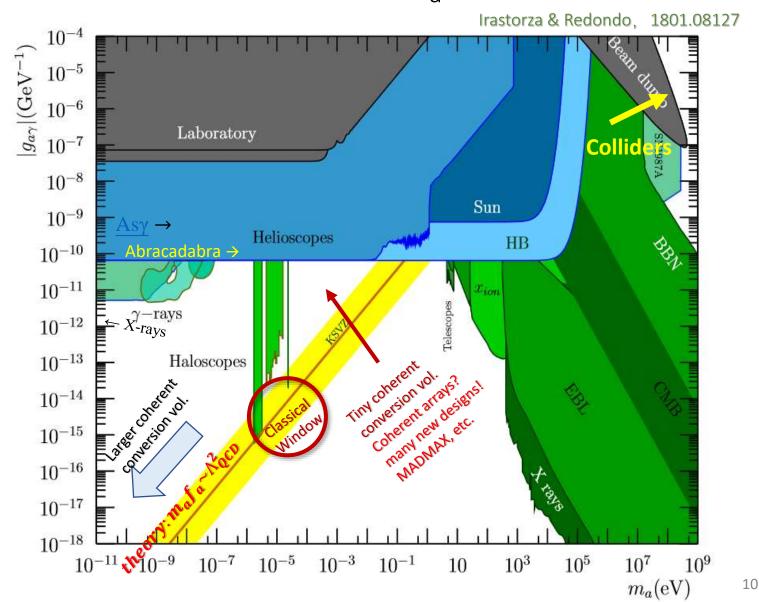
The haloscope's low Cavity's $|0\rangle \rightarrow |1\rangle$ state transition rate leads to a low average occupation number:

(2201.08291)

Axion conversion signal resembles a 'pure state' $|1\rangle$ in quantum optics.



What about lower/higher m_a?



W/O cavity? - `aQED' induction effects

axion-modified Maxwell equations:

Effective charge: (suppressed as
$$v_a \ll 1$$
) (j^0 of the locally conserved 4-current $\partial_{\mu} j_a^{\mu} = 0$)

$$\vec{\nabla} \cdot \vec{E} = \rho_e + g \vec{B} \cdot \nabla a$$

$$\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = g \vec{E} \times \vec{\nabla} a - g \vec{B} \frac{\partial a}{\partial t} + \vec{j}_e$$
 Axio-magnetic current:
$$\vec{\nabla} \cdot \vec{B} = 0$$
 ADMX-SLIC(LC), Abracadabra, DM-Radio, etc
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \ ,$$

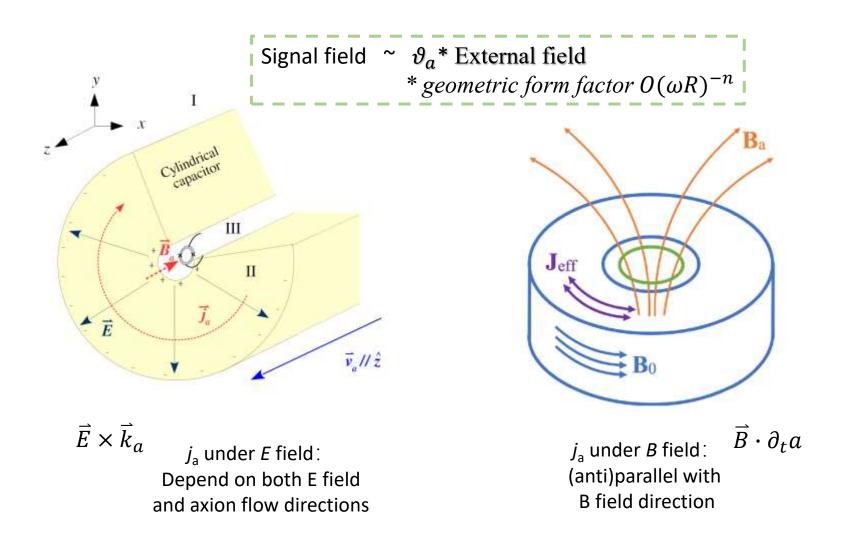
Axion's effective sources:

effective (moving) charge & effective displacement currents

Axio-electric current $\vec{j}_a = g\vec{E} \times \vec{\nabla} a$

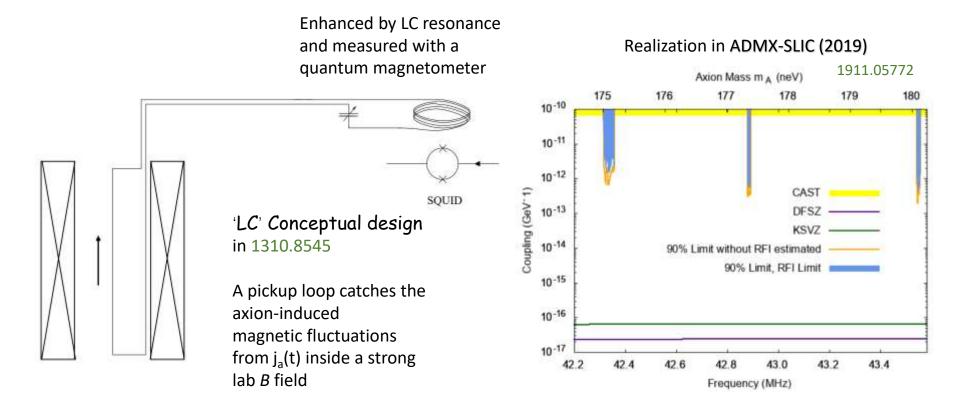
DM axion flow Induces a magnetic signal inside E field: see 2012.13946 (broad-band) & 2204.14033 (narrow-band)

Axio-electric & axio-magnetic effective currents



Magnetic signal from B field

➤ 'LC'-type designs: ADMX-SLIC, Abracadabra, DM-Radio, etc.

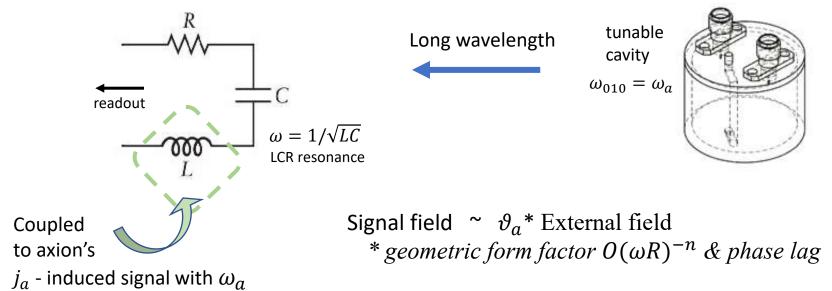


Resonance without a cavity

High quality factor filtering is still essential for non-cavity.

$$R = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a^2} B_0^2 C_k V Q$$

Popular solution: electronic (LC) circuit (P.Sikivie,13') resonance tuned to axion frequency (used in ADMX-SLIC, ABRACADABRA, BASE, etc.)



\vec{E} field or \vec{B} field?

[As the medium]

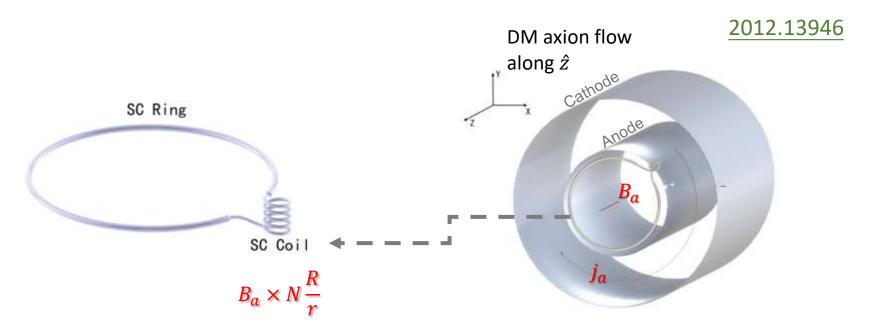
- ➤ Both induce effective currents
- ➤ B field is (by Nature's choice) more effective in conversion rate:
 - * 10 Tesla ~ v_{DM}*10¹³ V/m
 - * j_a in E has velocity suppression.
- Strong solenoid B field: instabilities?
- E field: j_a has directional
 dependance 24 hr modulation
- ➤ E field: apparatus orientation dependance bkg veto

[As the signal]

- ➤ Both E and B signals can be quite efficiently measured.
- (down to ~ single photon level)
- ➤ Typical E field signal:
 - * cavity's resonance modes.
 - * voltage differences.
- ➤ Typical B field signal:
 - * induced magnetic flux
- ➤ Very different form factors
- ➤ Pick E or B that easily distinguishes from the experimental background.

(Cavity: *E* signal from solenoid *B*)

Magnetic signal from *E* field (broadband)



Pure inductance SC pickup coils: Low noise, high signal gain. Broad-band:

- * not resonance enhanced
 - * compared signal magnitude to detector sensitivity.

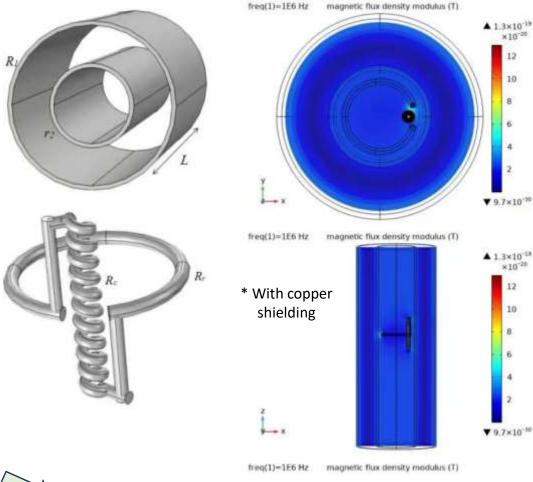
- Cylindrical capacitor: radial static E field, j_a forms alternating loops.
- ightharpoonup SQUIDS sensitivity $\delta B \sim 10^{\text{-15}}\,\mathrm{T}$
- No strong B field near pickup ring
- Mild frequency dependance

A realization in EM simulation: form-factor evaluations

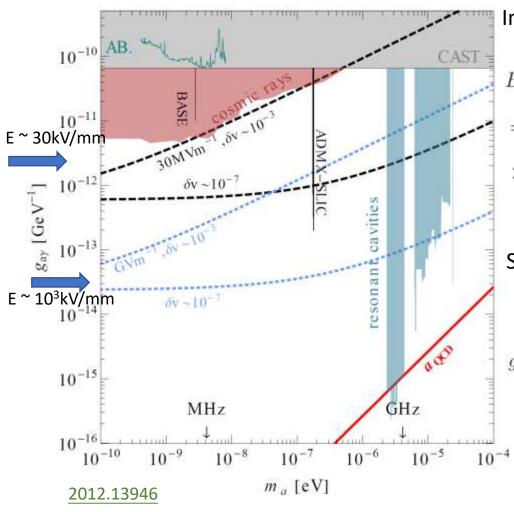
R_1	1m	The outer radius of the shell of the cylinder The outer radius of the in- ner shell of the cylinder	
r_2	$0.5 \mathrm{m}$		
ΔR , Δr	0.05m	The thickness of the shells	
L	5m	The height of the cylinder	
R_r	$0.365 { m m}$	The radius of the ring	
R_c	$0.04 \mathrm{m}$	The radius of the coil	
N	10.6	The number of coil turns	
The Cylindrical Shell	Material	Solid Silicon	
Ring	Material	Gold	
Coil	Material	Gold	
Other Areas	Material	Air	
Boundary	Without *	Air	
Boundary	With *	Copper shell	

$$B_1 \approx F_r N \left(\frac{r_2}{r_1}\right) B_a = M_B B_a$$

Freq.	Eq. 8 (T)	B_{α} (T)	B_1 (T)	F_r
50 Hz	6.36×10^{-20}	2.13×10^{-20}	1.09×10^{-19}	0.053
50 Hz*	6.36×10^{-20}	3.18×10^{-20}	1.75×10^{-19}	0.057
1 MHz	6.36×10^{-20}	1.86×10^{-20}	1.3×10^{-19}	0.072
1 MHz*	6.36×10^{-20}	2.57×10^{-20}	2.01×10^{-19}	0.081



*Broadband: No low-f suppression in form factor



Induction signal along cylinder axis:

$$B_a = \mu_0 R j_a = g_{a\gamma} \bar{E}_0 v \sqrt{2\rho_{CDM}} R \cos(\omega_a t)$$

$$= 2.0 \times 10^{-7} T \left(\frac{g_{a\gamma}}{\text{GeV}^{-1}}\right) \left(\frac{\bar{E}_0}{\text{Gvolt/m}}\right) \left(\frac{R}{1\text{m}}\right)$$

$$\times \cos(\omega_a t)$$

SQUID sensitivity reach

$$\Delta B \sim 10^{-16} \text{ Tesla} \cdot \sqrt{\Delta f/\text{Hz}} + \Delta B_{\text{min}}$$

$$g_{a\gamma} = 1.7 \times 10^{-13} \text{GeV}^{-1} \left(\frac{1 \text{m}}{R}\right) \left(\frac{1 \text{GV/m}}{\bar{E}_0}\right) \left(\frac{10^4}{M_B}\right)$$

$$\cdot \sqrt{\frac{m_a}{10^{-5} \text{eV}} \frac{\delta v}{10^{-7}}}$$

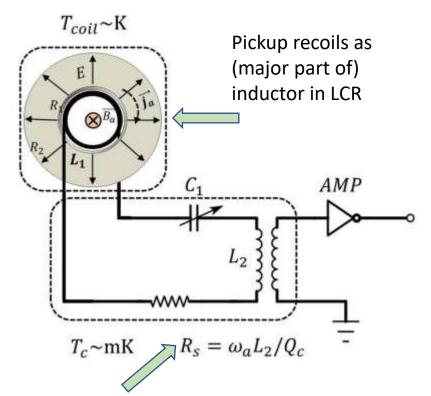
Directionality: signal is daily modulated and depends on apparatus orientation

Magnetic signal from *E* field (LC-res.)

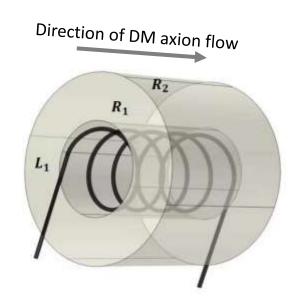
2204.14033

Cylindrical capacitor

+ LCR resonance enhancement

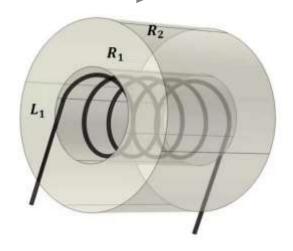


Low *T* on resistance parts for noise control.



- * Originate from the search for the (dipole) radiating power from an alternating j_a loop
- * Connect a LCR circuit to the coil pickup
- * High *Q* resonant point requires relatively low resistance need SC parts.
- * Fast resonance saturation ($\sim f^{-1}$)
- * Loose winding to let in the induced signal

Direction of DM axion flow



Pickup Inductance $\sim 10 \mu H$ per meter for mm–diameter wiring

SC: Lenient on pickup temperature: NbTi superconductor transition ~ 9.7K Allow for a sizeable pick coil.

Axion-induced B field strength:

$$B_a = g_{a\gamma} E_0 v_{\rm DM} c_R \sqrt{2\rho_{\rm DM}} R_1$$

$$\sim 2 \times 10^{-10} \text{T} \cdot \left(\frac{g_{a\gamma}}{\text{GeV}^{-1}}\right) \left(\frac{E_0}{10^7 \text{V/m}}\right) \left(\frac{R_1}{0.1 \text{m}}\right)$$

Signal current:

$$I_a = Q_c \cdot (\pi R_1^2 N_1 B_a L^{-1}) \cos \omega t$$

LCR capacitance (~ 0.1 GHz)

$$C=(2\pi f)^{-2}/L\sim 0.3 {
m pF} \left(\mu {
m H}/L
ight) \left(0.1~{
m GHz}/f
ight)^2$$
 $Q_c=\omega_a L/R_s~{
m matches}$ with axion's Q~10⁶.

Maximal LCR dissipation power: (saturate to axion conversion)

$$P_{\rm dis.} = Q_c \cdot (N_1 \Phi_a/L)^2 \omega_a L/2$$

Low resistance @ LCR resonance:

$$R_s = \omega L/Q_c = 0.04\Omega \cdot (f/GHz)$$

Helps reduce thermal noise under cryogenic cond. ($T_c \sim mK$) SC coils need a less stringent temperature (K) (yet its thermal noise should not exceed that in LCR)

Assuming the LCR's noise (it's amplified) dominates total noise $P_n = k_B T_c \Delta f + k_B T_D \Delta f$ ~ Air breakdown field can reach $SNR = \frac{(Q_c N_1 \Phi_a / L)^2 R_s}{2k_B T_c} \sqrt{\frac{t}{\Delta f}} ,$ below CAST $= \frac{Q_c(N_1 \cdot \pi R_1^2 B_a)^2}{2Lk_B T} \sqrt{Q_c \cdot 2\pi \omega_a \cdot t}$ $g_{a\gamma} = \frac{\sqrt{\text{SNR} \cdot 2N_1} \overline{L_{1,0} \cdot k_B T_c}}{(\pi R_1^3 N_1 E_0 v_a c_R \sqrt{2\rho_{\text{DM}}}) \sqrt[4]{Q_c^3} 2\pi \omega_a t},$ $\approx 1.6 \times 10^{-12} \text{ GeV}^{-1} \left(\frac{R_1}{1 \text{ m}}\right)^{-3} \left(\frac{E_0}{\text{MVm}^{-1}}\right)$ $\times \left(\frac{m_a}{10^{-6} \text{ eV}} \cdot \frac{t}{\text{hr}}\right)^{-1/4}$

Modest, medium & optimistic setups

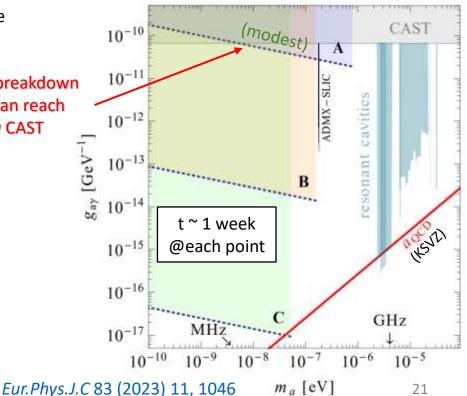
Benchmark	$R_1(m)$	N_1	E(V/m)	$T_c(mK)$
A	0.2	5	10^{6}	10
В	1	10	10^{7}	1
C	3	20	10^{9}	1

Insulators:

Dry Air: ~ kV/mm

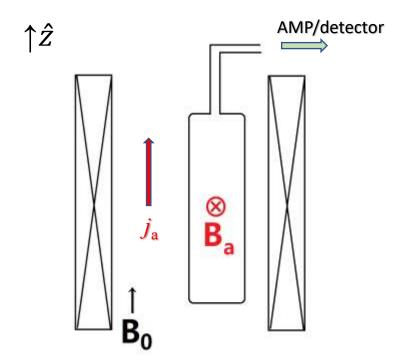
Mica: $\sim 10^2 - 10^3 \text{ kV/mm}$

Diamond: ~ 10⁴ kV/mm

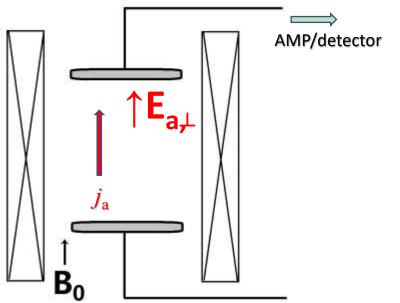


Electric field as the signal

Effective current j_a (under a static B field) induces both time-variant mag. & ele. signals



See <u>1803.07755</u> for a broadband attempt (UWA)



B_a signal: magnetic flux at pickup loop

$$P_{sig.} = \frac{\langle \Phi^2 \rangle}{L} \omega$$

E_a signal: charge buildup on surface(s)

$$P_{sig.} = \frac{\langle q^2 \rangle}{C} \omega$$

E Signal power strength

Is E_a signal a good way to catch the DM axion oscillation signal?

Experimental sizes/detectors/noises vary.

Yet we can compare the axion conversion (signal) power.

Charge accumulation on plate surface: $q=\int \vec{E}\cdot \mathrm{d}\vec{A}$

Pair of parallel plates form a capacitor: $C \sim \pi R^2/d$

Use a LCR enhancement on current: $I_a = Q_c \cdot q_0 \omega \cos(\omega t)$

Geometric form factor: $\eta = q/q_{max}$ (ratio of actual/max charge)

at `optimal' frequencies one would have η ~O(1)

$$\eta(\omega) \equiv \frac{\int \vec{E}_a \cdot d\vec{A}}{\int g_{a\gamma} a\vec{B}_0 \cdot d\vec{A}}$$

actual charge build up

theoretical upper limit:

As good as a cavity haloscope?

LCR enhanced signal power:

$$P_{\text{sig}} = \frac{(Q_c \omega q_0)^2}{2Q_c \omega C}$$

$$= Q_c \cdot \left(g_{a\gamma}^2 \eta(\omega)^2 \cdot \frac{\rho_{\text{DM}}}{m_a} B_0^2\right) \left[\pi R^2 d\right]$$

At the maximal wavelength (half-wave cutoff)

$$V \sim \left(\frac{\lambda}{2}\right)^3 = (\pi/m_a)^3$$

$$P_{
m sig} = \mathcal{C}Q_c \cdot g_{a\gamma}^2 \cdot rac{
ho_{
m DM}}{m_a} B_0^2 \cdot V$$

Form factor $\mathcal{C} = \eta^2 f_c^{-1}$ is around unity at cut-off

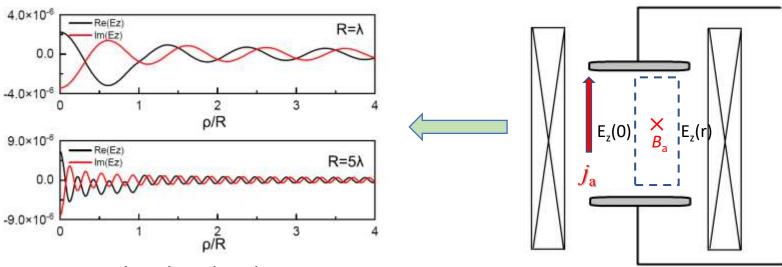
$$P_{\text{sig}} < \mathcal{O}(1) \cdot Q \cdot \pi^3 \cdot \frac{g_{a\gamma}^2 \rho_{\text{DM}} B_0^2}{m_a^4}$$

(→ same signal power as in a cavity haloscope)

A volume-dimension quantity: grasps the size of the region that axion field converts coherently to EM.

Complication w geometric factors

Long solenoid analytic solutions, see 1803.07755, 1812.05487



Simulated Ez distribution, 2206.13543

Ez isn't homogeneous; form factor depends on freq.

$$\eta(\omega) \approx \frac{1}{\pi R^2} \left| \int_0^R [\alpha(\omega) J_0(\omega r) - 1] \cdot 2\pi r dr \right|$$
$$= \left| i\pi J_1(\omega R) H_1^+(\omega R) - 1 \right|$$

Evenly distributed ja generates a difference btw $E_z(r \neq 0)$ and $E_z(0)$

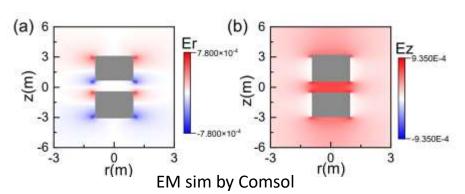
$${\it E}_{\rm z}$$
 field is $(\omega R)^2$ suppressed

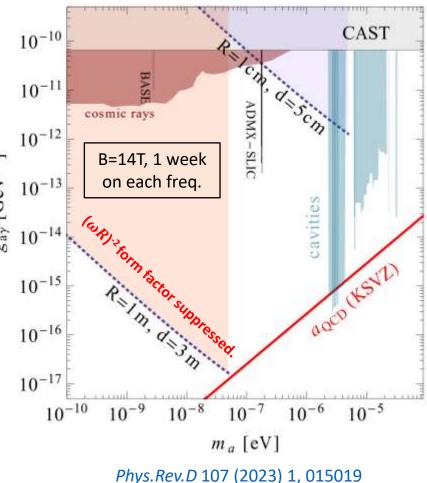
Electric sensitivity (w LCR res.)

 j_a induced electric signal inside a solenoid Resonance-enhanced design 2206.13543

- * ready to go with most cryo. magnets.
- * Resonant ELEctric Axion Probe (ReLEAP)
- * Best sensitivity at larger frequency
- * other geometric setups are possible

$$g_{a\gamma}^{\text{limit}} = \left(\frac{\text{SNR} \cdot 2k_B T_N}{\eta^2 f_c^{-1} R^2 d \ \rho_{\text{DM}} B_0^2 \sqrt{\Delta t}}\right)^{1/2} \left(\frac{m_a}{2\pi Q_c}\right)^{3/4}$$





26

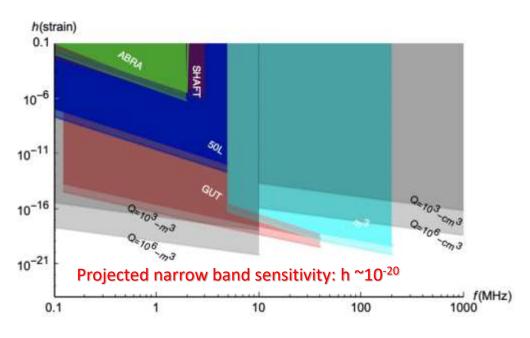
Electric sens. of GW

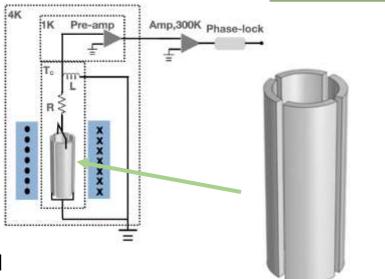
- Inverse Gertsentshein effect $(g \rightarrow \gamma)$
- Potential indication of Quantum GW

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} \right)$$

$$j_{ ext{eff}}^{\mu} \equiv \partial_{
u} \left(\frac{1}{2} h F^{\mu
u} + h_{lpha}^{
u} F^{lpha\mu} - h_{lpha}^{\mu} F^{lpha
u} \right)$$

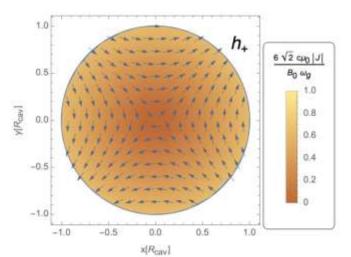
Generates effective currents inside strong B field





Quarterly split cavity:

- * spin-2 symmetry (TE₂₁₁)
- * LC-filter for both Narrow/Broad band



High voltage for indirect monopole search?

QEMD: Modified electrodynamics assuming magnetic monopoles exist.

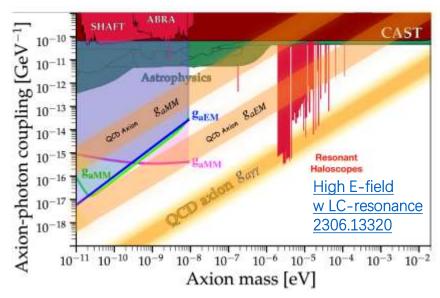
Daniel Zwanziger, 1971

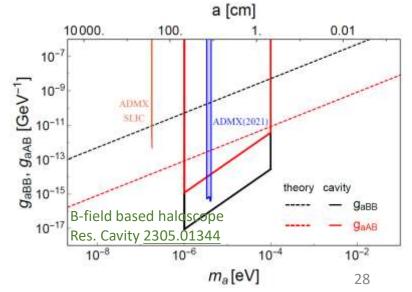
A. Sokolov & A. Ringwald, 2205.02605

Introduces extra U(1) to the theory and predict extra couplings: g_{aMM} , g_{aEM} when it comes to the axion's couplings.

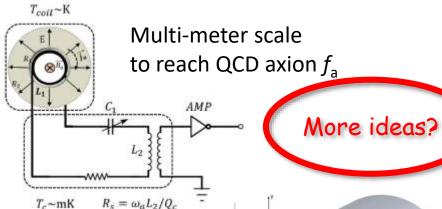
$$\begin{split} \vec{\nabla} \cdot \vec{E}_1 &= g_{a\gamma\gamma} c \vec{B}_0 \cdot \vec{\nabla} a - g_{aEM} \vec{E}_0 \cdot \vec{\nabla} a + \epsilon_0^{-1} \rho_{e1}, \\ \mu_0^{-1} \vec{\nabla} \times \vec{B}_1 &= \epsilon_0 \partial_t \vec{E}_1 + \vec{J}_{e1} \\ &+ g_{a\gamma\gamma} c \epsilon_0 \left(-\vec{\nabla} a \times \vec{E}_0 - \partial_t a \vec{B}_0 \right) \\ &+ g_{aEM} \epsilon_0 \left(-\vec{\nabla} a \times c^2 \vec{B}_0 + \partial_t a \vec{E}_0 \right), \\ \vec{\nabla} \cdot \vec{B}_1 &= -\frac{g_{aMM}}{c} \vec{E}_0 \cdot \vec{\nabla} a + g_{aEM} \vec{B}_0 \cdot \vec{\nabla} a, \\ \vec{\nabla} \times \vec{E}_1 &= -\partial_t \vec{B}_1 \\ &+ \frac{g_{aMM}}{c} \left(c^2 \vec{\nabla} a \times \vec{B}_0 - \partial_t a \vec{E}_0 \right) \\ &+ g_{aEM} \left(\vec{\nabla} a \times \vec{E}_0 + \partial_t a \vec{B}_0 \right), \end{split}$$

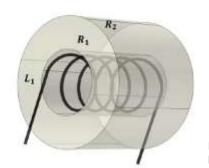
Further Modified EM dynamics:



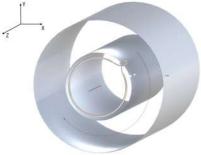


New haloscopes: open up a wider m_a range



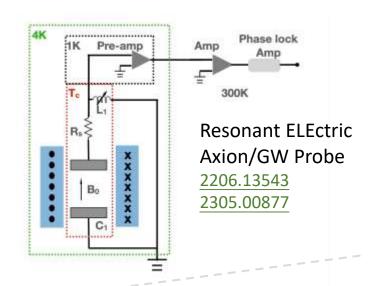


Magnetic signal from DM axion wind through a strong *E* field 2204.14033



Broadband probe with state-of-art magnetometers 2012.13946

Also see: spin-based sensors: (Diamond NV, etc.)



ADMX-SLIC 1911.05772

& DM-Radio
Magnetic signal
from DM axion
in a strong B field
2203.11246

